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Abstract: Emerging evidence suggests long-term exposure to ultrafine particulate matter (UFP,
aerodynamic diameter < 0.1 µm) is associated with adverse cardiovascular outcomes. We investigated
whether annual average UFP exposure was associated with measured systolic blood pressure
(SBP), diastolic blood pressure (DBP), pulse pressure (PP), and hypertension prevalence among
409 adults participating in the cross-sectional Community Assessment of Freeway Exposure and
Health (CAFEH) study. We used measurements of particle number concentration (PNC, a proxy
for UFP) obtained from mobile monitoring campaigns in three near-highway and three urban
background areas in and near Boston, Massachusetts to develop PNC regression models (20-m
spatial and hourly temporal resolution). Individual modeled estimates were adjusted for time
spent in different micro-environments (time-activity-adjusted PNC, TAA-PNC). Mean TAA-PNC
was 22,000 particles/cm3 (sd = 6500). In linear models (logistic for hypertension) adjusted for the
minimally sufficient set of covariates indicated by a directed acyclic graph (DAG), we found positive,
non-significant associations between natural log-transformed TAA-PNC and SBP (β = 5.23, 95%CI:
−0.68, 11.14 mmHg), PP (β = 4.27, 95%CI: −0.79, 9.32 mmHg), and hypertension (OR = 1.81, 95%CI:
0.94, 3.48), but not DBP (β = 0.96, 95%CI: −2.08, 4.00 mmHg). Associations were stronger among
non-Hispanic white participants and among diabetics in analyses stratified by race/ethnicity and,
separately, by health status.

Keywords: particle number concentration; ultrafine particulate matter; time-activity adjustment;
blood pressure; hypertension; traffic-related air pollution; directed acyclic graph

1. Introduction

Ambient particulate matter (PM) exposure is associated with over four million deaths per year and
evidence suggests that certain size fractions of PM are associated with increased risk of hypertension,
cardiovascular morbidity, and cardiovascular mortality [1–6]. Nonetheless, few epidemiologic studies
have considered the cardiovascular impacts of long-term exposure to the smallest size fraction of PM,
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ultrafine particulate matter (UFP, aerodynamic diameter < 0.1 µm). This is despite toxicologic evidence
that UFP may be the most toxic PM size fraction and that UFP may exert cardiovascular effects through
mechanisms involving oxidative stress and systemic inflammation [7–12]. In the few prospective
epidemiologic studies that have considered the cardiovascular consequences of long-term exposure to
UFP, there has been reasonable agreement that UFP exposure is associated with adverse cardiovascular
impacts including increased risk of ischemic heart disease mortality, increased hypertension risk,
increased carotid intima-media thickness, and, in some cases, increased concentrations of biomarkers
of inflammation [13–18]. Nevertheless, most previous studies have only considered UFP modeled with
a spatial resolution of between 200 m and 4 km or have considered the cardiovascular impacts of UFP
only in relatively homogenous populations. To inform risk assessment and policy development, studies
in heterogeneous populations with highly spatially–resolved UFP exposure estimates are needed.

Modeling UFP with insufficiently high spatial resolution can result in substantial exposure
misclassification as UFP concentrations rapidly decline within 100 m of sources, such as major
roadways [19]. Similarly, exposure assessment methods that rely on residential average concentrations,
rather than methods that also account for time individuals spend away from the home, can result in
differential exposure misclassification [20]. We are only aware of one prospective study that modeled
UFP at fine spatial resolution (≤20 m). This was our longitudinal analysis of the association of
long-term exposure to UFP with blood pressure and C-reactive protein within the Boston Puerto
Rican Health Study (BPRHS) [16]. Nevertheless, in that study, we could not account for individual
time-activity patterns which could have reduced potential exposure misclassification [20]. Additionally,
while there were some indications that certain sub-populations were more vulnerable to the effects of
UFP, the BPRHS population consisted only of individuals who identified as Puerto Rican and most
BPRHS participants were in generally poor overall health. To understand whether the associations
we found in our previous study were generalizable to more diverse populations and whether the
associations remained after accounting for time spent in different micro-environments, we used data
from the Community Assessment of Freeway Exposure and Health (CAFEH) study.

In the cross-sectional CAFEH study, participants of multiple races/ethnicities were recruited
from several communities in the greater Boston area. Using measurements of UFP (as particle number
concentration (PNC)—a commonly used and reliable indicator of UFP [21,22]) from each community,
we developed a finely resolved (hourly temporal and approximately 20 m spatial resolution) model.
We adjusted mean hourly residential estimates using individual data on time spent in different
micro-environments to assess time-activity-adjusted PNC (TAA-PNC) [20,23]. We previously found
that long-term TAA-PNC was associated with biomarkers of systemic inflammation and with chronic
outcomes in the CAFEH population [24,25]. Given evidence that these associations with PNC varied
by race/ethnicity and that there were racial disparities in overall health status in this population,
we considered effect modification by race/ethnicity and by health factors which could affect
susceptibility to UFP [24,26–28]. Specifically, our objectives were: (1) to determine whether long-term
exposure to TAA-PNC was associated with systolic blood pressure (SBP), diastolic blood pressure
(DBP), pulse pressure (PP), and prevalent hypertension; and (2) to determine whether race/ethnicity,
statin medication use, diabetes status, or hypertension status modified these associations.

