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Heart transplant candidates sensitized to HLA antigens wait longer for transplant, are at
increased risk of dying while waiting, and may not be listed at all. The increasing
prevalence of HLA sensitization and limitations of current desensitization strategies
underscore the urgent need for a more effective approach. In addition to pregnancy,
prior transplant, and transfusions, patients with end-stage heart failure are burdened with
unique factors placing them at risk for HLA sensitization. These include homograft material
used for congenital heart disease repair and left ventricular assist devices (LVADs).
Moreover, these risks are often stacked, forming a seemingly insurmountable barrier in
some cases. While desensitization protocols are typically implemented uniformly,
irrespective of the mode of sensitization, the heterogeneity in success and post-
transplant outcomes argues for a more tailored approach. Achieving this will require
progress in our understanding of the immunobiology underlying the innate and adaptive
immune response to these varied allosensitizing exposures. Further attention to B cell
activation, memory, and plasma cell differentiation is required to establish methods that
durably abrogate the anti-HLA antibody response before and after transplant. The
contribution of non-HLA antibodies to the net state of sensitization and the potential
implications for graft longevity also remain to be comprehensively defined. The aim of this
review is to first bring forth select issues unique to the sensitized heart transplant
candidate. The current literature on desensitization in heart transplantation will then be
summarized providing context within the immune response. Building on this, newer
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approaches with therapeutic potential will be discussed emphasizing the importance of
not only addressing the short-term pathogenic consequences of circulating HLA
antibodies, but also the need to modulate alloimmune memory.
Keywords: HLA, sensitization, desensitization, non-HLA antibodies, heart transplantation, cPRA, humoral
immune response
INTRODUCTION: SENSITIZATION TO
HUMAN LEUKOCYTE ANTIGENS (HLA)
IN HEART TRANSPLANTATION

HLA sensitization is a major barrier to heart transplantation, the
incidence of which is increasing (1, 2). Sensitized patients wait
longer for transplant and are at higher risk of dying on the waiting
list or being delisted (3). Post-transplant, there is an increased
incidence of adverse outcomes including both cellular and antibody
mediated rejection as well as cardiac allograft vasculopathy (4–6).
Heart transplant candidates bear the burden of all the same risk
factors for sensitization as other transplant candidates, namely
pregnancy, prior transplant, and transfusions. However,
additional sensitizing events also contribute. These include
homografts (7) used for congenital heart disease repair, and
mechanical circulatory support (5), most commonly left
ventricular assist devices (LVADs). Given that immune ‘insults’
can accumulate over time, this risk can be quickly magnified.

As is the case across solid organ transplantation, desensitization
strategies are limited by variable efficacy and frequently
accompanied by brisk rebound. In the case of end-stage heart
disease, this is further complicated by tenuous hemodynamics,
time sensitivity, and in some cases chronic device infections. In the
United States, sensitized transplant candidates do not receive
priority status on the waitlist (8). While policy change is one
approach, prioritization can be a double-edged sword, resulting in
hesitancy to develop robust, mechanistically driven desensitization
strategies with the potential to improve post-transplant outcomes
(9). Instead, prioritization may favor peri-transplant antibody
management approaches that temporize the situation but do not
modulate the underlying immune response. Multidrug regimens
may more comprehensively address the underlying immune
response, particularly for patients in whom years of repeated
allosensitizing events result in high titer HLA antibodies with
cytotoxic capabilities (10–12). However, the factors driving
differences in B cell memory and plasma cell characteristics are
incompletely understood, the response to treatment is
heterogeneous, and therapeutic options remain limited.
Moreover, while emphasis has been placed on therapeutic
approaches that directly target humoral alloimmunity, it is
important to consider that allosensitization includes T-cell
memory and that there is growing appreciation of the complex
interactionbetween innate andadaptive immunity. The objective of
this review is to 1) summarize the current state of desensitization in
heart transplantation supported by experience in kidney, 2) provide
context within the immune response, and 3) building on these
findings, introduce rational strategies with the potential to improve
long-term outcomes. A brief overview of HLA sensitization, the
org 2
methods used todetect allosensitization, and considerations unique
to heart transplantation will first be provided to contextualize
the review.
SENSITIZATION AND UNIQUE
CONSIDERATIONS FOR THE HEART
TRANSPLANT CANDIDATE

Overview of the Immune Response
to Foreign HLA
Exposure to foreign HLA can initiate a complex set of immune
reactions which may result in a short-term ‘effector response’,
long-lived plasma cells (LLPCs) capable of sustained antibody
secretion over decades, and/or the establishment of B and T cell
memory [reviewed in (13)]. As a result, HLA allosensitization
may either be overt (detectable HLA antibodies) or cryptic (the
presence of cellular memory in the absence of detectable HLA
antibodies). Although only the former is commonly considered
in the context of desensitization, both are associated with
increased risk of rejection and/or worse outcomes after
transplant (14, 15). Importantly, because HLA antibodies are
the product of a T cell-dependent response (16), and because
alloreactive effector T cells themselves are potently pathogenic,
both T and B cell memory, as well as their ability to sustain
reciprocal interactions, should be considered (17). Notably,
monocytes, dendritic cells (DCs) and natural killer (NK) cells,
which are at the boundary between innate and adaptive
immunity, feature prominently in the response to the allograft,
yet their importance in the context of desensitization is only
beginning to be considered. Figure 1 provides a schematic
overview along with the most common current approaches to
desensitization based on a recent international survey (4). The
primary and recall humoral response are detailed in several
recent reviews and summarized below (13, 18, 19). Alloreactive
T cells and innate immunity will also be briefly considered.
The Adaptive Response to HLA Antigens:
Humoral Alloimmunity
In brief, during the primary immune response, non-self HLA
encountered during pregnancy (paternal), exposure to foreign
tissue (transplant, homografts), or blood products (transfusions)
is transported to secondary lymphoid organs (e.g., lymph nodes
or spleen) which are broadly divided into B cell rich follicles and
T cells zones (18). T and B cells first encounter antigen
independently in their respective zones. T cells acquire a T
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follicular helper (Tfh) like phenotype (upregulating BCL-6,
CXCR5, PD1, and ICOS) while B cells downregulate CXCR5
and upregulate CCR7 and EBI2 allowing them to migrate to the
T cell-B cell border (20). Here, cognate interactions with T cells
occur in the presence of costimulatory signals (CD28, CD40L,
and ICOS). At this stage, B cells can either directly differentiate in
an extrafollicular manner or enter the germinal center.
Extrafollicular B cells can differentiate into antibody secreting
cells (ASCs) or acquire a memory phenotype (13). Alternatively,
B cells can enter the germinal center (GC) which marks another
critical collaboration between T and B cells ultimately resulting
in selection and clonal proliferation of B cells with a high affinity
B cell receptor (BCR). Some of these may migrate to the bone
marrow and become plasma cells (BMPCs), while others
differentiate into quiescent memory B cells (Bmem). The
understanding of these different fates and factors driving them
is rapidly evolving and beyond the scope of this review. However,
three concepts emerge with particular relevance from the
desensitization perspective. Firstly, it is important to consider
that both extrafollicular and GC B cells can acquire a memory
phenotype with heterogeneity in Ig subclass, antigen affinity
(resulting from somatic hypermutation), and longevity (19, 21,
22). Secondly, because BMPCs secrete antibodies with
specificities that parallel those found in the blood (23), they
represent an important therapeutic target. Establishing the
phenotype and characteristics of anti-HLA-secreting BMPCs
and the factors driving their differentiation will be critical to
designing targeted therapies that ideally eliminate HLA-secreting
PCs while leaving protective immunity intact. Thirdly, the
opportunity for continual T cell-B cell interactions both within
and outside of the GC suggests that strategies targeting these
interactions may be beneficial both to dampen the active
alloresponse and prevent rebound (24, 25).
Frontiers in Immunology | www.frontiersin.org 3
The Adaptive Response to HLA Antigens: T-Cell
Alloimmunity
Sensitized transplant candidates are at increased risk of cellular
rejection highlighting the effect of enhanced T-cell reactivity
towards the donor graft independent of the T-dependent
antibody response (26, 27). In addition to overt exposure to
antigenic HLA, the recipient’s history of encounter with
environmental antigens can shape the donor reactive response
through cross-reactivity or heterologous immunity (28, 29). In
kidney transplant recipients, the extent of HLA molecular
mismatch also influences alloimmune risk (30). For the
sensitized heart transplant candidate, these factors can fine
tune the donor reactive response and influence post-transplant
outcomes. For the patient without an apparent sensitization
history, this implies that absence of overt HLA exposure is not
synonymous with low risk. At the epidemiological level, this may
contribute to the heterogeneity in reported outcomes amongst
HLA sensitized heart transplant recipients.

