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Abstract

A quick, reliable, and reproducible biological assay to distinguish individuals with possi-
ble life-threatening risk following radiological or nuclear incidents remains a quest in bio-
dosimetry. In this paper, we examined the use of a y-H2AX assay as an early dose
estimation for rapid triage based on both flow cytometry and image analyses. In the
experiment, whole blood from 11 donors was irradiated ex vivo inside a water phantom
by gamma rays from Co-60 at 0.51 Gy/min. After the lysis of red blood cells, the white
blood cells were collected for immunofluorescence labeling of y-H2AX, CD45, and
nuclear stained for signal collection and visualization. Analysis by flow cytometry showed
that the relative y-H2AX intensities of lymphocytes and granulocytes increased linearly
with absorbed doses from 0 to 6 Gy with a large variation among individuals observed
above 2 Gy. The relative y-H2AX intensities of lymphocytes assessed by two different
laboratories were highly correlated (ICC = 0.979). Using confocal microscopic images, y-
H2AX foci were observed to be discretely distributed inside the nuclei and to increase
proportionally with doses from 0 to 2 Gy, whereas large plagues of merged foci appeared
at 4 and 6 Gy, resulting in the saturation of foci counts above 4 Gy. The number of total
foci per cell as well as the number of foci per plane were significantly different at O vs 1
and 2 vs 4 Gy doses (p < 0.01). Blind tests at 0.5 Gy and 1 Gy doses showed that dose
estimation by flow cytometry had a mean absolute difference of less than 0.5 Gy from the
actual value. In conclusion, while flow cytometry can provide a dose estimation with an
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uncertainty of 0.5 Gy at doses < 1 Gy, foci counting can identify merged foci that are
prominent at doses > 4 Gy.

Introduction

A major challenge in biodosimetry is the rapid reconstruction of absorbed dose to prioritize
proper treatment for possibly exposed individuals [1-3]. In the absence of physical dosimetry
on the eve of unforeseeable radiological or nuclear incidents such as Chernobyl and Fukush-
ima [4], a high throughput biodosimetry technique is required to triage large-scale popula-
tions. Over the past decades, several biodosimetric assays have been developed for estimating
the absorbed dose as well as evaluating the extent of biological damage [3]. Among these meth-
ods, the dicentric chromosome assay (DCA) remains the gold standard due to its specificity,
high sensitivity, capability to identify partial-body exposure to ionizing radiation (IR), and also
ability to perform dose estimation in retrospect up to about 3-6 months after an incident [3].
Despite the use of automation and network in scoring dicentric chromosomes, however, the
time required to prepare non-reproducible cultures of lymphocytes as well as the need for
skilled cytogeneticists pose major limitations to its use in a large-scale radiation emergency [4-
8]. Therefore, there is still a need to develop a quick and high throughput assay to handle a
large number of samples [4].

Protein-based biomarkers, such as phosphorylated H2AX histone [9] and the p53 binding
protein 53BP1 [10], provide attractive alternatives to the cytogenetic-based assay due to their
strong correlation with DNA double-strand breaks (DSBs), high throughput, automation capac-
ity, reliability, and reproducibility [5,11-13]. At the early stage of cellular response to IR-
induced DSBs, phosphorylation of hundreds to thousands of H2AX proteins at the 139" serine
residue, or y-H2AX [14], occurs at damage sites which then recruit other signaling factors such
as MDCI1 and 53BP1 [11,12] to join the cascade of DNA repair. The presence of these y-H2AX
foci inside the cell nuclei can be visualized by immunofluorescence labeling and quantitated by
intensity-based measurements such as flow cytometry and foci counting of microscopy images,
which allowed for the quantitation of DNA DSBs that typically showed the linear response to IR
doses [4]. Because y-H2AX and 53BP1 are usually colocalized [6,11,13,15], much research has
extensively utilized the y-H2AX assays in various models including blood [1,6,12,13,16-22],
buccal cells [23], cell lines [24,25], in vivo animal models [24,26], ex vivo skin [27], and skin
equivalents [12]. Among these reports, the IR-induced y-H2AX repair kinetics has been shown
to be dependent of age [22,28,29], but not gender and smoking habit [12,18].