2. Materials and Methods

The cross-sectional, community-based participatory CAFEH study was designed to investigate
the relationship between UFP exposure and cardiovascular health. Detailed methods have been
published elsewhere [29]. Briefly, all participants were at least 40 years of age and were able to
complete a survey in one of six languages. Participants were recruited from four neighborhoods
in the Boston metropolitan area (Somerville, Dorchester/South Boston, Chinatown, and Malden).
To maximize exposure contrast, individuals residing <100 m, 100–500 m, and >1000 m of either
Interstate 90 or Interstate 93 were recruited as part of a stratified random sample. To increase the
sample size, individuals residing in elderly housing developments in Somerville and Dorchester/South
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Boston and individuals residing in the same buildings and floors as participants in the stratified
random sample in Chinatown were recruited as part of a convenience sample (18% of participants
were part of the convenience sample). Of the 704 participants who completed in-home surveys, 455
participants also attended a clinic visit where their blood pressure was measured. Of these participants,
409 were included in the present analysis since they had complete information on UFP exposure,
self-reported race/ethnicity, and blood pressure outcomes. A secondary analysis was also conducted
on the 205 participants from Somerville and Dorchester/South Boston who attended a second clinic
visit approximately five months after their initial clinic visit (mean time between visits = 138 days,
sd = 53 days, min = 35 days, max = 364 days). The Tufts University Health Sciences Institutional
Review Board approved the study (protocol # 8468; originally approved in 2008; most recent approval
June 13 2017). All participants gave written informed consent.

2.1. Demographics and Health Data

During the in-home visit, participants self-reported age, sex, education (less than high school,
high school, or more than high school), race/ethnicity (non-Hispanic white, Asian, or other), country
of birth, smoker status (never, former, or current), doctor diagnoses of several health conditions (e.g.,
hypertension, diabetes), air conditioner use, and time spent in five micro-environments (inside home,
outside home, school/work, commuting, and other) on a recent workday/weekday and a recent
weekend/non-work day (depending on employment status). Participants also reported frequency
of fruit and vegetable consumption (less than or at least seven times per week of both fruits and
vegetables), fried food consumption (less than or at least once per week), gas stove use in the home
(less than or more than half of the days in the month), and annoyance with traffic sound at home
(never, sometimes, often, or always). Participants were also asked to show all of their medications
to the field staff member and they were surveyed about physical activity (represented here as the
natural log number of minutes per week participants engaged in light or moderate physical activity
for consistency with previously published work) [26,30].

At each clinic visit, participants’ height, weight, and seated blood pressure were measured. Body
mass index (BMI) was calculated as weight (kg)/[height (m)]2. Blood pressure was measured with an
automatic blood pressure machine (Model HEM711ACN2; Omron Healthcare, Kyoto, Japan). For SBP
and DBP, measurements taken from the left and right arms were averaged. PP was calculated as the
difference between SBP and DBP. Participants were classified as hypertensive if they had a measured
SBP above 140, a measured DBP above 90, or if they reported taking medications to treat hypertension.

2.2. Exposure Assessment

Methods for estimating annual average PNC adjusted for individual time-activity data on time
spent in different micro-environments (TAA-PNC) have been published previously [20,23,31–33].
Briefly, air pollution monitoring was conducted with the Tufts Air Pollution Monitoring Laboratory
(TAPL-1) between September 2009 and July 2012 along a fixed route in each of Somerville,
Dorchester/South Boston, Chinatown, and Malden. TAPL-1 is a retrofitted gasoline-powered
Class-C recreational vehicle equipped with rapid-response instruments, including a butanol-based
condensation particle counter (TSI, Model 3775; 4-3000 nm) used to measure PNC with one
second averaging time. Spatial coordinates were assigned using a Garmin V GPS receiver
(manufacturer-specified accuracy: 3–5 m) [31]. These data were used along with spatial and temporal
covariates (e.g., distance from residence to nearest highway and major road, wind speed, wind
direction, temperature, day of week, highway traffic volume, and highway traffic speed) to develop
a model estimating hourly natural log PNC values at participant residences for each hour of the
year in which the participant attended the initial CAFEH study visit [23,32]. Hourly residential
PNC estimates were then adjusted for infiltration of PNC into residences, air conditioner use, and
participant time-activity based on the amount of workday/weekday and non-workday/weekend
time participants reported spending in different micro-environments (inside home, outside home,
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at work, on highway, and other) [20,33]. For participants who attended a second CAFEH clinic visit,
micro-environment time-activity data were consistent between the two study visits. Additional details
are given in Appendix A.

2.3. Statistical Analysis

We examined the distribution of demographic factors and exposure estimates in our study
population as a whole and stratified by race/ethnicity, statin medication use, and diabetes status.
For continuous variables, we calculated the mean and standard deviation. For categorical variables,
we calculated proportions. We used independent sample t-tests, one-way ANOVA, and chi-square
statistics to examine differences by race/ethnicity, statin medication use, and diabetes status.