The Innate-Adaptive Interface in HLA Sensitization
While treatment of HLA sensitization is focused on the
aforementioned adaptive immune response, innate immune
cells, including monocytes, dendritic cells (DCs), and natural
killer (NK) cells play an important role in the response to the
allograft. DCs serve as antigen presenting cells (APCs) to activate
T cells and are therefore a critical first step in the adaptive
response. However, because this can occur through the direct,
indirect, and semi-direct pathways [reviewed in (31–33)]
activation of both CD4 and CD8 T cell can theoretically occur
at any timepoint post-transplant. Monocytes are the precursors
to some subsets of DCs and also macrophages the latter featuring
prominently in the allograft during AMR, secreting
proinflammatory cytokines, recruiting additional immune cells,
FIGURE 1 | Common approaches to desensitization in heart transplantation and their primary site of action. DC, dendritic cell; NK, natural killer cell.
August 2021 | Volume 12 | Article 702186
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present antigen locally, and provide costimulatory signals (34).
NK cells are also present in the allograft during antibody
mediated rejection (AMR) suggesting a logical link between
DSA and graft damage via antibody-dependent cellular
cytotoxicity (ADCC) (35). However, NK cells can function
independent of DSA secreting cytotoxic, proinflammatory
molecules in the setting of ‘non-self’ recognition (36, 37).
While the above characterization suggests a pathogenic role for
the innate response, tolerogenic potential has also been described
(31, 34). Moreover, at least some innate immune cells can
develop memory adding a layer of complexity to their role in
the allograft over time. This suggests that manipulation, rather
than inhibition of the innate immune response may be of benefit.
Whether strategies that synergistically modulate innate
immunity while abrogating the alloreactive adaptive response
can lead to sustained improvement in long-term outcomes for
highly sensitized transplant recipients, remains to be established.

Assessment of Allosensitization
In addition to HLA antibody detection, which is most commonly
done using the Luminex Single Antigen Bead (SAB) assay,
numerous approaches have been developed to detect alloreactive
memory T and B cells. Table 1 provides an overview of some of
these assays. It should be noted that, at the present time most of
these remain exploratory in nature. For further descriptions, the
reader is referred to Sensitization inTransplantation:Assessment of
Risk (2017 & 2019) (38, 39) as well as several recent reviews (40,
47–49).

Unique Mechanisms of HLA Sensitization
in Heart Transplantation and Their
Implications for Desensitization
Congenital Heart Disease
Advances in surgical techniques to repair congenital heart
defects have revolutionized the prognosis for children with
complex congenital heart disease (CHD) with many surviving
to adulthood (50–52). Some will develop end stage disease making
CHDthe secondmost common indication forheart transplantation
between the ages of 18-39 (53). The risk of HLA sensitization is
increased, inmany cases driven by homograft material used during
previous surgical repair leading to chronic exposure to foreignHLA
(54). In the absence of immunosuppression brisk allosensitization
ensues, which is often broadly reactive, high titer, and resistant to
desensitization (7, 55–58). This is further compounded bymultiple
sternotomies, blood transfusions, and in some cases left ventricular
assist device (LVAD) implantation (59). Given that many such
patients may be turned down for transplant, the true scope of the
problem is likely underestimated. Whether children, with perhaps
greater immune plasticity and a shorter duration of exposure,
respond differently is difficult to parse out (60–62).

Pregnancy & Peripartum Cardiomyopathy
Peripartum cardiomyopathy (PPCM) is an important cause of
morbidity and mortality globally with a geographically polarized
incidence ranging from 1:100 in the developing world to 1:2000-
4000 in the US where cases may be on the rise (62–67). While
Frontiers in Immunology | www.frontiersin.org 4
many women will recover, a subset progress to end-stage disease
necessitating advanced therapies. In the transplant setting,
PPCM is associated with higher PRA, increased risk of
rejection and worse survival (68). The divergence between the
potential for a tolerogenic T cell state and the development of
antibodies against paternal antigens raises important questions
in the context of transplantation (69). Whether the ‘T-cell
centric’ focus of our current immunosuppressive regimens, and
relative lack of adequate B cell control is particularly detrimental
in this setting is unknown. In a mouse model of pregnancy
induced allosensitization followed by heart transplant with a
semi-allogenic graft, T cell tolerance to the graft was overcome in
the presence of pregnancy-sensitized B cells, whether or not DSA
was present. B cell depletion (a-CD20) restored allograft
acceptance (70). The clinical implications remain to be defined,
but may be of particular relevance when transplant occurs in
close proximity to the sensitizing event.

LVAD
Nearly half of patients who undergo heart transplantation are
supported on an LVAD prior to transplant (71). While LVAD
implant is associated with increased risk of developing HLA-
reactive antibodies, their significance in terms of post-transplant
outcomes is less clear (72). In an early UNOS registry analysis,
LVAD recipients waited longer for transplant but there was no
difference in1-year survival or rejectionepisodesbetween sensitized
and non-sensitized patients, even when highly sensitized
(PRA>90%) patients were considered (72). Similarly, Chiu et al.
used propensity matching to compare sensitized transplant
candidates with and without mechanical circulatory support
(MCS) (5). In contrast to non-MCS sensitized candidates who
had increased 1-year mortality, patients transplanted from MCS
had similar outcomes to non-sensitized transplant recipients.

Both the quality and duration of de novo detectable HLA
antibody responses following LVAD implant may contribute to
the discrepancy in outcomes. Using the Luminex Single Antigen
Bead Assay (SAB), Shankar et al. described an increase in cPRA
from 20% to 53% (p=0.024) after LVAD implant without
evidence of cytotoxicity (defined as a CDC PRA>10%) (73).
Similarly, a recent comparison of the HeartMate II and
HeartMate 3 (HM3) device found that de novo sensitization,
defined by SAB, persists with the newer generation HM3
although the development of high MFI (>10,000) class I
antibodies was less frequent. Similar to the findings by Shankar
et al, cytotoxicity defined by a de novo positive CDC PRA >10%,
was low (74). In contrast to pregnancy and prior transplant,
where high MFI HLA antibodies can persist for decades, the
response post-LVAD may decline more quickly. In a cohort of
268 patients, 30 (23%) developed newly detectable HLA
sensitization (defined as cPRA>10%) after LVAD implant,
which declined over time in 67% of these transplant candidates
(cPRA<10%) without desensitization (75). Nonetheless,
compared to non-sensitized or previously sensitized transplant
recipients, the risk of ACR and AMR was higher suggesting that
memory persist.