Variation in y-H2AX expression among individuals at the same absorbed dose observed by
flow cytometry analysis [16,20] and the kinetic disappearance of y-H2AX expression from its
peak to baseline within 24 h observed by both flow cytometry and foci counting [1,4,6,18,22]
have been previously reported. Although these issues might post major limitations of y-H2AX
assay as a ‘dosimeter’ for the accurate dose estimation, the y-H2AX assay is nevertheless still
useful as an ‘indicator’ of IR exposure in triage [4,20]. Based on foci counting, previous studies
by Redon et al. [12] and Horn et al. [13] reported the persistence of residual foci above baseline
in lymphocytes 48 h and 96 h after receiving 2 and 4 Gy doses, respectively. Recently, more
advanced high-throughput techniques such as the Rapid Automated Biodosimetry Tool
(RABIT) [22,30,31], imaging flow cytometry platform [5,32], automated slide scanning [33]
and ELISA assay [34] have been developed to facilitate y-H2AX quantitation. Aside from bio-
dosimetry, the y-H2AX assay can also be applied to monitor the biological effects of patients
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and health workers that are exposed to radiation during diagnosis and therapy as well as work-
ers in radiation facilities [4].

In this study, we focused on use of the y-H2AX assay as a quick estimate to determine an
absorbed dose based on the analyses by flow cytometry and foci counting of microscopy
images. As part of Thailand’s biodosimetry network, our work represents the first attempt to
establish a dose response curve based on the y-H2AX biomarker as a complement to the
already established calibration curves based on DCA and PCC assays [35]. Whole blood sam-
ples were irradiated by gamma rays and the dose response curves were constructed based on
the relative y-H2AX intensities and foci counts of lymphocytes, respectively, after which the
accuracy of dose estimation was performed by blind tests. In the calculation of relative y-
H2AX intensities, our study shed a new light into the use of average y-H2AX intensity at 0 Gy
in the case of emergency when the baseline of exposed individual was not available. In addi-
tion, a preliminary exercise was performed on the use of flow cytometry for intercomparison
study. In terms of dose response based on foci counts, the relationship between foci counts
obtained from all focal planes and a single focal plane containing the maximum foci was estab-
lished so that the latter can be used as an alternative in dose estimation.

Materials and method
Dose calibration with water phantom

Irradiation of blood samples was conducted at the Secondary Standard Dosimetry Laboratory
(SSDL), Bangkok, Thailand. A 30 cm x 30 cm x 30 cm water phantom was placed at a distance
of 60 cm in front of a Co-60 teletherapy machine (Theratron Phoenix, Canada). Position of
sample holder inside the water phantom was aligned using two orthogonal laser beams that
projected onto the sidewalls of the water phantom (Fig 1A). Gantry and collimator parameters
were set at 90 and 0 degrees, respectively, for an open field size of 10 cm x 10 cm. An ionization
chamber connected to an electrometer was used for dose measurement inside the water phan-
tom. The absorbed dose rate to water was determined according to IAEA guidelines (technical
report series No. 398).

Fig 1. Setup of whole blood irradiation. (A) A water phantom containing blood sample was positioned at 60 cm in front of a Co-
60 teletherapy machine with two orthogonal laser beams to aid the alignment. (B) Blood sample in a heparinized vacutainer tube
was inserted into a 50-mL centrifuge tube containing a hollow ice cube during the irradiation process.

https://doi.org/10.1371/journal.pone.0265643.g001
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Determination of absorbed dose by physical dosimeter

Optically stimulated luminescence (OSL) dosimeters, nanoDot™™ (Landuaer, USA), were cho-
sen as a single point measurement of absorbed dose as they could be inserted inside blood col-
lection tubes. The calibration curve of nanoDot™ was performed at the Radiation Dose
Measurement and Assessment Laboratory, Thailand Institute of Nuclear Technology (Public
Organization) to determine the relative conversion factor (RCF) between delivered dose and
sensitivity of nanoDot™™ dosimeter. The RCF was pre-generated by irradiating nanoDots ™
placed inside heparinized vacutainer tube (Becton Dickinson, USA) held in a water phantom
with gamma rays and air kerma of 5 and 50 mGy following the ISO 4037-1:2019. The air
kerma values were traceable to Physikalisch-Technishe Bundesanstalt, Germany.

In the experiment, four nanoDots™ were placed inside the heparinized vacutainer tube
held in the water phantom using the same setup shown in Fig 1 at SSDL. A total of five deliv-
ered exposures to gamma rays from Co-60 were made at 0.5, 1, 2, 4 and 6 Gy. Then, the read-
ing of absorbed dose was assessed by a microSTAR reader at the Radiation Dose Measurement
and Assessment Laboratory in which the beam quality and built-in software had been pre-cali-
brated with Cs-137 at 662 keV traceable to National Institute of Standards and Technology,
USA. The energy response of nanoDots™ to Cs-137 was 0.998, which was similar to that of
Co-60, 0.995 according to the manufacturer.

