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A B S T R A C T

Amplification curves from quantitative Real-Time PCR experiments typically exhibit a sigmoidal shape. They can
roughly be divided into a ground or baseline phase, an exponential amplification phase, a linear phase and
finally a plateau phase, where in the latter, the PCR product concentration no longer increases. Nevertheless, in
some cases the plateau phase displays a negative trend, e.g. in hydrolysis probe assays. This cycle-to-cycle
fluorescence decrease is commonly referred to in the literature as the hook effect. Other detection chemistries
also exhibit this negative trend, however the underlying molecular mechanisms are different.

In this study we present two approaches to automatically detect hook effect-like curvatures based on linear
(hookreg) and nonlinear regression (hookregNL). As the hook effect is typical for qPCR data, both algorithms can
be employed for the automated identification of regular structured qPCR curves. Therefore, our algorithms
streamline quality control, but can also be used for assay optimization or machine learning.

1. Introduction

Key elements of any PCR assay are the primers since they control
the sensitivity and specificity of the reaction [1]. Not less important is a
stable binding of probes to the amplicon for the generation of a
meaningful amplification curve signal in quantitative real-time PCR
(qPCR). For hybridization probes, a phenomenon observed in late cy-
cles is the competition between amplicon strands and the probes, which
may reduce the fluorescent signal considerably [2]. This so-called hook
effect is often observed at high template concentrations that are typical
in later cycles [3], and where the single strands of the amplicons re-
anneal faster than the probes with the amplicons. For detection che-
mistries other than hybridization probes, such as hydrolysis probes,
hook effects have not been described. Other reasons such as the nu-
clease activity of the polymerase may also contribute to the decreasing
probe signal [4], however it is more likely that this results in an earlier
plateau phase.

Several experimental conditions can be adjusted to minimize the
hook effect in qPCR, such as optimizing the DNA template, probe or
MgCl2 concentrations, reducing the cycle number or conducting

asymmetric PCR [3]. Although the decrease in fluorescence does not
affect the efficiency or specificity of amplification and target detection
[3], a low fluorescence signal can entail limitations to the sensitivity of
the assay, including melting curve and data analysis. For example, it
was reported that the hook effect is challenging genotyping and forensic
applications [2,5,6].

Although the hook effect has been reported mainly for HybProbes
and other specific detection chemistries [4,7], interestingly, it can also
be encountered in amplification reactions with intercalating dye che-
mistries (Fig. 1A, D) as well as hydrolysis probes (TaqMan™; Fig. 1E, F).
For the latter, hook effects are evident in the non-baselined raw data
(data not shown). Here, the mechanistic basis for decreasing fluores-
cence in late cycles are hitherto unknown, however photobleaching or
requenching may pose possibilities.

On the software side, Nolan et al. [8] clearly demonstrated that a
wrong baseline setting can lead to up- or downward sloping baseline
estimates, resulting in the plateaus sloping to the opposite direction.
Here, it should be noted that most qPCR systems apply a fitted trendline
to a number of early cycles in the fluorescence baseline.
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Fig. 1. Overview of the data included in hookreg.rdml. The amplification curves exhibit different curvatures, including sigmoidal shapes, curves with hook effect-like
shapes and negative qPCR reactions. For fluorescence readout, EvaGreen, SYTO-13 and TaqMan probes were employed. Black amplification curves display no hook
effect, while red amplification curves do, as identified by our analysis pipeline. (A) A01-A12: SYTO-13, (B) B01-D08: hydrolysis probes, (C) D09-F08: SybrGreen I, (D)
F09-F10: EvaGreen, (E) F11-H02: hydrolysis probes, (F) H03-H12: hydrolysis probes. Single plots for all amplification experiments are shown in Supplemental Fig. 1.
RFU, relative fluorescence units.