Potential device-intrinsic effects on cellular and humoral
immunity have been investigated (76). Whether the type of
August 2021 | Volume 12 | Article 702186
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TABLE 1 | Assays to detect & characterize allosensitization (38–46).
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Assay Description Potential Utility for Desensitiz

HLA antibodies
Luminex single-antigen
bead (SAB) assay

Fluorochrome labelled beads are coated with specific HLA class I or II alleles and mixed
with patient’s serum; HLA antibodies bind the bead and a secondary Phycoerythrin (PE)-
conjugated anti-IgG antibody permits detection. Result reported as a normalized mean
fluorescence intensity (MFI).

Permits detection and identification of t
specificity of HLA reactive antibodies in
patient’s serum.
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Complement binding
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HLA antibody analysis in
cultured supernatants
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Assay Description

HLA reactive B-cell
ELISPOT

Polyclonal B cell stimulation (6-day culture); add HLA multimers to individ
IgG spots

HLA reactive T cells
T-cell ELISPOT Detect HLA reactive T cells using donor or 3rd party inactivated APCs.

Mixed Lymphocyte
Reaction (MLR)

Carboxyfluorescein diacetate succinimidyl ester (CFSE) labelled recipient
to irradiated donor PBMCs; proliferation at day 6 is assessed by flow cy

Donor reactive T cell
repertoire

1. CFSE MLR is performed as above using pretransplant recipient T ce
irradiated donor PBMCs (stimulators).
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device and generation affects this is still unclear. Early studies in
patients bridged to transplant with first-generation LVADs
demonstrated diminished T cell responses in mixed
lymphocyte reactions while non-TCR mediated activation was
less affected (77). Apoptosis was enhanced, especially in the CD4
compartment although the specificity was not established.
In vivo, the response to intradermal skin challenge with
mumps and candida albicans was impaired raising the possibility
of T cell dysfunction. Non-HLA humoral sensitization with
reactivity to autoantigens has also been described (78, 79). In a
cohort of patients bridged to transplant with a second-generation
LVAD, this was attributed to natural (polyreactive) antibodies. A
potential association with primary graft dysfunction but not
rejection was found (80). Collectively, the increased incidence of
allosensitization and predisposition to early cellular rejection raises
the question of whether selective inhibition of B cell – T cell
interactions and/or enhancing regulatory T cell function would be
of particular benefit in this population.

Antibodies to Non-HLA Antigens and Their
Relevance to the Sensitized Heart
Transplant Candidate
Antibodies to non-HLA antigens including the angiotensin II
type 1 receptor (AT1R), major histocompatibility complex class I
chain-related molecule A (MICA), cardiac myosin, and vimentin
have been associated with increased risk of adverse outcomes in
heart transplant recipients (81–86). Many of these studies were
retrospective, single-center analyses and dissecting the role of
pre-transplant non-HLA antibodies versus their development
post-transplant has also been difficult. In the multicenter CTOT-
5 long-term follow up cohort, the persistence at 12-months of
anti-cardiac myosin antibodies (but not vimentin) present before
transplant was associated with the composite endpoint of death,
retransplantation, coronary stent, myocardial infarction, and
cardiac allograft vasculopathy, albeit that this association was
weak (87). Some but not all studies have described an association
between pre-transplant anti-AT1R antibodies and increased risk
of ACR, AMR, and CAV (83, 88, 89). Notably, a link between
LVAD implantation and the development of anti-AT1R has also
been described making this antibody of particular relevance to
the heart transplant population (82). Functionally, anti-AT1R
can exert agonistic effects on the AT1 receptor, induced ERK
kinase signaling in endothelial cells, and promoted vascular
changes in a rat kidney transplant model (90) suggesting that a
complement/Fc receptor independent mechanism may
contribute to its pathogenic effects.

The possibility that non-HLA antibodies synergize with DSA to
exert allograft damage is salient to the highly HLA sensitized
transplant candidate (83, 91). Non-HLA antibodies may either be
directed towards donor polymorphisms or be reactive to
autoantigens. Zhang et al, found that transplant recipients who
developed anti-MICA antibodies directed at donor polymorphisms
(but not against non-donor polymorphisms) were at risk of AMR
(84). In a separate study, pre-transplant anti-MICA was associated
with inferior kidney allograft survival (92). Thus, in already high-
risk HLA sensitized heart transplant candidates, assessment of the
non-HLA antibody repertoire and careful donor selectionmight be
Frontiers in Immunology | www.frontiersin.org 7
warranted. Conversely, in the setting of autoreactive non-HLA
antibodies, donor selectionwouldbe expected to have less relevance
from this perspective.

An importantquestion iswhether contemporarydesensitization
strategies used for HLA antibodies are effective for non-HLA
sensitization. This may depend in part on their mechanism of
action and the relative importance of antibody concentration/titer
to downstream effect. In kidney transplant recipients with
malignant AT1R antibodies, plasmapheresis and IVIG, with the
addition of an ARB improved allograft survival (90). In the small
subset of patients studied, anti-AT1R became undetectable.
Furthermore, in highly HLA sensitized heart transplant
candidates, bortezomib was associated with a reduction in anti-
AT1R (93). The success of using an ARB in conjunction with
plasmapheresis/IVIG ± rituximab in anti-AT1R+ heart transplant
recipients with allograft dysfunction is not clear. In a recent report,
although symptoms were ameliorated, only a fraction of patients
experiencing improvement in graft function (94). Further work is
needed to establish how anti-AT1R and other non-HLA antibodies
should be managed, particularly in highly HLA sensitized heart
transplant candidates.
CURRENT APPROACHES TO
DESENSITIZATION IN HEART
TRANSPLANTATION

Antibody Reduction Strategies
Clinical
The use of IVIG to permit transplantation amongst sensitized
transplant candidates was described in the early 1990s as an
extension of its observed effects in autoimmune mediated disease
(95–99). Today it continues to be included in up to 79% of heart
transplant desensitization protocols making it the most
commonly used treatment (4). While there have been no
randomized controlled trials of IVIG for desensitization in
heart transplantation, its efficacy in kidney transplant was
formally addressed in the randomized, placebo-controlled IG02
trial (100). Monthly IVIG infusions (2g/kg) led to a modest but
significant reduction in PRA and a trend towards an increase in
transplantation, albeit after 6-months when the PRA had
returned to near baseline.

In a study of 13 sensitized children awaiting heart
transplantation, 77% of sensitized patients defined by C1q-
single antigen bead (SAB) PRA >18% were successfully
desensitized with IVIG and transplanted with 100% 1-year
survival (101). Similarly, in 13 children with homograft repair,
those receiving higher cumulative doses of IVIG were more likely
to respond to treatment although longer follow-up time was a
confounding factor (60). IVIG has also been used to desensitize
LVAD recipients with newly elevated CDC PRAs after implant.
Dowling et al. reported on 4 LVAD recipients that developed an
elevated CDC PRA after LVAD implant. All four resolved their
CDC PRA to baseline within 6 months of starting IVIG (102).
Similarly, John et al. described a cohort of 26 heart transplant
candidates supported on an LVAD who were treated with
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monthly IVIG and cyclophosphamide. Compared to untreated
sensitized candidates (n=45) desensitization reduced the time to
transplant and decreased the risk of post-transplant rejection down
to that of non-sensitized recipients (103, 104). However, these
observations should be considered in the context of the
aforementioned points regarding LVAD-related HLA
sensitization. Indeed, the magnitude of IVIG’s effect has been
challenged with the use of the more sensitive SAB assay. Nair et
al, described a modest reduction inmeanMFI with interindividual
variability in response (105). The cPRA was not significantly
reduced. A similarly heterogeneous response was observed when
both the microcytotoxicity assay (CDC PRA) and Luminex SAB
were performed in a small cohort of kidney transplant candidates,
albeit that the dose of IVIG was lower (106).