2.3.1. Conceptual Model

We constructed the directed acyclic graph (DAG) shown in Figure 1 based on an extensive
literature review, as detailed in Appendix B. This type of conceptual model makes assumptions
explicit and identifies the minimally sufficient set of variables needed to account for confounding
of the exposure–outcome relationship [34]. Since UFP exposure was defined largely by participants’
proximity to roadways, we assumed that proximity was accounted for in all models. Based on this
assumption and the relationships in Figure 1, there were four possible minimally sufficient sets of
covariates: (1) BMI, diet, physical activity, sex, and smoking; (2) BMI, cooking, physical activity, sex,
and smoking; (3) cooking, inhalation rate, and smoking; and (4) diet, inhalation rate, and smoking.
Since we did not have any direct measure of inhalation rate, we could not use the third or fourth
minimally sufficient sets. Additionally, as our main measure for cooking-related exposures was
residential use of a gas stove and this seemed like a crude proxy, we prioritized the first minimally
sufficient set for all analyses. In modeling and in tests of the DAG, acculturation/migration was
represented by a dichotomous variable for nativity (born in the US or not), proximity was represented
by distance to the nearest highway, and diet was represented alternatively as fried food consumption
and as fruit and vegetable consumption.
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Figure 1. Directed acyclic graph representing the relationships among the exposure (UFP; represented
by the green oval with the triangle), outcome (blood pressure; represented by the blue oval with the
line), and related factors. Variables represented as pink ovals are ancestors of exposure and outcome
while variables represented as green ovals (convenience sample, proximity, inhalation rate, and cooking)
are ancestors only of the exposure. Pink lines are biasing paths and the green line between the exposure
and outcome is the causal path of interest.
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2.3.2. Primary Analysis and Sensitivity Analyses

For each of the four outcomes (SBP, DBP, PP, and hypertension), we constructed separate models
(linear models for SBP, DBP, and PP; logistic models for hypertension). We first examined the
unadjusted associations between natural log-transformed TAA-PNC exposure and each outcome
(Model A). Our main model examined the association between natural log-transformed TAA-PNC
exposure and each outcome adjusted for covariates in the first minimally sufficient set identified by the
DAG (Model B: BMI, sex, smoking, physical activity, and diet as fried food consumption). We tested
collinearity using variance inflation factors (all values were <2). We also examined the normality and
homoscedasticity of the residuals. For the hypertension model, we examined the Hosmer–Lemeshow
goodness-of-fit test (p = 0.91).

To assess the sensitivity of this model to the choice of the proxy for diet, we used two other proxies
for diet (fruit and vegetable consumption in Model C; and race/ethnicity in Model D). We also assessed
whether age was a residual confounder in Model E. Since age is an exogenous variable, its inclusion
would not be expected to introduce confounding. To assess the sensitivity of our analysis to the
assumption that proximity was accounted for within the exposure value, we tested the association
between natural log-transformed TAA-PNC exposure and each outcome adjusting for the covariates in
Model B as well as covariates that would serve as three different sets of proxies for proximity (Model
F: age, race/ethnicity (assumed to define acculturation/migration status), and educational attainment;
Model G: Model F covariates as well as a variable representing inclusion in the convenience sample;
and Model H: Model B covariates as well as annoyance with traffic sound).

2.3.3. Effect Modification

We examined the associations between natural log-transformed TAA-PNC exposure and
each outcome stratified (separately) by race/ethnicity, statin medication use, diabetes status, and
hypertension status (only for blood pressure models). We considered unadjusted models (Model A),
models adjusted for the primary covariates (Model B), and models adjusted for the primary covariates
as well as age (Model E). While we considered the p value for interactions, these were largely
un-interpretable because the analysis was not adequately powered to detect interactions.

2.3.4. Consistency of Associations over Time

To determine if the associations we found were stable over time, we compared the effect estimates
for the association of natural log-transformed TAA-PNC exposure with each outcome at clinic visit
one and at clinic visit two (n = 205). We considered unadjusted models (Model A), models adjusted
for the primary covariates (Model B), and models that did not assume that proximity status largely
defines exposure status (Model F).

3. Results

Of the 409 study participants, the majority were female (59%) and the average age was 62 years
(Table 1). Most participants self-identified as non-Hispanic white (n = 178) or Asian (n = 149). There
were 82 participants who self-identified as another race/ethnicity, including 36 black and 26 Hispanic
participants. While 87% of the white participants were born in the United States, all of the Asian
participants and 59% of the participants of other races/ethnicities were born outside of the United
States (Table 1). Most of the Asian participants were born in China (n = 126) or Vietnam (n = 13).
Compared to participants who identified as white or as another race/ethnicity, Asian participants
were least likely to have attained at least a high school education (p < 0.001), had lower mean BMI
(p < 0.001 for both comparisons), and higher mean physical activity levels (p < 0.001 for both
comparisons). Non-Hispanic white participants consumed more fruits and vegetables than Asian
participants or participants of other races/ethnicities (p = 0.011 and p = 0.016, respectively). Asian
participants consumed less fried food than non-Hispanic white or participants of other races/ethnicities
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(p < 0.001 for both comparisons). Smoking rates significantly differed by sex only for the Asian
participants (6% of Asian women had ever smoked versus 61% of Asian men).

Table 1. Study sample characteristics.