Blood collection and irradiation conditions

This project was approved by the Mahidol University Central Institutional Review Board
(MU-CIRB 2019/119.1904). Informed consent was obtained from each volunteer prior to veni-
puncture. Peripheral blood samples were collected from 11 healthy volunteers (three males
and eight females), aged 2442 years without smoking habits, in heparinized vacutainer tubes
(Becton Dickinson, USA) as aliquots of 1 mL per tube. Details of the experiments performed
on the blood samples were summarized in S1 Table. Each blood aliquot in a heparinized vacu-
tainer tube was inserted into a 50-mL centrifuge tube containing a hollow ice cube that served
to cool the sample (Fig 1B). Samples were irradiated on ice to prevent DNA repair during
exposure to IR [20]. The entire ensemble was then placed inside the water phantom and the
samples were exposed to gamma rays at a dose rate of 0.51 Gy/min to obtain the total doses of
0.5-6 Gy. The blood sample was then incubated at 37°C for 45 min before being processed for
immunofluorescence staining of y-H2AX.

Immunofluorescence staining

The staining protocol was adapted from Andrievski et al. [20]. Briefly, a 1-mL of the irradiated
samples were fixed in 650 uL of 10% paraformaldehyde (Sigma, USA) for 30 min at room tem-
perature, followed by a 30 min incubation in 0.12% (v/v) Triton X-100 diluted in phosphate
buffered saline (PBS; Sigma, USA) to lyse the red blood cells. Then the sample were transferred
into a 50-mL centrifuge tubes and mixed with 10 mL of 2% BSA in cold PBS to stop the reac-
tion, centrifuged (1,200 rpm, 4°C, 5 min), and washed with cold PBS until it was clear of red
blood cells. The remaining white blood cells were collected and resuspended in 1 mL of 50%
methanol in deionized water (v/v) on ice for 10 min. During this resuspension, a portion was
sampled for total cell count. The cells were then centrifuged (1,500 rpm, 4°C, 5 min), incu-
bated in 1% BSA for 30 min on ice in a 96-well plate at about 10° cells per well, and stained
with AlexaFluor488 (A488)-conjugated mouse monoclonal anti-y-H2AX (lots B19840 and
B300815, BioLegend, USA) at a dilution ratio of 1:1.3 in 1% BSA on ice. After 1.5 h, 4 uL of
APC-conjugated mouse monoclonal CD45 (lot B250579, BioLegend, USA), which was used to
aid the gating of lymphocytes, was added to each well and incubated for a further 30 min on
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ice. Then nuclear staining was done by incubating the cells in 1:50 dilution of 1 mg/mL
Hoechst 33342 (Sigma, USA) in PBS for 5 min on ice. Finally, the cells were washed twice in
cold PBS (3,000 rpm, 4°C, 5 min) and stored in 1% paraformaldehyde overnight at 4°C before
analysis by flow cytometry the next day. For analysis by confocal microscopy, a portion of each
cell suspension was mounted on a glass slide, protected with a cover slip, and sealed with nail
polish.

Analysis of y-H2AX expression by flow cytometry

White blood cell samples were analyzed on a FACSVerse™ flow cytometer (BD Biosciences)
equipped with blue 488 nm and red 635 nm lasers. Instrument performance QC was per-
formed using FACSuite™ CS&T research beads (BD Biosciences). Gating of lymphocyte,
granulocyte and monocyte populations was based upon the characteristic populations in the
forward vs side scatter as well as the side scatter vs CD45 acquisition plots from analysis of
40,000 white blood cells (S1 Fig). This ensured that a total of about 10,000 lymphocytes were
analyzed in each experiment. The A488-labeled y-H2AX were observed using a 527/32 band-
pass filter and CD45PerCP using a 660/10 bandpass filter. Data were acquired and analyzed
using FACSuite™ software (Becton Dickinson). Four blind tests were performed on randomly
selected four different donors in which blood samples were irradiated with a dose within the
range of 0-6 Gy while the analyzing researcher was kept blind to the dose. For intercompari-
son experiments, portions of the same set of samples randomly selected from six donors were
set aside for analysis on FACSCanto II flow cytometer (BD Biosciences) in a participant labo-
ratory by a different operator. Both laboratories in the intercomparison study were general
research laboratories; one located in a hospital and the other at a university, that had been
operated for at least 10 years. Data collection on both setups were performed by two experi-
enced operators.