More commonly in heart transplantation, IVIG has been used
in conjunction with plasmapheresis (PP). Pisani et al. used PP
and IVIG immediately prior to transplant and suggested that
outcomes were similar to those of a contemporary unsensitized
cohort (107). Similarly, Leech et al. found that plasmapheresis,
with low dose IVIG reduced the PRA in many but not all heart
transplant candidates (108). Underlying etiology and magnitude
of the HLA antibody response may contribute to this
heterogeneity as all non-responders in this study were women.
Contemporary studies of perioperative plasmapheresis with
IVIG also suggest that post-transplant rejection is common,
likely because this approach does not address the underlying
immune response (9, 109, 110).

Plasmapheresis has also been used as an adjunct to plasma cell
therapies (discussed below)with the concept that antibody removal
may decrease negative feedback inhibition on plasma cells
enhancing protein production thereby sensitizing them to
proteasome inhibition (PI). This effect remains to be formally
evaluated but recent studies challenge this view. In an iterative
trial of PI with and without intermittent plasmapheresis, both
strategies led to a similar reduction in bone marrow plasma cells
and circulating immunodominant HLA antibodies (10). Our
preliminary work has also recently questioned the need for
plasmapheresis during desensitization (12). Given i) the increased
risk for infection in an already tenuous patient population, ii)
challenges managing periprocedural anticoagulation, and hence
iii) need for inpatient treatment, contemporary strategiesmay forgo
plasmapheresis. Nonetheless, in very highly sensitized patients,
when crossing DSA, its use in the peri-transplant setting may still
be warranted.

Mechanistic Considerations
Multiple immunomodulatory effects have been proposed
including the neutralization and enhanced elimination of
pathogenic antibodies, inhibition of downstream complement
activation, and direct inhibitory effects on the cellular immune
response (reviewed in (97, 98, 111, 112)). From a desensitization
perspective, early work proposed that IVIG effectively neutralized
the pathogenic effects of anti-HLA antibodies through antiidiotypic
antibodies and potentially complement inhibition (95, 113–116).
The presence of anti-idiotypic antibodies to autoantibodies in
IVIG preparations has been described (117). In a similar manner,
Tyan et al, found that IVIGeffectively inhibited cytotoxicity in vitro,
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which was attributed to the Fab2’ portion of anti-idiotypic
antibodies (114, 115). It was further proposed that IVIG may
stimulate endogenous production of anti-idiotypic antibodies
with potential protective effects (118). While this may explain the
observed reduction in CDC PRA, it has also been attributed to
complement inhibition.Eitherway, this could explain the reduction
in CDC PRA seen in at least some patients but would have lesser
effect on antibody titer.

IVIGmayalso enhance the eliminationofpathogenic antibodies
by saturating endogenousFcneonatal receptors (FcRns) (119–121).
Under physiological conditions, endogenous FcRns rescue
endocytosed immunoglobulin, recycling it to the cell surface
thereby preventing degradation and extending its half-life in the
serum. When FcRns become saturated due to supraphysiological
levelsof IgG, immunoglobulin is targeted for lysosomal degradation
thereby reducing its half-life in the serum. Since FcRn can mediate
IgG recycling at a rate 42% higher than production (122), this
pathway is critical for maintaining protective immunity but may
also drive the persistence of pathogenic antibodies. FcRn-/- mice
eliminate IgG markedly faster than wild type, an effect which has
been capitalized on to study the use of exogenous IVIG in the
treatment of autoimmune disease. In an experimental model of
bullous pemphigus, FcRn-deficient mice were resistant to disease
and had lower levels of pathogenic IgG, an effect that could be
recapitulated indisease-pronewild-typemice by the administration
of high-dose IVIG (123). In time course studies, Bleeker et al, used a
monoclonal antibody (mAb) to trace the effect of single-dose IVIG
on antibody elimination (124). In mice this resulted in a 40%
reductionwithmaximal effect at 3 days. Extrapolating thismodel to
humans, a 25% reduction in autoantibody was predicted with
maximal effects at 3-4 weeks although differences between species
make interpretation difficult (121). Importantly, it should be noted
that enhanced Ig elimination has ramifications for treatment
regimens that incorporate mAb therapies with high-dose IVIG.
Total dose of mAbs may be reduced or augmented depending on
their Fc properties. Thus, until strategic, rigorously testedmultidrug
regimens are designed to specifically capitalize on these properties,
administrationof IVIG should be temporally separated from that of
mAbs by at least 2 weeks (125).

While IVIG and therapeutic modulation of its pathway may
reduce pathological antibodies in the circulation, the underlying
immune response is largely unaffected. In patients treated with
IVIG and plasmapheresis followed by splenectomy at the time of
transplant, histological analysis suggested that immune cell
composition was undisturbed (110). Moreover, examination of
paired bone marrow samples obtained before and after treatment
with plasmapheresis, IVIG, and anti-thymocyte globulin found no
significant effect of treatment on the number of alloantibody
secreting cells (109).

New Antibody Targeted Therapies for Highly
Sensitized Transplant Candidates
Taking advantage of a potent bacterial immune evasion strategy,
the IgG-degrading enzyme derived from Streptococcus pyogenes
(IdeS) has been used for perioperative desensitization in kidney
transplant recipients (126). IdeS hydrolizes IgG into the Fab2’
fragment and Fc portion thus effectively preventing antibody
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dependent cellular cytotoxicity (ADCC) and complement
activation. Twenty-five kidney transplant candidates received
IdeS 4-6 hours before transplant. All received lymphodepletion
(Atgam® or alemtuzumab). Some patients also received IVIG
and rituximab. As expected, all circulating IgG was cleaved
within 6 hours and remained inactivated for 1-2 weeks after
which IgG levels increased. DSA rebound was especially notable
in the absence of adjunctive B cell therapies. However, patients
who received rituximab/IVIG as adjunctive therapy nonetheless
had inflammation on 6-month protocol biopsies. Furthermore,
infectious complications were common, and would be
anticipated to be even higher/more serious amongst heart
transplant recipients many of whom are supported on a LVAD
as bridge to transplant. A more ‘tempered’ approach could be to
enhance elimination of pathogenic antibodies by blocking FcRN,
a strategy being actively studied in the setting of autoimmunity
(127–130). IgG concentrations (but not IgA or IgM) are reduced
by ~50% but interestingly, tetanus and influenza A reactive
antibodies were preserved (127). The implications for HLA
antibodies are currently being investigated. If proven, FcRN
inhibition with adjunctive therapies to modulate the
underlying immune response (discussed below) could reduce
HLA antibodies, preserve protective immunity, and be used to
suppress DSA until cellular donor reactivity is controlled.

An alternative approach is to block the downstream effects of
pathogenicHLAantibodies. The complement inhibitor eculizumab
has been studied in kidney transplant recipients and more recently
in heart transplantation with favorable short-term outcomes (131,
132). The strength of this approach is that it permits transplantation
across DSA and a positive flow-crossmatch without hyperacute
rejection. However, long-term outcomes remain suboptimal.
Amongst 30 sensitized kidney transplant recipients with a
positive FCXM treated with eculizumab at the time of transplant,
56.7% had evidence of chronic AMR on 5-year protocol biopsy
(133). Death-censored allograft survival was similar to FCXM+
controls both of which were reduced compared to those with a
negative FCXM. Because this approach does not target the
underlying immune response, >50% of patients in this cohort
remained FCXM+ at 1-year post-transplant, albeit that the
channel shift was reduced. Whether eculizumab can be used in
conjunction with approaches that better target the underlying
alloimmune response requires further study.

