
OPEN

ARTICLE

Identification of a novel nonsense variant c.1332dup,
p.(D445*) in the LDLR gene that causes familial
hypercholesterolemia
Faisal A Al-Allaf1,2,3,6, Mohammad Athar1,2,6, Zainularifeen Abduljaleel1,2, Abdellatif Bouazzaoui1,2, Mohiuddin M Taher1,2, Rakan Own1,
Ahmad F Al-Allaf4, Iman AbuMansour1, Zohor Azhar1, Faisal A Ba-hammam1, Hala Abalkhail5 and Abdullah Alashwal5

Familial hypercholesterolemia (FH) is an autosomal dominant disease predominantly caused by a mutation in the low-density
lipoprotein receptor (LDLR) gene. Here, we describe two severely affected FH patients who were resistant to statin therapy and were
managed on an apheresis program. We identified a novel duplication variant c.1332dup, p.(D445*) at exon 9 and a known silent
variant c.1413A4G, p.( = ), rs5930, NM_001195798.1 at exon 10 of the LDLR gene in both patients.
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INTRODUCTION
Familial hypercholesterolemia (FH) is an autosomal dominant
disorder that predisposes the patient to the development of
coronary artery disease and sudden cardiac death. FH is generally
caused by mutations in the low-density lipoprotein receptor
(LDLR) gene, leading to reduced hepatic clearance of LDL from the
blood. FH can also be caused by mutations in the apolipoprotein B
(APOB) gene, which encodes the LDLR ligand. In addition, a
pathogenic mutation in the proprotein convertase subtilisin/kexin
type 9 (PCSK9) gene has been proposed to cause FH, indicating
that the disease is genetically heterogeneous.1–3 Several studies
have demonstrated that mutations in the LDLR, APOB or PCSK9
genes can result in hypercholesterolemia.
The LDLR gene consists of 18 exons spanning 45 kb and

encodes an 860-amino-acid precursor protein.4 In the majority of
populations, the frequency of heterozygosity is less than 1:500,
whereas the homozygous form is rare, occurring at a frequency of
1:1,000,000.5 Worldwide, there are more than 1,288 reported
genetic variants in LDLR.6–8 The highest frequency of hetero-
zygosity is observed in the South African population, with an
incidence of less than 1:80.9 Other studies in the French-Canadian
population found five common variants with a frequency of
1:270.4,10 This high frequency is attributed to the founder effect
and consanguineous marriages.
Before this research, a genetic epidemiological study of the

frequency of FH in the Saudi population had not been conducted.
We expect the incidence of FH, secondary to the homozygous
genotype in Saudi Arabia, to be relatively high, because of the
increased rate of consanguineous marriages (over 54%). Conse-
quently, many cardiovascular centers have been established
across the country to provide adequate care and treatment for
patients with heart diseases.11 The estimated number of affected
heterozygote Saudi individuals ranges from 46,000 to 230,000
individuals. The majority of affected individuals may not be aware
of the disease, as they remain asymptomatic until a severe
myocardial infarction occurs, usually after the age of 40 years. The

myocardial infarctions can be severe enough to cause sudden
cardiac death or disabling cardiovascular morbidities. For the clinical
diagnosis of FH, there are three sets of criteria used: the Simon
Broome Register (UK), the Dutch Lipid Clinic Network (the Nether-
lands) and the MEDPED Program (USA). These criteria have been
proven to identify FH in patients. The criteria are primarily based on
age, blood cholesterol levels and evidence of clinical signs related to
FH (xanthelasma, tendinous xanthomata and corneal arcus) and a
family history of coronary heart disease (CHD). However, elevated
blood cholesterol levels are commonly observed in individuals with
nongenetic multifactorial hypercholesterolemia, which may lead to a
misdiagnosis of FH in those individuals. Therefore, the use of
molecular methods to characterize gene defects is necessary for an
unequivocal FH diagnosis. Furthermore, when novel variants are
identified, distinguishing between pathogenic variants and poly-
morphs is crucial for molecular confirmation. Further investigation
into the pathogenicity of novel variants can be performed by
standard functional analyses or by using new alternative bioinfor-
matics methods to predict the putative effects of variants on protein
function and stability.12

MATERIALS AND METHODS
Subjects
The analysis was performed in two patients diagnosed with homozygous
FH. The patients are siblings whose family originates from a tribe that lives
in the northern region of Saudi Arabia. Both patients are resistant to statin
therapy and were on an apheresis program. Sample collection and studies
were performed in accordance with the Research Ethics Committee’s
regulation after the subjects were provided with informed consent. The
enrollment criteria for the genetic screening of the patients were based on
the Simon Broome register.13