Total White Asian Other

Characteristic n % (n)
or mean (sd) n % (n)

or mean (sd) N % (n)
or mean (sd) N % (n)

or mean (sd)

TAA-PNC *
(particles/cm3) 409 22,000 (6500) 178 20,000 (4900) 149 24,000 (7900) 82 21,000 (5000)

ln[(TAA-PNC)
(particles/cm3)] 409 9.9 (0.35) 178 9.8 (0.28) 149 10.0 (0.43) 82 9.9 (0.27)

SBP (mmHg) 409 137.5 (19.5) 178 133.9 (18.3) 149 141.2 (20.6) 82 138.9 (18.8)
DBP (mmHg) 409 77.7 (10.3) 178 76.2 (10.7) 149 77.3 (9.3) 82 81.9 (10.4)
PP (mmHg) 409 59.8 (16.5) 178 57.6 (14.9) 149 63.9 (18.4) 82 57.1 (15.1)
Hypertension 409 63.8 (261) 178 55.6 (99) 149 69.8 (104) 82 70.7 (58)
Age (years) 409 61.5 (12.8) 178 59.8 (11.3) 149 66.6 (13.4) 82 56.0 (11.3)
BMI (kg/m2) 393 27.7 (6.8) 168 29.5 (6.9) 149 24.1 (4.1) 76 30.6 (7.7)
ln[light/moderate
physical activity
(min/week)]

374 4.3 (2.2) 164 3.8 (2.3) 147 5.1 (1.6) 63 3.5 (2.3)

Female 409 59.2 (242) 178 59.6 (106) 149 56.4 (84) 82 63.4 (52)
Smoker status 398 176 145 77
Current 21.1 (84) 22.2 (39) 14.5 (21) 31.2 (24)
Former 30.7 (122) 43.2 (76) 15.9 (23) 29.9 (23)
Never 48.2 (192) 34.7 (61) 69.7 (101) 39.0 (30)
Fruit and vegetable
consumption ≥
7x/week

275 38.2 (105) 125 48.0 (60) 97 30.9 (30) 53 28.3 (15)

Fried food consumption
≥ 1x/week 405 33.8 (137) 176 45.5 (80) 149 14.8 (22) 80 43.8 (35)

Educational Attainment 409 178 149 82
< HS 34.2 (140) 11.2 (20) 61.7 (92) 34.2 (28)
HS 31.8 (130) 36.5 (65) 24.2 (36) 35.4 (29)
>HS 34.0 (139) 52.3 (93) 14.1 (21) 30.5 (25)
Born in the USA 404 45.5 (184) 174 86.8 (151) 149 0.0 (0) 81 40.7 (33)
Statin Medications 400 29.0 (116) 176 31.3 (55) 144 29.2 (42) 80 23.8 (19)
Hypertension
medications 400 45.0 (180) 176 35.8 (63) 144 54.2 (78) 80 48.8 (39)

Diabetes 399 20.3 (81) 175 17.7 (31) 144 18.8 (27) 80 28.8 (23)

* Time-activity-adjusted particle number concentration. Italics indicate variable levels.

Blood pressure and hypertension values differed by race/ethnicity, statin medication use, and
diabetes status (Table 1). Asian participants had a significantly higher mean SBP and PP than
non-Hispanic white participants (p = 0.002 for both comparisons). Asians also had significantly
higher mean PP than participants who self-identified with other racial/ethnic groups (p = 0.007).
Nevertheless, both Asians and non-Hispanic whites had significantly lower mean DBP than other
participants (p = 0.003 and p < 0.001, respectively). Non-Hispanic whites also had a significantly
lower prevalence of hypertension compared to either Asians or other participants (p = 0.009 and
p = 0.022, respectively). Participants taking statin medications had higher mean SBP, higher mean PP,
and a higher hypertension prevalence than participants who were not taking statins (p < 0.001 for
all comparisons). Similarly, participants with diabetes had higher mean SBP, higher mean PP, and a
higher hypertension prevalence than participants without diabetes (p = 0.003, p < 0.001, and p < 0.001,
respectively).

Annual average levels of TAA-PNC were between 9000 and 35,000 particles/cm3. The mean
TAA-PNC was 22,000 particles/cm3 while the median TAA-PNC was 23,000 particles/cm3

(interquartile range = 9000 particles/cm3). Mean natural log-transformed TAA-PNC was significantly
higher among Asian participants than among non-Hispanic white participants (p < 0.001; Table 1).
Exposure levels were also significantly higher among participants taking statins than among those
not taking statin medications (p = 0.022). There was no difference in mean exposure level by diabetes
status (p = 0.579).

In our main analysis, we found positive, non-significant associations between natural
log-transformed TAA-PNC exposure with SBP (β = 5.23, 95% CI = −0.68, 11.14 mmHg per natural
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log-unit increase), PP (β = 4.27, 95% CI = −0.79, 9.32 mmHg), and hypertension prevalence
(OR = 1.81, 95% CI = 0.94, 3.48; Table 2). We found less evidence for an association with DBP
(β = 0.96, 95% CI = −2.08, 4.00 mmHg). For reference, the difference in TAA-PNC concentration for a
participant 0.5 natural log-units above the mean compared to a participant 0.5 natural log-units below
the mean is approximately 21,000 particles/cm3. The results were not sensitive to the choice of the
proxy for diet if fruit and vegetable consumption was used, though the associations were attenuated
when race/ethnicity was used as a proxy (Table 2; Models C and D). The results were sensitive to the
assumption that proximity was accounted for within the exposure value. Additional adjustment for
proximity-related variables attenuated the associations, though adjusting for annoyance with traffic
sound did not change the primary results (Table 2; Models F–H).

Table 2. Effect estimates for ln (TAA-PNC).