Plasma Cell Therapies
Clinical
Proteasome inhibitors (PIs) induce apoptosis in response to the
accumulation of misfolded proteins. The exceptionally high rate
of immunoglobulin synthesis by antibody secreting cells (ASCs)
underlies their susceptibility to PI-based therapies and their efficacy
in treating plasma cell dyscrasias (134, 135). Bortezomib is a first-
generation PI that reversibly binds the 20S proteasome. Patel et al.
were amongst the first to describe its use in 7 highly sensitized heart
transplant candidates all except one of whom had undergone
attempted desensitization with other therapies (7 to 177 days
prior) (136). Four doses of Bortezomib with corticosteroids were
administered, each immediately following 2 sessions of
Frontiers in Immunology | www.frontiersin.org 9
plasmapheresis which was used in an attempt to stimulate protein
synthesis by PCs. Treatment led to a marked reduction in cPRA
from 62% to 35% (p=0.01) although this was determined 1-2 weeks
following treatment making it difficult to differentiate between the
effect of plasmapheresis, bortezomib, and prior cycles of treatment.
Five patients were transplanted, 4 without evidence of rejection.
One died early post-transplant in the setting of graft dysfunction
and sepsis. Notably however, only one patient was transplanted
against a moderate level DSA. These preliminary results were to be
further tested in a multicenter, randomized-controlled trial
(CTOT-13). However, this was terminated due to inadequate
enrollment highlighting the challenges of these nonetheless
important clinical trials. Larger studies in kidney transplant
candidates suggest a modest response to bortezomib. Woodle and
colleagues used an iterative study design to investigate the use of a
bortezomib based protocol (with rituximab and plasmapheresis)
(137). In this cohort, 43.2% of patients were successfully
desensitized and transplanted, all with a negative flow crossmatch
and undetectable DSA. An encouraging reduction in
immunodominant antibody was observed, especially when more
frequent/higher density dosingwas used (8 doses). Yet the response
for very highMFI antibodies was less robust.Using a cPRAMFI cut
off of 8000, only 50%of patientswere defined as responders and this
decreased to 38.3% when the CDC PRA was used. Thus, while
promising, when extrapolating to the very highly sensitized cohort,
the approach remains somewhat limited. In a separate cohort of
kidney transplant candidates, 32 doses of bortezomibmonotherapy
did not significantly reduce cPRA despite a modest reduction in
unacceptable antigens (138). Whether the addition of
plasmapheresis and rituximab would have improved outcomes, as
was used in the study byWoodle et al, is unknown. Either way, the
regimenwas poorly toleratedwith only 50%of candidates receiving
the full treatment course without dose reduction.

More recently carfilzomib, a second-generation proteasome
inhibitor that binds irreversibly to the 20S proteasome has been
used for desensitization. Its superior efficacy to bortezomib for
the treatment of multiple myeloma and reduced incidence of
peripheral neuropathy make it an attractive alternative (139,
140). In a recent report, 9 treatment naïve heart transplant
candidates underwent desensitization with plasmapheresis and
carfilzomib 20mg/m2 followed by 2g/kg of IVIG (141). IgG-
cPRA decreased from 76% to 40% (p=0.01) immediately after the
last dose of carfilzomib (day 16). Six patients were transplanted, 5
across previously moderate MFI DSA which responded to
desensitization (mean MFI pre/post desensitization 5360 and
2012 respectively). All patients received thymoglobulin
induction. There was only 1 documented rejection during a
median follow up of 35.1 months. This occurred in the patient
with a C1q-PRA of 54% suggesting yet again a limitation for
more highly sensitized candidates. Carfilzomib was studied in a
cohort of kidney transplant candidates divided into two groups
(10). A major strength of the study design was that it allowed for
the effect of carfilzomib alone to be determined and directly
compared to a protocol using pre-carfilzomib plasmapheresis.
Both groups received 2 cycles with each cycle consisting of 6
doses of carfilzomib up to 36mg/m2. Group A received 3
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plasmapheresis sessions after the last dose of carfilzomib while
Group B had an additional plasmapheresis session added each
week prior to carfilzomib. Median maximal immunodominant
antibody reduction was 72.8% (Group 1, 69.8%; Group B, 80.1%)
with no significant difference between treatment groups
(p=0.698). Notably, this included an assessment at day 45
(before both groups received post-carfilzomib plasmapheresis)
therefore demonstrating the direct effect of PI on reducing
circulating HLA antibodies in the absence of plasmapheresis
(Group A). However, antibody rebound was observed within 30
days of completing treatment underscoring the need for
adjunctive therapies to sustain the response.

Both bortezomib and carfilzomib carry distinct, but not
insignificant side-effect profiles, the former being associated
with peripheral neuropathy while the latter, based on the
myeloma literature, carries a theoretical risk of cardiotoxicity
(140, 142). The magnitude of risk in heart transplant candidates
is unknown and must be balanced with the potential benefits
given the ultimate goal. Other complications include reversible
acute kidney injury, thrombocytopenia, gastrointestinal side
effects, and infection (143).

Collectively, these studies highlight the potential of plasma
cell directed therapies as part of desensitization regimens, but
this remains limited by i) inadequate response, particularly in
very highly sensitized candidates, ii) antibody rebound/PI
resistance, and iii) their side-effect profile.

Mechanistic Considerations
Bone marrow CD138+ plasma cells (PCs) secrete antibodies with
specificities that mirror those in the peripheral blood
underscoring their contribution to HLA sensitization (23).
Bortezomib and carfilzomib reduce CD138+ bone marrow
plasma cells (BMPCs) by ≥ 50%, including the HLA reactive
repertoire in sensitized patients (23, 144, 145). PIs disrupt the
balance between protein synthesis and destruction leading to
accumulation of misfolded proteins, activation of the unfolded
protein response (UPR), and apoptosis. In a mouse model of
lupus, bortezomib reduces both short and long-lived BMPCs
which correlated with the activation of the unfolded protein
response (UPR) (146). Similar activation of the UPR has been
observed in BMPCs from patients undergoing desensitization
with carfilzomib (23). Nonetheless, the response is incomplete
and accompanied by brisk rebound following treatment
completion (10). Several factors may contribute. Firstly, some
PCs may be particularly resistant to PIs owing to their tightly
regulated and highly protective bone marrow niche. Indeed,
protective immunity appears to be only partially affected with
persistence of adequate, albeit somewhat reduced titers of tetanus
and measles antibodies (145, 147, 148). Whether CD19-
CD38hiCD138+ long-lived plasma cells (LLPCs), which harbor
specificities for protective viral immunity also contribute to HLA
specificities requires further study (149). Secondly, some PCs
may develop PI resistance, potentially through b5 subunit
mutations and/or upregulation of components of the
immunoproteasome (23, 150). Thirdly, whether PI-induced
apoptosis enhances the secretory rate of remaining PCs to
maintain equilibrium remain to be established. Importantly,
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homeostatic proliferation in germinal centers (GCs) is thought
to drive repopulation and has been elegantly demonstrated in a
non-human primate model of AMR (151). This highlights the
critical contribution of memory B cells, which can enter the GC
leading to robust recall responses. Taken together, these
observations argue for coordinated combinatorial therapies
targeting not only the PC compartment but also GCs and
memory B cells.