DNA analysis
Genomic DNA was isolated from EDTA-treated whole blood using the
MagNA Pure Compact Nucleic Acid Isolation Kit I (Roche, Basel, Switzer-
land) according to the manufacturer’s instructions. Polymerase chain
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reaction (PCR) amplification of the LDLR gene (including the 18 coding
exons and flanking intron regions), APOB gene (exon 26 of the APOB gene
containing codons 3,475–3,592, which harbors three known pathogenic

variant sites, R3500Q, R3500W and R3527Q) and the PCSK9 gene (the 12
exons and flanking intron regions) were performed. Descriptions of the
primers used for amplifying and sequencing the fragments are provided in
Supplementary Table 1. PCR was performed with 100 ng genomic DNA
using the HotStarTaq Plus DNA Polymerase Kit (Qiagen, Hilden, Germany)
as follows: Taq polymerase was activated at 94 °C for 5 min, followed by 35
cycles of denaturing at 94 °C for 30 s, annealing at 61–64 °C
(Supplementary Table 1) for 30 s, extension at 72 °C for 45 s and final
extension at 72 °C for 5 min. The amplified products were separated on an
agarose gel to ensure the size and quality of the band. The PCR products
were purified using magnetic beads with the Agencourt AMPure XP kit
(Beckman Coulter, Brea, CA, USA). The purified products were used as
templates for direct sequencing with a BigDye Terminator v3.1 cycle
sequencing ready reaction kit (Applied Biosystems, Foster City, CA, USA).
The sequencing reaction products were purified using the BigDye
X-terminator purification kit (Applied Biosystems) followed by capillary
electrophoresis in an ABI 3500 Genetic analyzer (Applied Biosystems). The
final analysis was performed using the Sequence Analysis Software v5.4
(Applied Biosystems).

RESULTS
The genomic analysis revealed a novel duplication variant
c.1332dup, p.(D445*) at exon 9 of the LDLR gene in the two
patients (Figure 1). Both patients were determined to be
homozygous for this variant, which expresses a premature stop
codon at position 445 in exon 9 of the LDLR gene. Consequently, a
truncated protein is produced, which is a defective LDL receptor.
In addition to this novel nonsense variant, we also identified a
known silent variant c.1413A4G, p.( = ), rs5930, NM_001195798.1
in both patients at exon 10 of the LDLR gene (Table 1). Figure 1a
shows the pedigree of the family (the parents and the first-degree
relatives were not available for DNA analysis at the time of the
study). Table 1 also shows the total and LDL cholesterol levels with
values reaching 18.11 and 15.05 mmol/l in patient one and 15.13
and 12.98 mmol/l in patient two. These values are considered very
high compared with the optimal level, which is o2.59 mmol/l
(LDL cholesterol). This confirms the loss of LDLR function because
of the nonsense variant present in the DNA sequence.

DISCUSSION
To date, there are more than 1,288 LDLR variants reported
in FH patients worldwide that are regarded as patho-
genic variants.8,14–16 We identified a novel duplication variant
(c.1332dup) at exon 9 of the LDLR gene. This duplication generates
a defective LDL receptor because of the premature stop codon at
position 445 in exon 9 of the human LDLR gene. No other variants
were observed in the LDLR, APOB and PCSK9 genes.
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Figure 1. Novel nonsense variant p.(D445*) identified at exon 9 of
the LDLR gene. (a) Pedigree of the patient family. (b) Representative
DNA sequence from the control individuals (wild type; WT) and
patients. ?=NOT available for DNA analysis. *= Index case.

Table 1. Characteristics of the studied patients with the novel nonsense variant p.(D445*) at exon 9 of the LDLR gene

Mutations and parameters Patient 1 Patient 2 Normal range
(mmol/l)

Nonsense variant in exon 9 of the
LDLR gene

c.1332dup, p.(D445*) c.1332dup, p.(D445*) —

Silent variant in exon 10 of the LDLR
gene

c.1413A4G, p.(= ) rs5930,
NM_001195798.1

c.1413A4G, p.(= ) rs5930,
NM_001195798.1

—

Sex (M/F) F F —

Age (year) 20 22 —

Total cholesterol (mmol/l) 18.111 15.133 3.8–7.5
LDL-C (mmol/l) 15.05 12.98 2.6–5.2
Triglyceride (mmol/l) 1.01 1.43 0.3–1.6
HDL-C (mmol/l) 0.95 1.12 0.8–2.1
Medication Ezetimibe, Acetazololamide, Simvastain Ezetimibe, Simvastain —

CHD history in parents Yes Yes —

Abbreviations: CHD, coronary heart disease; F, female; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-cholesterol; LDLR, low-
density lipoprotein receptor; M, male.
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This novel nonsense variant is localized in the EGF precursor
homology domain. Theoretically, the membrane-spanning
domain and the remainder of the LDLR protein cannot be
synthesized; therefore, the truncated protein may be degraded by
the proteasome machinery. This hypothesis agrees with the
patient phenotypes, that is, both patients were resistant to statin
therapy and were on an apheresis program. Furthermore, an
earlier study determined that up to 54% of LDLR variants that
resulted in FH were localized in the epidermal growth factor
precursor (EGFP) homology domain.16 Marduel et al.7 reported
nine nonsense variants that were classified as FH-causing variants
because of the synthesis of a truncated protein. In addition, the
lipid profile of our patients supports the loss of LDLR function, as
the analysis of the total and LDL cholesterol levels revealed an
extremely high concentration of more than 12mmol/l. Interest-
ingly, the levels of LDL and total cholesterol in both our patients
are higher compared with the maximal level of the FH group that
was presented in Marduel et al.7 This suggests that it is necessary
to establish a validated LDL concentration cut-off for the clinical
diagnosis of FH in Saudi Arabia. In conclusion, the segregation
pattern of the variant is consistent with the lipid profile (Figure 1
and Table 1), suggesting a more severe FH phenotype when the
variant is in the homozygous state.
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