Fig. 2. Hook effect analysis of amplification curves from different samples. The amplification plots are shown without background subtraction. The samples were
taken from the hookreg.rdml data set (see Supplemental Files). (A) Overview of the amplification curves. Black: Amplification curve with a hook effect-like curvature.
Red: Amplification curve with a standard plateau. Green: Negative amplification reaction. (B) All values from x0 to xn in the ROI (green) are used for ordinary linear
regression. Presence of a hook effect was tested by the slope of the fit (p < 0.005) or a negative 99.5% confidence interval. (C) Amplification curves with no hook
effect, no meaningful regression results from the lack of at least 5 cycles after x0. (D) Negative amplification curves get discarded by a logical decision. RFU, relative
fluorescence units; normalized RFU, relative fluorescence units normalized to the 99th percentile. β0, intercept; β1, slope; P, p-value; CI, confidence interval; NA,
missing value.
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region can be employed for quality control. For example, a deviation
from a sigmoidal model can be indicative for a failed experiment, and
these amplification curves should undergo a more optimized analysis
procedure or even be excluded from further analysis. A plethora of
software packages for the analysis of qPCR data have been published
[9], but none of these appear to describe algorithms that can be used to
detect hook effects. This study revised existing software and demon-
strates two approaches to detect hook effects in qPCR curvatures. One
algorithm is based on maximum peak finding and linear regression
(hookreg), while the other is based on fitting a non-linear six-parameter
model to acquire a coefficient for the slope of the plateau phase
(hookregNL).

2. Materials and methods

The following algorithmic steps describe both the hookreg() and
hookregNL() methods that are applied to raw fluorescence data without
baseline correction. If done correctly, these are also applicable to
baseline-corrected values. The input values xi and yi stand for the cycles
and cycle dependent fluorescence intensity, respectively. The return
values are the slope estimate and its p-value, the slope's confidence
interval and a logical decision if a hook-effect is present. hookregNL()
uses core functionality from the qpcR package [10,11]. Both algorithms
are implemented in the PCRedux package v. 0.2.6-1 (https://cran.r-
project.org/package=PCRedux) of the R statistical computing language
(https://www.r-project.org).

hookreg():

• Find x0 = cycle at max(yi).
• Fit a linear model yi= β0 + β1xi+ ε from x0 to xn, where n= length

of x (number of cycles), when at least five cycles can be employed.
• Calculate the p-value for estimated slope 1̂ as well as its 99.75%

confidence interval CI.
• If p < 0.0025 (one-sided t-test), then a hook-effect is defined as

being present, because the slope of 1̂ is significantly different from
0 (no slope) and negative. If both CI0.125% and CI99.875% bounds are
negative, we can be 99.75% certain that 0 (no slope) is not included
in the CI of 1̂.

A visual representation of the algorithm is shown in Fig. 2.

hookregNL():

• Remove the first 5 (or more) cycles x1, x2 … x5 from the data to
minimize slope effects in the baseline region.

• Fit a six-parameter log-logistic model yi= c+ kxi+ (d− c)/
(1 + exp(b(log(xi) − log(e))))f by nonlinear least-squares. This
model has the following parameters: c: lower asymptote (baseline);
d: upper asymptote (plateau); k: linear slope; b: sigmoidal slope; e:
point-of-inflection (if f = 1); f: asymmetry around point-of-inflec-
tion.

• Calculate the 99.75% confidence interval CI for the estimated slope
parameter k̂.

• If both CI0.125% and CI99.875% bounds are negative, then a hook-ef-
fect is defined as being present, because a slope of 0 (no slope) is not
included in CI.

Confidence intervals instead of slope estimates for both functions
are employed to deliver significance to the plateau phase's fluorescence
decrease.

For algorithm evaluation, we compiled a data set consisting of sig-
moidal qPCR curves with no hook effect, non-sigmoidal curves (nega-
tive control), curves with no plateau phase, curves with a slight nega-
tive trend (hook effect-like) and curves with pronounced hook effect

(see also Supplement Fig. 1, Supplement Table 1). The raw data were
compiled from the boggy data set [12], the testdat data set [11], the
C127EGHP data set [13], a whole genome amplification experiment
[14] and from an in-house BRCA1 gene quantification experiment. The
raw data were rated by the humanrater() function either as hook effect-
bearing (“y”) or not (“n”), as described in the Supplementary In-
formation of [13]. As reproducible research is an important aspect in
science [15,16], the amplification curve data (Fig. 1) were combined
and made available as an RDML file [17] that was used for all analyses.