Image acquisition by confocal laser scanning microscopy

Part of the y-H2AX labeled cells from five donors were set aside from the analysis using flow
cytometry for foci counting. Visualization and image acquisition was done on an automated
laser scanning confocal microscope (LSM800, Carl Zeiss, Jena, Germany) with a 63X oil
immersion objective. Z-stack images covering the whole cells were collected at either 0.3 or
0.7 pum steps. Only cells with a single nucleus and prominent CD45 staining were counted as
lymphocytes. A total of 30-50 lymphocytes per dose were collected for foci counting. The
diode lasers used in this experiment had wavelengths of 405, 488 and 640 nm for Hoechst
33342 (excitation 343 nm, emission 483 nm), AlexaFluor488 (excitation 494 nm, emission 517
nm) and APC (excitation 650 nm, emission 668 nm), respectively.

Image analysis of y-H2AX foci

Foci counting in lymphocytes was performed by manual scoring. Discrete foci were counted
as individual entities. Foci that appeared to overlap or merge into a prominent plague were
counted as one entity unless the overlapping could be visibly distinguished between the conse-
cutive Z-stacks. Scores were the total foci per cell or the maximum foci per stack for each indi-
vidual cell.

Statistical analysis

Data were analyzed by GraphPad Prism version 9.2.0 (GraphPad Software, CA, USA) and
SPSS version 18.0 (SPSS Inc, Chicago, IL). Comparison of relative intensities at varying doses
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was performed using one-way ANOVA and the Tukey’s post hoc test. At the same dose, com-
parison between two groups was carried out by unpaired student’s t-test. Kruskal-Wallis test
and the post hoc Dunn’s multiple comparisons test were performed to compare foci counts at
varying doses. Linear regression was used for dose estimation. To test the agreement of inten-
sity data from two flow cytometry setups, intraclass correlation coefficient (ICC) was per-
formed. Results were presented as mean (SD) or median (interquartile range). A p-

value < 0.05 was considered statistically significant.

Results

Dose response of lymphocytes and granulocytes by flow cytometry

The level of y-H2AX expression quantitated by the analysis using flow cytometry was repre-
sented by the relative mean fluorescence intensity (MFI), which corresponded to the geometric
mean fluorescence intensity at irradiation dose normalized by the basal value at 0 Gy. There-
fore, the relative MFI data of an individual donor was calculated based on that person’s basal
v-H2AX level in the absence of irradiation. Fig 2 shows the relative MFI of lymphocytes and
granulocytes collected from all 11 donors at each irradiation dose. Although the response of y-
H2AX expression to varying doses followed a linear relationship, both sub-populations
showed that the relative MFI data points were densely aggregated below an MFI of 5 at 1 Gy,
whereas at doses above 2 Gy the data was spread over a much wider range. Comparing the
sub-populations at the same dose, the y-H2AX levels in lymphocytes were significantly higher
than granulocytes (p < 0.05). Based on this greater y-H2AX expression in response to
absorbed dose, further interlaboratory comparison and foci counting were performed on the
gated lymphocyte sub-population.

Interlaboratory comparison by flow cytometry

To examine the possibility of using different flow cytometry setups in analyzing large scale sam-
ples, the interlaboratory comparison study was performed by two different laboratories. The
analysis of y-H2AX expression was conducted on gated lymphocytes from six donors. There
was a strong positive correlation between relative MFI results obtained from the two laborato-
ries with ICC of 0.979 (95% CI, 0.955, 0.990) over the dose range from 0 to 6 Gy (Fig 3).

Average 7-H2AX baseline in the analysis by flow cytometry

To investigate if a common baseline can be used as an alternative to individual baseline in the
analysis of y-H2AX expression by flow cytometry, we compared the relative intensities of
gated lymphocytes calculated at each of the absorbed doses from 1 to 6 Gy based on individual
vs average MFI of y-H2AX at 0 Gy (Fig 4). At the same absorbed dose, the relative MFI values
obtained by either method were not different for all 11 donors (p > 0.05). Therefore, the use of
a common basal y-H2AX value can potentially be applied in the analysis by flow cytometry.