Model SBP (mmHg) DBP (mmHg) PP (mmHg) Hypertension

β (95% CI) β (95% CI) β (95% CI) OR (95% CI)
Model A 2.87 (−2.60, 8.33) −0.18 (−3.09, 2.72) 3.05 (−1.58, 7.68) 1.53 (0.86, 2.72)
Model B 5.23 (−0.68, 11.14) 0.96 (−2.08, 4.00) 4.27 (−0.79, 9.32) 1.81 (0.94, 3.48)
Model C 5.84 (−1.94, 13.61) 1.79 (−1.95, 5.52) 4.05 (−2.80, 10.90) 1.53 (0.68, 3.43)
Model D 2.41 (−3.51, 8.32) 0.15 (−2.92, 3.21) 2.26 (−2.83, 7.35) 1.27 (0.64, 2.52)
Model E 3.60 (−1.75, 8.95) 1.10 (−1.95, 4.15) 2.50 (−1.74, 6.74) 1.72 (0.84, 3.55)
Model F 1.67 (−3.87, 7.22) 0.01 (−3.15, 3.18) 1.66 (−2.78, 6.11) 1.25 (0.57, 2.75)
Model G 1.68 (−3.89, 7.24) −0.19 (−3.35, 2.97) 1.86 (−2.58, 6.31) 1.31 (0.59, 2.91)
Model H 5.67 (−0.40, 11.75) 1.35 (−1.76, 4.45) 4.33 (−0.88, 9.53) 1.86 (0.95, 3.66)

(A) Unadjusted (n = 409). (B) Main model adjusted for BMI, sex, smoking, physical activity, and diet (as fried
food consumption; n = 347). (C) Model B covariates but using fruit and vegetable consumption for diet (n = 237).
(D) Model B covariates but using race/ethnicity for diet (n = 350). (E) Model B covariates as well as age (n = 347).
(F) Model B covariates as well as additional adjustment for proximity (as race/ethnicity, age, educational attainment;
n = 347). (G) Model B covariates as well as additional adjustment for proximity (as race/ethnicity, age, educational
attainment, random or convenience sample participant; n = 347). (H) Model B covariates as well as additional
adjustment for proximity (as annoyance at traffic sound; n = 344). Model B is bolded since it is the main model.

3.1. Effect Modification

We found some evidence that race/ethnicity modified the relationship between natural
log-transformed TAA-PNC and blood pressure (Figure 2). Specifically, there seemed to be stronger
associations among non-Hispanic white participants than among other participants. For SBP, PP, and
hypertension prevalence, these were stronger positive associations while for DBP, there was a stronger
inverse association (Figure 2; OR for hypertension among non-Hispanic whites = 3.47, 95% CI = 0.83,
14.5; OR for Asians = 1.09, 95% CI = 0.42, 2.83; OR for participants of other races/ethnicities = 0.52,
95% CI = 0.03, 10.44). Adjustment for age generally made the effect estimates for non-Hispanic whites
slightly stronger while making the effect estimates for other participants slightly weaker (results
not shown).
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Figure 2. Effect modification of the association of ln(TAA-PNC) with blood pressure by race/ethnicity.
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consumption).

We found little evidence of effect modification of the relations of natural log-transformed
TAA-PNC with blood pressure by statin medication use (Figure 3). While the SBP and PP point
estimates were slightly higher for participants not on statins, the confidence intervals overlapped
completely. There was more evidence that having diabetes and, to a lesser extent, not having
hypertension strengthened the relation of natural log-transformed TAA-PNC with SBP and PP
(Figure 3). No evidence existed for effect modification of the relation of natural log-transformed
TAA-PNC with DBP or hypertension for either statin medications (OR for statin users = 3.54;
95% CI = 0.55, 22.94; OR for non-users = 1.28; 95% CI = 0.61, 2.68) or diabetes status (OR for
diabetics = 2.29; 95% CI = 0.31, 16.97; OR for non-diabetics = 1.63, 95% CI = 0.79, 3.38). Additional
adjustment for age generally did not substantially change any of the conclusions, although it widened
the already wide confidence intervals.Int. J. Environ. Res. Public Health 2018, 15, x 9 of 20 

 

 

Figure 3. Effect modification of the association of ln(TAA-PNC) with blood pressure by statin 

medication use, diabetes status, and hypertension status. Open markers represent unadjusted 

associations (Model A) while solid markers represent adjusted associations (Model B; adjusted for 

BMI, sex, smoking, physical activity, and diet as fried food consumption). 

3.2. Consistency of Associations over Time 

Of the 205 participants who attended two clinic visits approximately five months apart (all of 

whom resided in Somerville or Dorchester/South Boston), 67% identified as non-Hispanic white and 

4% identified as Asian. Mean SBP decreased by 4.5 mmHg (95% CI = 2.4, 6.5 mmHg decrease), mean 

DBP decreased by 2.8 mmHg (95% CI = 1.6, 4.1 mmHg decrease), and mean PP decreased by 1.6 

mmHg (95% CI = 0.2, 3.1 mmHg decrease). We found that the effect estimates for the association of 

natural log-transformed TAA-PNC with SBP, PP, and hypertension weakened slightly from clinic 

visit one to clinic visit two (Figure 4; OR for visit one = 10.3, 95% CI = 1.7, 60.9; OR for visit two = 7.0, 

95% CI = 1.4, 36.4). Additional adjustment for proximity did not change these trends (results not 

shown). 