3. Results and discussion

In general, the presence of hook effects should be checked during
the analysis of qPCR experiments. For example, when fitting models
that utilize all data points, the Cq value is highly influenced by the
magnitude of the plateau phase [18], which will be estimated in a four-
parameter sigmoidal model approximately as the mean of all plateau
phase values. Hence, the stronger the hook effect, the lower the pla-
teau's mean. In contrast, methods that do not include the hook region
fluorescence values and fit only the exponential region [19–21] or are
parameter-free (e.g. splines), will not be influenced by the presence of a
downward-sloped plateau. Using both algorithms in combination for
quality control is feasible for the identification of regular structured
qPCR curves prior to Cq value and qPCR efficiency estimation. In the
presence of a hook-like plateau, the user is encouraged to check that (i)
the baseline setting is correct, (ii) the assay is optimized and (iii) a
quantitation algorithm independent of plateau phase values is em-
ployed.

In this work, we introduce the hookreg() and hookregNL() algorithms
to identify hook effect-bearing qPCR amplification curves. The first,
hookreg(), is based on standard linear regression and can be easily
implemented in less sophisticated statistical software packages or
spread-sheet applications. The second, hookregNL(), is based on the
fitting of a six-parameter sigmoidal model, available in statistical soft-
ware packages such as qpcR for the R statistical computing language
[10,11], but also definable in the “Nonlinear Regression” menu of many
softwares.

Both algorithms are implemented in the PCRedux package, and
their output provides the fit parameters as well as corresponding p-
values, the cycle when the hook presumably starts (hookreg()), the
confidence intervals, and finally the decision about the presence or
absence of a hook effect (Supplement Section 4). hookreg() makes some
assumptions about the data, e.g. at least five additional data points (5
cycles) from the maximum are required for a linear fit, so that curves
with less points will be ignored. This may lead to false negative results.
The hookregNL() algorithm makes the assumption that a sigmoid model
can be fitted. A few cycles (by default 5, but extendable) of the baseline
region need to be removed prior to fitting to avoid false positives from a
downward sloping baseline (Fig. 1). Both algorithms were compared
and gauged against a human classification of the hookreg.rdml data set
and displayed different performances, resulting in false negative and
false positive decisions in some cases (Supplement Table 2 and Sup-
plement Table 3).

Interestingly, both algorithms complemented each other and com-
plete agreement was observed (Table 1) when they were combined by a
logical statement (see Supplement Section 5). Essentially, both algo-
rithms aim to detect negative trends (hook effect or hook effect-like
curvatures) in the tail region. In the hookreg.rdml data set we achieved
100% sensitivity and 97% specificity with the combined approach. In
addition, we observed cases where the negative trend was not im-
mediately evident to the human rater, but the statistical estimates ob-
tained from hookreg() and hookregNL() indicated a significant down-
ward slope. Since both the hookreg() and hookregNL() functions report
the steepness of the slope (Supplement Tables 2 and 3), users can decide
if the data have a hook effect-like curvature. Corroborating their high
performance, we observed no false negative classification by both
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algorithms within the hookreg.rdml data set.
Finally, a graphical user interface for both algorithms was in-

troduced to the rdmlEdit() function of the RDML R package [17], which
is available as a web server or can be deployed locally (see Supplement
Section 6). This graphical user interface enables testing qPCR curves for
hook effects and marks these, depending on the result.

Supplemental files

Installation: The installation of the PCRedux package is described
in the Supplement Section 2 and at https://github.com/devSJR/
PCRedux. The functions can be used in software such as RKWard
[22] in combination with the RDML package (≥ v. 0.9-9) by in-
voking the rdmlEdit() function (for details see [17]).
hookreg.rdml: The RDML file containing the amplification curve
data. The file can also be accessed via https://github.com/devSJR/
PCRedux/blob/master/inst/hookreg.rdml.
SI1.pdf: Supplement with the results of the data analysis.
http://shtest.evrogen.net/rdmlEdit/ link to the rdmlEdit gra-
phical user interface web server
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