New Plasma Cell Therapies With Potential for
Desensitization
Daratumumab is a mAb targeting CD38 which is highly
expressed on the surface of plasma cells. Its success in treating
myeloma (152) and more recently AL amyloidosis (153), has
raised interest in its use for desensitization/AMR (154, 155).
Notably, CD38 is also expressed on NK cells, which may provide
additional benefit, particularly in the setting of AMR and chronic
rejection (35, 36). Doberer et al. described a case of combined
smoldering myeloma and DSA+ chronic active AMR treated
with daratumumab (156). This report is notable for the extensive
analysis of the peripheral blood, bone marrow, and allograft
tissue. Consistent with the established mechanism of
daratumumab, blood and bone marrow PCs were effectively
depleted. This included DSA secreting BMPCs and was
paralleled by the elimination of circulating DSA. NK cells were
also reduced in the peripheral blood and allograft. Importantly,
this was accompanied by a reduction in the molecular AMR
score and microcirculatory inflammation. Similar resolution of
AMR was described in another case (157). However, in contrast,
class II DSA did not appear to be reduced by daratumumab. The
authors suggested NK cell depletion as the mechanism
underlying this apparently divergent response. While cautious
enthusiasm is merited, a concern is that CD38 is also expressed
on multiple suppressor cell lineages including IL-10 secreting
Bregs, a subset of CD4+CD25+CD127lo Tregs with particularly
potent suppressive capabilities, and myeloid-derived suppressor
cells (158). In myeloma patients, this was accompanied by
augmented CD8+ T effector memory responses with enhanced
IFNg secretion in response to viral antigens (158). Given the
potential role of heterologous immunity and/or bystander T-cells
in rejection, this latter finding is also noteworthy (28, 159).
Interestingly, both of the aforementioned cases showed signs of
TCMR on follow up biopsies consistent with the findings in a
non-human primate model (155–157). Finally, as with PIs,
daratumumab is unlikely to abolish upstream GC reactions
and thus, antibody rebound may occur. Nonetheless,
daratumumab, potentially in combination with additional
immunomodulatory therapies may provide benefit in the pre-
transplant setting. Proof-of-concept has been described with
partial response in a heart transplant candidate allowing for
transplantation across two previously unacceptable antigens
(155). A pilot study in highly sensitized heart transplant
candidates is awaited (NCT04088903).

The inability to adequately deplete the bone marrow
compartment of HLA secreting PCs suggests that their tightly
regulated microenvironments (i.e. ‘bone marrow niche’) may be
a barrier to direct PC targeted therapies. Plerixafor inhibits
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CXCR4-CXCL12 interactions between PCs and bone marrow
stromal cells, with the potential to release them from their niche
thus raising the possibility that it could enhance PI mediated
effects (160). This question is being addressed in kidney
transplant desensitization with preliminary results showing
promise (161, 162). Other possible approaches of interest
include cytokine modulation and metabolic regulation. These
have been reviewed elsewhere (160).

B-Cell Therapies
Clinical
The brisk rebound after plasma cell directed therapies emphasizes
the need to target B cellmemory. To date, themost commonly used
B cell therapy in heart transplantation is rituximab, a chimeric
murine/human monoclonal IgG1 antibody directed against CD20,
expressed onmature B cells. Near complete depletion of peripheral
blood B cells is achieved through a combination of antibody-
dependent cellular cytotoxicity (ADCC), complement-dependent
cytotoxicity, and apoptosis (163).

While there are no randomized controlled trials in heart
transplant desensitization, evidence from the kidney literature
suggests that rituximab 1) has a modest, albeit heterogenous
effect on the CDC PRA and T-cell flow crossmatch, 2) may be
more effective than IVIG alone at preventing severe AMR/graft
loss, and 3) has some effect on rebound but this is often
incomplete (164). In an early clinical trial, Vo et al.
investigated the benefit of adding rituximab (1g given on days
7 and 22) to an IVIG based desensitization protocol. This
approach reduced the mean CDC PRA by 33%. However, like
IG02, the PRA remained above 40% and confidence intervals
were wide, consistent with a heterogeneous response (mean CDC
T-cell PRA 77 ± 18% before desensitization, 44 ± 30% after
desensitization) (165). Furthermore, 50% of the patients
transplanted had a rejection episode, 31% of which had
evidence of C4d staining suggesting that constraint of the
amnestic response is incomplete. Nonetheless, the addition of
rituximab may have some benefit over IVIG at tempering
rebound. A trial comparing IVIG alone to IVIG + rituximab
was stopped early due to AMR and 2 graft losses, both of which
occurred in the placebo arm (166).

In heart transplantation, Patel et al. described the successful
desensitization of 4 sensitized heart transplant candidates with
rituximab and IVIG (167). The same group later reported long-
term outcomes in 21 heart transplant recipients treated with
IVIG and plasmapheresis, 5 of whom also received rituximab
(168). Desensitization led to a reduction in antibody, albeit with a
heterogeneous response, and patients were transplanted with a
negative CDC crossmatch. Five-year survival and freedom from
CAV were comparable to non-sensitized recipients. However,
this study only considered patients who were successfully
transplanted and therefore does evaluate treatment effect per se.
Further small single-center experience in pediatric heart
transplantation has also been cautiously favourable (169, 170).
Schumacher et al, described a cohort of 14 heart transplant
candidates of whom 8 were classified as responders and 5 were
transplanted (170). Treatment with IVIG and rituximab increased
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the donor pool from 10% to 85% (range 2-100%) amongst
responders. Rituximab was continued post-transplant with good
short-term outcomes. However, despite cautious optimism based
on these select, non-randomized reports, clinical experience
parallels the heterogeneous and often inadequate response
observed in the kidney RCTs.

Several other clinical observations are noteworthy. Firstly, as
seen in CTOT-11, a trial of rituximab in non-sensitized heart
transplant recipients, rituximab does not appear to prevent de
novo DSA, a finding which has also been described in kidney
transplantation (171, 172). Secondly, non-selective B cell
depletion also affects B cells with regulatory/tolerogenic
properties. This has been raised as a potential explanation for the
increase in percent atheromatous volume (PAV) in CTOT-11, as
well as the higher rate of cellular rejection in at least one rituximab
study in kidney transplantation (171, 172). More recently, the ratio
of IL-10/TNFa expressed by transitional B cells (T1B, CD24+++
CD38+++)was found topredictT-cellmediated rejection inkidney
transplant recipients (173). Perhaps most importantly, as further
discussed below, B cell depletion in lymph nodes, spleen, and bone
marrow is incomplete. Therefore, there is persistent potential for
ongoing GC and extrafollicular antibody responses, as well as
antigen presentation to T cells.

Mechanistic Considerations
While the CD20 antigen is widely expressed on most B cell
subsets, it is absent on cells at both extremes of the B cell lineage,
namely B cell precursors and antibody secreting plasmablasts/
plasma cells. With respect to the former, this implies that B cell
repopulation will follow depletion, as is typically seen within 12
months post-infusion (174). In terms of the latter, because bone
marrow plasma cells can survive decades in protective bone
marrow microenvironments, removing precursor B cells will not
address HLA secreting PCs persisting in these reservoirs.

However, beyond this, rituximab incompletely eliminates B
cells, and in particular, CD27+ memory B cells (Bmem), from the
bone marrow, spleen, and lymph nodes (110, 175–178). Ramos
and colleagues determined the effect of desensitization on splenic
histology and cellular composition in five splenectomized
patients who had undergone recent desensitization with
rituximab/IVIG/plasmapheresis (110). Despite depletion of
CD20+ and CD79+ B cells, CD27+ Bmem persisted. Similarly,
CD27+IgD- switched Bmem persisted in lymph nodes from
patients with rheumatoid arthritis (176). In contrast, naïve and
unswitched Bmem were reduced. Clinically this is consistent
with the robust recall response to influenza vaccination following
rituximab monotherapy despite the near absence of circulating
influenza specific Bmem in peripheral blood (179). Similarly,
amongst sensitized kidney transplant recipients treated with
rituximab, 34 of 39 HLA antibodies that increased after
transplant were associated with epitopes shared with previous
allografts or pregnancy (164).