Formation of y-H2AX foci and confocal image analysis

Aside from the analysis by flow cytometry, confocal microscopic scoring of y-H2AX foci was
considered as the conventional method to access radiation dose. Analysis using confocal micros-
copy resulted in higher accuracy compared to fluorescent microscopy [4]. The number of y-
H2AX foci correlates with the degree of DNA damage. An increase in y-H2AX foci was observed
from 1 Gy to 6 Gy (Fig 5). At the lower doses of 1 and 2 Gy, discrete and more frequent foci were
observed with 2 Gy compared to 1 Gy. Overlapping foci formation were observed at doses of 4
and 6 Gy, causing difficulty in manual counting of y-H2AX foci (Fig 5). At each dose, images
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Fig 2. Dose responses of y-H2AX expression in lymphocytes and granulocytes by flow cytometry. Relative MFI of white blood cell population vs doses for (A)
lymphocytes and (B) granulocytes. Each dot in different colors represents an individual donor (n = 11). All p-values < 0.05; 0 Gy vs 2, 4, 6 Gy; 1 Gy vs 4, 6 Gy; 2 Gy
vs 6 Gy for both lymphocytes and granulocytes. (C) Error bar represents the comparison of relative MFIs of lymphocytes and granulocytes at the same dose.
Symbols * and ** correspond to p-values of less than 0.05 and 0.01, respectively.

https://doi.org/10.1371/journal.pone.0265643.g002

were taken at different confocal planes throughout the cell height. We found a higher number of
foci in the central area of cells due to the larger nuclear cross-sectional area at the center (confo-
cal plane with maximum foci, Z,,,,) than near the surface. Fig 5 shows images of Z,,., and adja-
cent confocal planes below and above Z,., (Zinax-1> Zmax+1)- Foci counts at each confocal plane
along the cell height showed a normal distribution with higher number of foci per planes as well
as more planes containing foci observed at higher doses (S2 Fig). Based on this foci distribution,
it can be seen that Z,,,, was situated near the middle of cell height.

Dose response of lymphocytes by confocal microscopy analysis

Quantitation of y-H2AX foci was performed by manual counting of confocal images in
which each discrete focus on a confocal plane along the cell height was counted as ‘1’, and
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Fig 3. Intraclass correlation of the y-H2AX expression analyzed by flow cytometry from two different
laboratories. The relative MFI results over the dose range from 0 to 6 Gy show the ICC of 0.979 (95% ClI, 0.955, 0.990)
(n=6).

https://doi.org/10.1371/journal.pone.0265643.9003

the resurfacing focus from a previous adjacent plane onto the plane of counting was
excluded. Fig 6A shows a dot plot of total number of foci per cell and number of foci per
plane taken from Z,,, at each dose. A correlation between different representations of foci
count was clearly observed. Therefore, the number of foci per plane taken from Z,,, could
be used as a representative of radiation-induced y-H2AX expression at that absorbed dose.
Interestingly, data clustered into two distinct regions: 1-2 Gy (Fig 6A, blue and pink dots,
blue shadow) and 4-6 Gy (Fig 6A, green and yellow dots, pink shadow). Of these two sets,
data in the 1-2 Gy region were more aggregated, while those in the 4-6 Gy spread over a
larger area, which might reflect the inter-individual variation with dose observed in the
analysis using flow cytometry.
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Fig 4. Error bar representing comparison of relative y-H2AX expression in lymphocytes at each absorbed dose
calculated based on individual vs common baseline expression at 0 Gy (n = 11).

https://doi.org/10.1371/journal.pone.0265643.g004
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.

e

Fig 5. Visualization of y-H2AX foci after exposure to gamma irradiation by confocal microscopy. Images at each dose were taken at different confocal planes along the
cell height at incremental steps of 0.3 um. In the merged images, y-H2AX foci are shown in green (AlexaFluor488), nuclei in blue (Hoechst 33342) and cell margins in red
(APC). Selected confocal planes Z,,,,, are the planes with maximum foci and Z,,,,, ; and Z,,,,,; correspond to adjacent confocal planes below and above Z,,,,. Scale bar is
10 pm for all images.

https://doi.org/10.1371/journal.pone.0265643.9005
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To set the boundaries between the two regions, lines were made at 25 foci/cell on the y-axis
and 15 foci/plane on the x-axis, respectively, to include > 90% of foci counts at 1 and 2 Gy
within the 1-2 Gy region. Based on the boundary associated with foci per plane, some of the
foci counts from the 4-6 Gy region fell below the set limit and into the 1-2 Gy region. By con-
trast, the boundary associated with total foci per cell better excluded such penetration of values
from higher doses.