 

Figure 4. Effect estimates for the association of ln(TAA-PNC) with blood pressure measures for 

participants in Somerville and Dorchester/South Boston who attended two clinic visits (n = 205). Open 

markers represent unadjusted associations (Model A) while solid markers represent adjusted 

associations (Model B; adjusted for BMI, sex, smoking, physical activity, and diet as fried food 

consumption). 

  

Figure 3. Effect modification of the association of ln(TAA-PNC) with blood pressure by statin
medication use, diabetes status, and hypertension status. Open markers represent unadjusted
associations (Model A) while solid markers represent adjusted associations (Model B; adjusted for BMI,
sex, smoking, physical activity, and diet as fried food consumption).



Int. J. Environ. Res. Public Health 2018, 15, 2036 9 of 20

3.2. Consistency of Associations over Time

Of the 205 participants who attended two clinic visits approximately five months apart (all of
whom resided in Somerville or Dorchester/South Boston), 67% identified as non-Hispanic white and
4% identified as Asian. Mean SBP decreased by 4.5 mmHg (95% CI = 2.4, 6.5 mmHg decrease), mean
DBP decreased by 2.8 mmHg (95% CI = 1.6, 4.1 mmHg decrease), and mean PP decreased by 1.6 mmHg
(95% CI = 0.2, 3.1 mmHg decrease). We found that the effect estimates for the association of natural
log-transformed TAA-PNC with SBP, PP, and hypertension weakened slightly from clinic visit one to
clinic visit two (Figure 4; OR for visit one = 10.3, 95% CI = 1.7, 60.9; OR for visit two = 7.0, 95% CI = 1.4,
36.4). Additional adjustment for proximity did not change these trends (results not shown).
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Figure 4. Effect estimates for the association of ln(TAA-PNC) with blood pressure measures for
participants in Somerville and Dorchester/South Boston who attended two clinic visits (n = 205).
Open markers represent unadjusted associations (Model A) while solid markers represent adjusted
associations (Model B; adjusted for BMI, sex, smoking, physical activity, and diet as fried food
consumption).

4. Discussion

We found that long-term exposure to UFP (measured as TAA-PNC) was positively, though
not significantly, associated with SBP, PP, and hypertension prevalence. The observed associations
correspond to differences in SBP and PP that are approximately equivalent to differences observed with
an increase of 3–9 years of age [35]. The associations were stronger among participants who identified
as non-Hispanic white than among participants who identified as Asian or as another race/ethnicity.
Additionally, the associations with SBP and PP were stronger among participants with diabetes than
among participants without diabetes. They were also slightly stronger among participants without
hypertension than among participants with hypertension. We did not find evidence of an association
of UFP with DBP overall or among any sub-group.

As expected, our results were consistent with a previous analysis of the association between
long-term UFP exposure and hypertension among adults participating in CAFEH (OR = 1.28,
95% CI = 0.81, 2.02 for the previous analysis compared to our result of OR = 1.81, 95% CI = 0.94,
3.48) [25]. The primary difference in these analyses was how hypertension prevalence was defined;
in the previous analysis, elevated SBP and DBP measurements were not considered as part of the
diagnostic criteria (which also modestly changed the sample size). Additionally, the covariates included
in the previously published paper were not chosen based on a conceptual model, such as a DAG [25].

Our results were also generally consistent with the emerging evidence from longitudinal studies
that long-term exposure to UFP is associated with cardiovascular impacts. For example, several
longitudinal studies have reported positive associations with biomarkers of inflammation and other
sub-clinical cardiovascular markers [14–17]. Additionally, our finding that long-term exposure to UFP
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was positively associated with hypertension prevalence is similar to the findings from a Canadian
cohort that long-term UFP exposure is associated with incident hypertension, even adjusting for PM2.5

and nitrogen dioxide exposure [18].
Nevertheless, our finding in this cross-sectional study that long-term UFP exposure was positively,

but not significantly, associated with SBP and PP was not consistent with our previous finding in a
prospective study of Puerto Rican adults residing in eastern Massachusetts. In that study, we found
that long-term exposure to UFP was not associated with changes in SBP (β = 0.96; 95% CI = − 0.33,
2.25 mmHg) or PP (β= 0.70; 95% CI =− 0.27, 1.67 mmHg) [16]. Our present study is cross-sectional,
and exposures were assessed in the year of the clinical examination (rather than exclusively before
blood pressure measurements were taken) and as such, the present study cannot address the question
of whether UFP exposure could be considered a causal risk factor for changes in blood pressure.
The idea that there could be exposure misclassification or a temporal misalignment in the present study
was supported in that the effect estimates were attenuated among the sub-set of participants who
attended a second clinic visit approximately five months after their primary clinic visit (Figure 4). Some
of the instability of the effect estimates could be due to seasonal differences as particle composition
can vary with time of year [36,37] and blood pressure tends to be higher when temperatures are
cooler (77% of the first clinic visits occurred between October and March while 96% of the second
visits occurred between April and September) [38,39]. It is also possible, however, that some of the
differences between the previous study and this one reflect differences in the study populations. In the
present analysis, only 6% of participants were Hispanic while in the previous analysis, all participants
identified as of Puerto Rican descent.