An important implication is the persistence of lymphoid
germinal center (GC)-like structures in patients treated with
rituximab (180). Histological assessment is further supported by
the failure to suppress LN IL-21 mRNA transcription, a
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surrogate for Tfh activity (74). Consistent with this, in a
humanized CD20+ transgenic mouse model, GC B cells were
most resistant to rituximab (181). Together, the persistence of
Bmem, GCs, and LLPCs underly the limited ability of rituximab
to adequately suppress established HLA antibody responses.
New B cell Targeting Strategies
Inebilizumab is a CD19-directed antibody recently approved for
use in patients with neuromyelitis optica spectrum disorder
(NMOSD) (182). Because CD19 is expressed on a subset of
plasma cells, inebilizumab is an attractive target for
desensitization which is being investigated in sensitized kidney
transplant candidates (NCT04174677). An alternative approach
is to modulate the factors required for B cell survival. To this end,
BAFF (anti-B cell activating factor of the tumor necrosis alpha
family) modulation has been attempted for desensitization
without significant benefit. More recently, the BAFF inhibitor
belimumab had modest benefit in preventing proteasome
inhibitor induced rebound (183). Targeting survival factors
and cytokines may be of benefit when used as part of a
multidrug regimen but this requires further study.

Costimulation Blockade Disrupts the
Germinal Center and Suppresses the
DSA Response
Thus far, the therapeutic strategies discussed focus on
eliminating antibodies or the cells responsible for their
production. The T-dependent nature of the anti-HLA antibody
response suggests T cell- B cell interactions as a rationale
therapeutic target. The critical players include CD28:CD80/86,
CD40:CD40L, and ICOS : ICOSL and the ability to block these
interactions is collectively referred to as costimulation blockade
(184). The major clinical target to date has been the CD28:CD80/
86 pathway. This has been achieved using the fusion protein
CTLA4-Ig (abatacept) and its high affinity variant belatacept
(185). CTLA4 binds to CD80/86 thereby preventing CD28
mediated signaling critical for T cell activation (signal 2). This
underlies its rationale as maintenance immunosuppression in
kidney transplantation with the theoretical advantage of
inducing anergy in an alloantigen specific manner when T-cell
receptor signaling is left undisturbed (signal 1 in the absence of
signal 2). Importantly, in pre-clinical non-human primate
studies, belatacept potently suppressed the primary antibody
response following sheep red blood cell immunization (185)
suggesting a potential advantage over contemporary T-cell
focused immunosuppression. Clinically this translated into a
strikingly low incidence of de novo DSA in phase 3 clinical
trials (186).

The ability to control established immune responses with
costimulation blockade has been addressed in mouse and non-
human primate models which we have recently translated to the
clinical setting amongst some of the most highly sensitized heart
transplant candidates (cPRA>99%). Early work in mouse models
from Anita Chong’s lab demonstrated that CTLA4-Ig could
inhibit the memory B cell response, collapse ongoing GC B cell
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reactions, and halt the rise in alloantibody following heart
transplantation (24, 187). While post-GC plasma cells were less
well controlled, the addition of bortezomib to a continuous
CTLA4-Ig regimen, but not bortezomib alone, led to sustained
alloantibody suppression which mirrored the clinical response in
a small cohort of kidney transplant recipients (188). Parallel
studies, in non-human primates performed by Kwun/Knechtle
and colleagues demonstrated that belatacept could abrogate the
potent GC homeostatic proliferation associated with PI
administration (25). This ‘dual targeting’ approach, tested in a
rigorous model of allosensitization, decreased bone marrow
plasma cells, lymph node isotype switched B cells and T
follicular helper cells resulting in a reduction in DSA before
transplant and improved post-transplant survival (148, 189).
Moreover, a direct effect on BMPCs has been proposed given
the expression of CD28 on a subset of long-lived plasma cells
(190). Building on this work, we recently reported on the
combination of belatacept with sequential cycles of PI therapy
in four extremely highly sensitized heart transplant candidates
(12). Our studies revealed a marked reduction in both class I and
II HLA antibodies, including those with high MFI that were C1q
positive and successful transplantation with a negative CDC
crossmatch in three cases. Preliminary findings suggest that
the reduction in many HLA antibodies may be sustained with
ongoing monthly belatacept infusions. This is bolstered by
observations in kidney transplant recipients where, compared
to calcineurin inhibitors, belatacept more effectively
constrained pre-existing DSA and led to a modest reduction
in non-DSA (191, 192). Taken together, this highlights the
relevance of rationally designed strategies that integrate clinical
observations, with hypothesis driven findings, that have been
specifically tested in model systems.

Using Il-6 Inhibition to Modulate the
Immune Response in Highly Sensitized
Transplant Candidates
A conceivable alternative to direct immune cell targeting is to
modulate the cytokine milieu. The theoretical advantage is that
multiple levels of the immune response can be simultaneously
targeted. Given its pleiotropic nature, IL-6 is an attractive
cytokine that is important for both the innate and adaptive
immune response. IL-6 supports Th1 and Th2 proliferation,
promotes proinflammatory Th17 lineage commitment at the
expense of Tregs, contributes to Tfh development, sustains B cell
survival, and favors plasmablast differentiation (193). Inhibition
of IL-6 can be achieved either by blocking the IL-6 receptor
(tocilizumab) or direct neutralization (clazakizumab). Both have
been used in kidney transplantation for desensitization and
AMR. Tocilizumab is also being studied in non-highly
sensitized heart transplant recipients early post-transplant to
establish whether it can reduce the incidence of rejection,
de novo DSA, re-transplantation and death at 1-year post
transplant (NCT03644667).

Tocilizumab has been used for desensitization in two distinct
cohorts of kidney transplant recipients. Vo et al. reported their
experience with tocilizumab + IVIG in a phase I/II
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desensitization study (194). All patients had failed treatment
with IVIG and rituximab. Five of 10 patients were transplanted
with a reduction in their immunodominant DSA. However, the
pre-treatment MFIs were <10,000 suggesting a potential
limitation for patients with high titer antibodies. In a separate
study of 13 highly sensitized (mean cPRA>97%) kidney
transplant candidates, a more muted response was observed
(195). Twelve patients had at least 1 prior transplant and in 92%
theprior allograft remained in situ (off immunosuppression).Efficacy
assessment was evaluated based on the immunodominant MFI,
which in most cases was >10,000. In this cohort, tocilizumab
monotherapy had only a marginal effect on HLA antibodies as
assessed by MFI with dilutions used when prozone was detected.
While an increase in naïve B cells and decrease in plasmablasts was
observed, tocilizumab did not significantly change the percentage of
pre/post-germinal center B cells, Tfh, and Tfh subsets between
baseline and 6 months and there was no significant augmentation
of CD3+CD4+CD127-FoxP3+ Tregs. Nonetheless, Treg
augmentation with tocilizumab has been reported by others (196,
197). Subsequently, Vo et al, described the use of clazakizumab in
combination with plasma exchange and IVIG for desensitization
(198). A reduction in class I and II HLA antibodyMFI was observed
although there was substantial variability in response between
patients. Alemtuzumab was used for induction along with standard
immunosuppression and clazakizumab was continued post-
transplant. Notably, only 1 patient had detectable DSA at 12
months raising the possibility that adjunctive post-transplant IL-6
blockade may be of benefit.

A potential role for IL-6 inhibition has also been described in
the setting of AMR. Choi et al, reported on a cohort of 36 kidney
transplant recipients with cAMR treated with tocilizumab after
failing standard therapies (199). A significant reduction in DSA,
C4d deposition, glomerulitis and peritubular capillaritis scores
was observed. Graft survival was 80% at 6-years which is higher
than that reported in the literature without treatment although a
control arm was not included. A subsequent study randomized
20 patients with DSA positive late AMR to clazakizumab vs.
placebo followed by an open label extension where all
participants received study drug (200). Clazakizumab reduced
DSA with improvements in intragraft AMR associated findings
in some patients during the extended follow up period. Early
attenuation of eGFR decline was observed in the clazakizumab
arm compared with placebo which was no longer apparent when
the placebo arm was transitioned to clazakizumab. Serious
infection (n=5) and diverticular disease with complications
(n=2) were noted suggesting the need for careful pre-treatment
evaluation and close monitoring.