Fig 6B shows as box plot with the same data as in the dot plot, but as a function of dose. The
proportional increase in foci counts with doses was observed from 0 to 4 Gy before leveling off
at 6 Gy for both total foci per cell (Fig 6B, gray bars) and foci per plane (Fig 6B, white bars). In
addition, the Kruskal-Wallis test with a post-hoc Dunn’s for multiple comparison also showed
that both methods of foci scoring could differentiate doses between adjacent doses: 0 vs 1 Gy
(all planes: p = 0.0025, Z . plane: p = 0.0001) and 2 vs 4 Gy (all planes: p = 0.0001, Z,,,,, plane:
p =0.0047).

PLOS ONE | https://doi.org/10.1371/journal.pone.0265643 March 23, 2022 9/16


https://doi.org/10.1371/journal.pone.0265643.g005
https://doi.org/10.1371/journal.pone.0265643

PLOS ONE y-H2AX assay as a quick dose estimation in rapid triage

Z

Z,,ax Plane (B )

60 ; ® 0Gy 60
4 ® 1Gy | U Zmax plane o T
s x e 20y @ ® all planes —
a i o6 c
= 40 ’ ® 4Gy 3 40-
‘IB ...:!g! .. 6Gy .2 L3 *%k
*2 o8 Vo : ° g | —
3 i 144 M e bl S B
o _ [ ] o
5 20 .‘.:.. !‘::. ° 207
o ¢
g afts e 1
[ J
s° : f
0e® T T . T T 0 T T T T T T T T T T
0 10 20 30 0 1 2 4 6 0 1 2 4 6
Foci counts -Z__ plane Dose (Gy)

Fig 6. Dose response of lymphocytes using foci counting of microscopy images. (A) Dot plot of number of foci counts from all planes (y-axis) and Z,,,x plane (x-axis)
(n =5, 30-50 lymphocytes per dose). Blue and pink shadows highlight the two distinct regions where data are aggregated. (B) Box plot of foci counts as a function of dose.
All p-values < 0.01; 0 Gy vs 1, 2, 4, 6 Gy; 1 Gy vs 4, 6 Gy; 2 Gy vs 4, 6 Gy for both all planes and Z,,,.« plane. Asterisks (**) refer to p < 0.01 for comparison between
adjacent doses (0 vs 1 Gy and 2 vs 4 Gy).

https://doi.org/10.1371/journal.pone.0265643.9006

Testing of y-H2AX assay as a dose estimation by flow cytometry

Blind tests were conducted to test the accuracy of the dose response curve. Linear regression
was performed on the relative intensity data obtained from all 11 donors on the dose response
curve (Fig 7A). Three doses, 0.5, 1 and 3 Gy, were selected to cover the range of low, moderate,
and high levels of absorbed dose in blind tests. The estimated doses were shown in colored
data points and deviation from their corresponding actual values would be referred to as the
mean absolute difference. At doses < 1 Gy, the estimated doses of 0.50 and 0.81 Gy were
obtained for the actual dose of 0.5 Gy, and the estimated doses of 0.62, 0.98 and 1.23 Gy were
obtained for the actual dose of 1 Gy. At the 3 Gy dose, the estimated doses were 1.60 and 3.51
Gy. Based on these results, only the estimated doses obtained from the actual dose of 3 Gy
exhibited the mean absolute differences of more than 0.5 Gy. As a comparison, the

(A)

C

30 - 8
y=1.86x+1.32 > y=1.10x-0.16
. R2=0.61 9 R2 = 0.99
e 20 3 "
= 8
£ : P
s 104 L >
2 3 D © 27
4 L O (]
%8 i =
0 - | ' I ' I 0 ' ' ' ! ' ' '
0 2 4 6 0 2 4 6 g
Dose (Gy) Dose (Gy)

Fig 7. Blind testing of dose response curve. (A) flow cytometry and (B) physical dosimeter (nanoDots™). Colored symbols in open triangle, open diamond, closed circle
and asterisk represent data obtained from the blind tests conducted on different dates. The same symbol at different selected doses in (A) corresponds to the same donor.

https://doi.org/10.1371/journal.pone.0265643.g007
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measurement of absorbed doses by a physical dosimeter strongly correlated (R* = 0.997) to the
actual values over the range of 0 to 6 Gy (Fig 7B). Nonetheless, it can still be seen that the dose
response curve based on the relative intensities provides a relatively good estimation within
0.5 Gy difference from the actual value at doses < 1 Gy in the absence of a physical dosimeter.