In the present study, we found evidence that the associations with UFP differed among sub-groups.
For example, we found somewhat stronger associations of UFP with SBP, PP, and hypertension among
non-Hispanic whites than among other participants, despite higher UFP exposures and increased
exposure contrast among participants who identified as Asian or as another race/ethnicity. Given the
strong spatial segregation of participants in our study areas by race/ethnicity, it is possible that the
differences we observed were attributable to other neighborhood social or environmental characteristics
rather than to UFP [40–42]. This idea was partially supported in that the associations were attenuated
when we controlled for race/ethnicity, which in the CAFEH population is strongly associated with
both exposure to social and environmental factors and to differences in health status [26]. It is also
possible that differences in general health status modified the associations of UFP with the health
outcomes. In previous studies, as in our study, co-morbidities and medication use affected the strength
of associations [16,17]. It was a strength of our present study that we were able to recruit a diverse
population from several communities in Boston. This allowed us to consider the relationship of UFP
with BP outcomes among sub-sets of the population defined by race/ethnicity and by health status.

Another strength of our study was our use of a conceptual model to identify a minimally sufficient
adjustment set of covariates. We were able to explicitly state and test our assumptions about the factors
that confound the relationship between UFP and BP. For example, if we had included a direct path
from sex to cooking (rather than only an indirect path), the minimally sufficient adjustment set of
covariates would not change. Similarly, if we included a direct path from age to education to reflect
changes in educational attainment patterns over time, the minimally sufficient adjustment set would
not change. Nevertheless, if we had included a direct path from age to cooking, age should be included
in the minimally sufficient set. As Model E results show, this would slightly attenuate the associations
of UFP with SBP and PP.

The use of the conceptual model also allowed us to test the sensitivity of our analyses to the
choice of proxy for variables represented within the minimally sufficient adjustment set. For example,
we compared the results using fried food consumption and fruit and vegetable consumption as proxies
for diet and found that the results were robust against choice of dietary variable. This was important
because these two dietary components represented different dietary patterns within our study
population (e.g., non-Hispanic whites consumed more fried food and fruits and vegetables, Asians
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consumed fewer fried foods and fruits and vegetables, and participants of other races/ethnicities
consumed more fried foods but fewer fruits and vegetables). Similarly, we were able to quantitatively
assess our assumption that since UFP exposure was assessed as a function of distance to roadways,
additional adjustment for proximity would result in over-adjusted models. We found that adjustment
for annoyance from traffic sound did not meaningfully change the results and that adjustment for
other proxies for proximity resulted in attenuated associations, as would be expected if the models
were over-adjusted.

Our exposure assessment strategy had both strengths and limitations. Our UFP model was finely
resolved in space (20-m resolution) and time (hourly resolution). We further adjusted our exposure
estimates for time spent in different micro-environments, avoiding the bias introduced by assuming
residential exposure concentrations are representative of long-term UFP exposure [20]. While we did
not control for short-term UFP exposures and we did not account for short-term changes in blood
pressure, previous work has suggested that controlling for short-term UFP exposure is unlikely to
meaningfully change the results [15] and our group has found that daily average UFP exposure is not
associated with SBP or PP (though it is associated with DBP) in the CAFEH population [43]. There
could still be concerns about the exposure window we used. While UFP exposures were assigned for
the calendar year of the study visit, a more relevant time window would include only time preceding
the study visit. Additionally, to the extent that exposure misclassification varied by neighborhood or by
time period, our analyses of effect modification by race/ethnicity would be strongly impacted due to
the spatial segregation of participants and the fact that we collected data from different neighborhoods
in different years. Finally, although other air pollutants could act independently of or jointly with UFP
to affect blood pressure, we were unable to adjust for exposure to other air pollutants. Beyond the
exposure assessment limitations, the major limitations of our study include the cross-sectional design,
the fairly small sample size, and the multiple comparisons we made increasing the likelihood of a
Type I error. The associations we observed with UFP should not be interpreted causally unless future
work addressing the limitations confirms our findings.

5. Conclusions

Overall, we found evidence that UFP was positively associated with SBP, PP, and hypertension
prevalence. While our study adds to the growing body of literature on the association between
long-term exposure to UFP and cardiovascular outcomes, future longitudinal research should consider
the impact of long-term UFP exposure on incident hypertension and changes in BP over time in
diverse populations.
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Appendix A Exposure Assessment

In each of Somerville, Dorchester/South Boston, Chinatown, and Malden, we drove the Tufts
Air Pollution Monitoring Laboratory (TAPL-1) around a fixed route 2–6 times/day on 35 days in
the same year in which we collected health information from participants. Monitoring occurred
in all four seasons, on all days of the week, and at different times of the day (04:00–22:00). Data
quality assurance and control steps have been described previously [23,31,44]. Community-specific
multivariate regression models predicting log-transformed hourly PNC were developed using spatial
(e.g., side of and distance to highway) and temporal (e.g., wind speed and direction) covariates. Model
performance was adequate (model adjusted-R2: Somerville = 0.42, Dorchester/South Boston = 0.35,
Chinatown = 0.23, and Malden = 0.31) and stable under leave-one-day-out cross-validation [23].