Collectively, these studies suggest that IL-6 inhibitionmay be of
benefit to the allosensitized transplant patient both before and after
transplant. The full potential of IL-6 inhibition together with
adjunctive strategies for the highly sensitized candidate remains
to be determined. Conceptually, synergism between IL-6 inhibition
and costimulation blockade could augment GC inhibition while
counterbalancing the potential reduction in Tregs. Other
combinations are also possible and future studies, perhaps driven
by a translational approach, should be considered.
Frontiers in Immunology | www.frontiersin.org 13
Considering Cell-Based Therapies for the
Allosensitized Heart Transplant Candidate
A potential alternative or complementary strategy to the ones
described thus far is to modulate the immune response using
cell-based therapies such as mesenchymal stromal cells (MSCs)
or regulatory immune cells (e.g. Tregs, dendritic cells,
macrophages). This approach remains largely speculative for
desensitization and a full discussion of the topic is beyond the
scope of this review. However, several pre-clinical and
conceptual considerations are noteworthy. MSCs have been
shown to inhibit alloantibody production in vitro (201), reduce
DSA in a rat model of transfusion associated allosensitization
(202), and increase rejection-free survival in a high-risk corneal
transplant model (203). Clinical translation was reported in three
HLA sensitized patients (204) although cautious interpretation is
warranted given the need to address potential risks of MSC-based
therapy. Firstly, the use of allogeneic MSCs has been associated
with the development of low-level DSA to the MSC and/or shared
kidney-HLA (205). This was prevented when repeat mismatches
(MSC and allograft) were avoided (206). Secondly, MSCs have
been associated with transient kidney graft dysfunction when
given in the immediate post-transplant period (207). This was
attributed to early post-transplant inflammation resulting in MSC
recruitment to the allograft where they potentiated the
proinflammatory response. MSC administration prior to
transplant may prevent this. Nonetheless, the possible
implications for the heart transplant recipient are noteworthy
given that hemodynamic compromise can be fatal. Thirdly, the
risk of opportunistic infection and malignancy requires
ongoing evaluation (208). Nonetheless, in addition to the
aforementioned humoral alloimmune effects, MSCs may
modulate multiple layers of the immune response enhancing
T-cell suppression, augmenting transitional/regulatory B cells,
modulating dendritic cells and macrophage activity (reviewed
in (208, 209)). The potential to use 3rd party MSCs in the pre-
transplant setting would significantly enhance feasibility in
heart transplantation where the timing of transplant is not
known a priori.

An alternative strategy is to use Tregs to suppress the anti-
donor response, ideally in an antigen specific manner. This could
theoretically target alloreactive effector T cells while leaving
infectious immunity intact. Safety has been preliminarily
established in phase I/II trials including those in the
multicenter ONE Study (210, 211). However, these trials were
done in low-to-intermediate risk subjects with the goal of
demonstrating safety and/or permitting immunosuppression
minimization. Less is known about the effect on humoral
alloimmunity and more saliently, the relevance to pre-
transplant allosensitization. In a mouse model of AMR,
induced Tregs reduced DSA and allograft infiltration/damage
in some, but not all animals (212). More recently, Sicard et al,
investigated the effect of donor specific CAR-Tregs (dsCAR-
Tregs) on the humoral response in a mouse allogeneic skin
transplant model (213). Compared to controls, dsCAR-Tregs
reduced the number of DSA secreting B cells, decreased the
amount of de novo DSA, and prolonged survival. In contrast,
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when mice were sensitized prior to transplant, dsCAR-Tregs were
neither able to constrain the humoral alloimmune response nor
prolong survival suggesting that this approach may not be as
effective for sensitized transplant candidates. Whether combining
Tregs with adjunctive strategies such as B cell depletionwould be of
benefit, requires further study. However, practical issues (such as
the unpredictability of timing in heart transplantation) and safety
implications (including the stability of Treg phenotype) are
important to consider in this setting.
DISCUSSION: CHALLENGES AND
FUTURE DIRECTIONS

In this review the literature relevant to heart transplant
desensitization has been summarized, supported by finding at
the cellular level in human studies, and objective rationale
derived from model systems. Interpretation is limited by 1) a
paucity of standardized clinical trials in heart transplantation,
2) ethical limitations in assigning a control arm, 3) immense
variability in the etiology and ‘degree’ of sensitization, 4) lack of
standardization across HLA labs, and 5) deficits in our
understanding of the factors driving memory B cell and plasma
cell differentiation, persistence, and resistance to desensitization.
Given that humoral sensitization rates have doubled over the past 2
decades (4) and that highly sensitized candidates are more likely to
die waiting for transplant or become too sick (3), developing safe
and effective desensitization strategies is an urgent priority.

One aspect that has as yet not been addressed in this review is
the sensitization ‘cut-off’meriting desensitization. This remains a
challenging issue. Using cPRA based on MFI can be problematic.
Not only is MFI an inadequate surrogate for antibody titer, but
the choice of MFI cut-off will determine whether the candidate
is desensitized thus introducing heterogeneity. Attesting to the
variability in practice, in a recent international survey, 21% of
centers used cPRA>80% and 21% used cPRA>50% as their cut
Frontiers in Immunology | www.frontiersin.org 14
off. The remainder described using a range of cut-offs
from >10% to >90% (4). The next important consideration is
whether the desensitization strategy will alter long-term
outcomes. Approaches that have the potential to modulate
the underlying donor reactive immune phenotype and/or
repertoire, as discussed in this review, may be of benefit even
when sensitization is more modest. This has yet to be formally
evaluated. However, at present, the most commonly used
approaches for desensitization are plasmapheresis, IVIG, and
rituximab (4). Neither alone nor in combination are these likely
to suffice, particularly in the very highly sensitized candidate
and the potential for durable effects is modest.

Developing a prioritization policy, as has been implemented
in Canada (9), may be of value but is limited by the lack of
standardization across HLA labs in the US, differences in what
constitutes an unacceptable antigen, and difficulties defining an
optimal cut-off. Furthermore, this approach may foster hesitancy
to pursue robust immunomodulatory desensitization strategies
with the potential to improve long-term outcomes. Whether
some patients, perhaps those who are more advanced in age, may
be better served by destination LVAD is another consideration.
However, this is not an acceptable option in many cases where
heart transplantation remains the gold-standard. The focus
should therefore be on designing multidrug regimens, driven
by drug repurposing, and developed in conjunction with findings
from pre-clinical models. While the present review has put forth
several strategies with potential to target each layer contributing
to the immune response (Figure 2), other approaches are
forthcoming. Improvements in our understanding of HLA
reactive memory B cells and plasma cell characteristics is critical
to defining who will derive the greatest benefit from targeted
therapies. Post-transplant immunosuppression with better
control of B cell memory, ideally in an antigen specific manner,
will also be required. Long-term benefit will likely be derived from
strategies that modulate multiple layers of the immune response.
Despite inroads being made, much remains to be done to ensure
equal access to heart transplantation for the highly sensitized
FIGURE 2 | New therapies with potential for desensitization in heart transplantation. DC, dendritic cell; MSC, mesenchymal stromal cell; NK, natural killer cell.
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patient with end-stage heart disease. While desensitization
continues to be a ‘niche’ field, the growing incidence in an already
high-riskpopulationalongwith thepoorprognosis for thosedenied
transplant underscores the urgent need for attention.
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