Discussion

In the present study, we examined the use of y-H2AX as a quick tool to screen for individuals
with possible acute radiation exposure. Previous studies have shown that the threshold level of
exposure that can lead to the onset of radiation sickness is about 0.75 to 1 Gy [3], whereas
greater biological damage, higher risk of acute radiation, and less than 90% probability of sur-
vival without therapy occur at doses above 2 Gy [36]. Therefore, the ability to quickly deter-
mine and assign individuals to appropriate medical treatments can save their lives. In the case
of a radiation emergency, this requires an integrated ensemble of biological assays for triage
rather than a stand-alone one [3]. Due to its high sensitivity to IR, small sample volume
requirement with minimal invasiveness, quick sample preparation, and high-throughput
capacity, y-H2AX has emerged as a robust biomarker and remains an ongoing research inter-
est in biodosimetry [4,32].

As the y-H2AX expression typically increases after 30 min and peaks at 2 h after exposure
to IR before decaying due to repair of DSBs [20,22,37], the 45 min timeframe between radia-
tion and processing of whole blood in our experiments was well within this peak window.
Although our work showed a detectable y-H2AX response in granulocytes by flow cytometry
and also microscopy (S3 Fig), it was at a lower level compared to lymphocytes. This can be due
to the lack of DNA-dependent protein kinase that is responsible for the generation of y-H2AX
in polymorphonuclear leukocytes [18,38]. Given the lower level of response and the notion of
impaired DNA damage signaling associated with granulocytes, we will focus our interpretation
and discussion of data in our study only on the lymphocytes. In terms of the dose response
curve generated by flow cytometry, a linear trend of increasing relative intensities with increas-
ing absorbed doses shown in our study is similar to previous reports [1,12,16,19]. Based on
blind tests, our dose response curve may be applied for a quick determination of exposure
doses below 1 Gy with an uncertainty within 0.5 Gy that is regarded as a precision for making
clinical decision in triage [8]. However, the large inter-individual variation observed at doses
above 2 Gy, may be attributed to the difference in individual radiosensitivity that becomes
more apparent with increasing DNA damage [19].

Because relative y-H2AX intensities are used to represent the cellular responses to DNA
damage caused by IR, the use of relative MFI for the quantitation of y-H2AX levels in individu-
als can be limited due to the impracticality of performing multiple blood draws. Similarly, in
the lymphocyte depletion kinetic (LDK) assay that is proposed as the early method in the com-
bined biological assays for medical triage [3], the knowledge of individual’s baseline on lym-
phocyte count is also needed to estimate the absorbed dose. Our results (see Fig 4)
demonstrated that relative intensities were not statistically different whether individual or
average y-H2AX expression at 0 Gy was used as a reference. Therefore, a common baseline
may potentially be used in the analysis using flow cytometry in case of a radiation emergency
when the knowledge of individual’s baseline is unavailable.

The only two laboratories participated in the intercomparison study presents the limitation
of our work. Compared to the previous intercomparison studies that used the foci scoring
method [39-42], at least four laboratories participated in the studies in which a standard pro-
tocol on processing and staining of samples as well as criteria on foci scoring were provided
for each laboratory. As our analysis of y-H2AX intensities by flow cytometry was carried out
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by only two laboratories in this present study, we cannot yet generalize the outcome of our
work. More participating laboratories are required in future work to validate the use of this
technique in handling triage. Moreover, the availability of antibody, fluorophores, and the
experience of scorer can also be accounted for the limitation of fluorescence-based techniques
in general [41], and these should be taken into consideration when perform the intercompari-
son study besides the use of standardized protocol on processing and staining [40].

Despite the laborious nature of foci scoring from microscopy images, the analysis provides
data that are characteristic of cells [12] in which the extent of DNA DSBs can be examined by
both the morphology and number of foci. Because the manual counting of foci was performed
on 30-50 lymphocytes per dose, this presents the weakness of our work compared to previous
studies that counted more cells [40,41,43]. Nevertheless, the results of foci counts from all con-
focal planes in Fig 6B still agreed with those previous reports that observed a linear dose
response of foci number increasing approximately 10-15 foci/cell per Gy in the dose range of
0-2 Gy within 1 h post exposure [1,12,21,43,44]. In addition, as we demonstrated in our study
that scoring from the Z,,,, plane was correlated with scoring from all planes, Z,,,, plane could
be used as an alternative for dose estimation. Thus, scoring of foci from Z,,,, may imply the
use of epifluorescence microscopy that is more common in many laboratories. At the highest
dose used in this study, the saturation of foci counts could be attributed to the merging of
neighboring, discrete foci into larger plagues (see Fig 5) similar to the observation of overlap-
ping foci especially at doses above 2 Gy reported in a previous study that quantified foci counts
at 1 h post irradiation [1]. This in turn might have reflected the extent of DNA DSBs to size
rather than number of foci at high doses. Based on these results, scoring from the Z,,,,, plane
may be applied as a quick determination of absorbed doses below or above 2 Gy (see Fig 6B,
white bars 2 vs 4 Gy) that correspond to the level of moderate exposure [36] in the case of a
radiation emergency when time is of concern in triage.