Using the community-specific PNC models, hourly residential ambient PNC were estimated for
each participant for every hour of the year [24]. These estimates were then adjusted for the amount of
time individual participants reported spending on a workday/weekday and a non-workday/weekend
day in five micro-environments (inside home, outside home, at work, on highway, and other). For hours
spent inside the home when local meteorological stations reported ambient temperatures exceeding
21 ◦C (70 ◦F), the hourly residential value was modified to account for air conditioner use (window
or central air conditioners, depending on survey data). For hours spent at work in occupations that
included traffic-related air pollution exposure (e.g., bus drivers), the hourly residential ambient PNC
value was replaced with the mean hourly residential PNC of all participants residing ≤ 50 m from
the highway. For hours spent at work in occupations without substantial traffic-related air pollution
exposure (e.g., nurses) and for time spent in “other” micro-environments, the hourly residential
ambient PNC value was replaced with the mean hourly residential PNC of all participants residing >
1000 m from the highway. For time spent on the highway, we replaced the hourly residential PNC with
the on-highway concentration predicted by the Somerville model. Individual time-activity-adjusted
(TAA) PNC values for each hour were averaged to assign annual TAA-PNC for each participant [20,24].

Appendix B Directed Acyclic Graph Justification

To develop the directed acyclic graph (DAG), we first identified consensus statements [2,45–48],
meta-analyses [49–51], systematic reviews [52,53], reviews [54–61], and longitudinal cohort
studies [62–67] assessing determinants of blood pressure in adults. We also conducted a PubMed
search in January 2017: ((((“blood pressure”[Title]) OR “hypertension”[Title]) AND ((“meta
analysis”[Publication Type] OR “review”[Publication Type]))) AND (“risk factor”[Title] OR “risk
factors”[Title] OR “determinant”[Title] OR “determinants”[Title] OR “effect of”[Title] OR “influence
of”[Title] OR “impact of”[Title])) AND english[Language] Filters activated: Humans, Adult: 19+
years. This search resulted in 94 titles. From a review of the abstracts in Abstrackr [68], we kept 30
articles [69–97]. Articles were excluded if they focused primarily on early life or genetic risk factors,
blood pressure or hypertension as an exposure, hypertension treatment or management, blood pressure
in children or adolescents, pregnancy-related hypertension, or treatment-resistant hypertension.

From these articles, we identified 21 risk factors for hypertension and high blood pressure
(acculturation/migration, age, alcohol, BMI, caffeine/coffee/cocoa, DASH diet, diabetes, dietary
fiber/protein supplementation, education/SES, estradiol, glucocorticoids, physical activity, potassium,
race, racial discrimination, sex, smoking, sodium intake, statins, stress, and vitamin C). We
examined the pairwise relationships between UFP and each of the identified risk factors [19,98–107].
We prioritized evidence from meta-analyses, systematic reviews, reviews, or consensus statements
that addressed direct and indirect (within two steps) determinants of personal exposure to UFP.
If these types of articles were not available, we considered evidence from experimental studies, cohort
studies, and other study designs (in that order). We used the same evidence prioritization method
to assess the relationships among potential covariates [90,108–131]. We also considered relationships
that were introduced by the study design. For example, convenience sampling was done in specific
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retirement communities so age was considered an ancestor of UFP exposure. Based on all of the
pairwise relationships, we built the DAG in DAGitty v2.3 [132]. The code for the DAG is below.

Of the 99 testable conditional independencies suggested by the DAG, 69 held within our dataset
when using the variable for fried food consumption as a proxy for diet and 70 held when using the
variable for fruit and vegetable consumption. The most problematic covariate was the proxy for
cooking (gas stove use) which is due partially to the fact that none of the Somerville participants
responded to this question. Statements of conditional independence with UFP did not hold in our
dataset for race, education, and convenience sampling (each with three different sets of covariates) or
for acculturation/migration, age, and fruit/vegetable intake (each with one set of covariates).

DAG Code:
Acculturation%2Fmigration 1 @−0.848, −2.923
Age 1 @−4.724, −2.738
BMI 1 @1.013, −1.037
Blood%20pressure O @3.740, 5.031
Convenience%20sample 1 @−4.594, 1.461
Cooking 1 @−2.922, 3.995
Diet 1 @−1.535, 3.699
Education%2FSES 1 @0.966, −2.664
Inhalation%20rate 1 @−3.610, 3.033
Physical%20activity 1 @−1.998, 1.109
Proximity 1 @−4.866, 3.273
Race 1 @−3.302, −1.888
Sex 1 @2.068, −0.630
Smoking 1 @−3.586, 0.813
UFP E @−4.700, 4.920

Acculturation%2Fmigration BMI Blood%20pressure Diet Physical%20activity Proximity Smoking
Age Acculturation%2Fmigration BMI Blood%20pressure Convenience%20sample Diet Physical%20activity Smoking
BMI Blood%20pressure Inhalation%20rate
Convenience%20sample Proximity
Cooking UFP
Diet BMI Blood%20pressure Cooking
Education%2FSES BMI Blood%20pressure Diet Physical%20activity Proximity Smoking
Inhalation%20rate UFP
Physical%20activity BMI Blood%20pressure Inhalation%20rate
Proximity UFP
Race Acculturation%2Fmigration BMI Blood%20pressure Convenience%20sample Diet Education%2FSES
Physical%20activity Proximity Smoking
Sex BMI Blood%20pressure Diet Inhalation%20rate Physical%20activity Smoking
Smoking Blood%20pressure Inhalation%20rate UFP
UFP Blood%20pressure
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