Due to the kinetic disappearance of the y-H2AX signal as DNA repair progresses, the y-
H2AX assay has to be implemented quickly post-IR exposure. After DNA DSBs, the y-H2AX
signal rises within 30 min to its peak at ~ 1-2 h [22] before sharply decaying with an approxi-
mated half-life of 1.5-1.9 h [1,12,13]. Both cytometry and microscopy analyses published in
previous work [12,18,20,22] show that y-H2AX expression returns to near baseline within 4-7
h of IR exposure. However, at 24 h post-IR exposure, the y-H2AX signal after a 4 Gy dose is
still detected by flow cytometry [18] and after a 2 Gy dose by foci counting [12]. Simulation by
Horn et al. [13] confirmed that microscopy is more sensitive than cytometry for detection of
minimum absorbed doses up to 96 h post-IR exposure. Therefore, flow cytometry can be use-
ful if the samples are collected within the first few hours (< 4 h) after IR exposure, and more
practical for occupation-related radiological incidents that involve tens to hundreds of people.
At later time points, but still within a few days of IR exposure, microscopy is more appropriate
for quantitation of residual foci that are hard to repair. Several studies [1,13,32] have developed
mathematical methods that include kinetics of foci formation and decay in the estimation of
absorbed doses when calibration curves are not available. However, parameters such as back-
ground foci number, residual foci number and repair kinetics must be determined prior to
usage [1,32].

Although much work has been done on the investigation of y-H2AX dose response curves
[6], a consensus on the implementation of the assay has not been reached. Important questions
remain: how many calibration curves at what time points do we need to make, what dose limit
can cytometry and microscopy distinguish during those time periods, and how best to estab-
lish a workflow that integrates y-H2AX with other biological assays. In terms of radiation
emergencies, the earliest access to samples may be within 24 h. As experiments were only con-
ducted during the peak window of y-H2AX expression, it is of interest to test both cytometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0265643 March 23, 2022 12/16


https://doi.org/10.1371/journal.pone.0265643

PLOS ONE

y-H2AX assay as a quick dose estimation in rapid triage

and microscopy approaches at other time points post-IR exposure, for example at 2, 8 and 24
h. Then, at time points after 24 h but within the first few days we can study foci counting and
quantitative modeling.

Conclusion

Analysis of y-H2AX expression by both flow cytometry and foci counting of confocal micro-
scopic images at early timepoints can be used as a quick dose estimation of radiation exposure
with the capability to differentiate the absorbed dose. Pre-determined values of endogenous y-
H2AX expression may be applied in flow cytometry analysis. While flow cytometry provided
sensitivity for dose estimations at lower doses up to 1 Gy, the foci number and morphology
appeared useful in reassuring the estimation of doses above 2 Gy when inter-individual varia-
tion affected the cytometry analysis. This rapid estimation of absorbed dose can inform radia-
tion triage and help in prioritizing medical treatments to exposed individuals. In summary,
the y-H2AX assay presented a reliable and promising technique to quickly assess biological
responses to IR at early timepoints. The establishment of methods and dose-response curves
from various biological assays, as well as an organized workflow within the national biodosi-
metry network, is needed for radiation emergency preparedness.

Supporting information

S1 Fig. Representatives of the gating on lymphocytes and granulocytes based on side scat-
ter and CD45 and the corresponding y-H2AX histograms analyzed by flow cytometry.
(TIF)

S2 Fig. Representatives of foci distribution over different focal planes at doses 1, 2 and 6
Gy. Note: Each bar refers to the number of foci per plane. Total foci per cell refers to the cumu-
lative number of foci excluding those that resurface across consecutive Z-stacks. Z,.x plane
refers to the plane with maximum number of foci.

(TIF)

S3 Fig. Confocal images of polymorphonuclear cells at all doses from 0-6 Gy.
(TIF)

S1 Table. Blood samples used in the experiments. Note: In the blind test column, 0.5, 1 and 3
refers to the doses in Gy being tested.
(TIF)
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