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Tissue-resident phagocytes are responsible for the routine binding, engulfment, and
resolution of their meals. Such populations of cells express appropriate surface receptors
that are tailored to recognize the phagocytic targets of their niche and initiate the actin
polymerization that drives internalization. Tissue-resident phagocytes also harbor
enzymes and transporters along the endocytic pathway that orchestrate the resolution
of ingested macromolecules from the phagolysosome. Solutes fluxed from the endocytic
pathway and into the cytosol can then be reutilized by the phagocyte or exported for their
use by neighboring cells. Such a fundamental metabolic coupling between resident
phagocytes and the tissue in which they reside is well-emphasized in the case of retinal
pigment epithelial (RPE) cells; specialized phagocytes that are responsible for the turnover
of photoreceptor outer segments (POS). Photoreceptors are prone to photo-oxidative
damage and their long-term health depends enormously on the disposal of aged portions
of the outer segment. The phagocytosis of the POS by the RPE is the sole means of this
turnover and clearance. RPE are themselves mitotically quiescent and therefore must
resolve the ingested material to prevent their toxic accumulation in the lysosome that
otherwise leads to retinal disorders. Here we describe the sequence of events underlying
the healthy turnover of photoreceptors by the RPE with an emphasis on the signaling that
ensures the phagocytosis of the distal POS and on the transport of solutes from the
phagosome that supersedes its resolution. While other systems may utilize different
receptors and transporters, the biophysical and metabolic manifestations of such events
are expected to apply to all tissue-resident phagocytes that perform regular
phagocytic programs.

Keywords: cholesterol, integrins, actin cytoskeleton, MerTK, glucose transport, V-ATPase, resolvins,
phosphatidylserine (PtdSer)
INTRODUCTION

Phagocytosis, the ingestion of large (>0.5 um) particles, is an evolutionarily conserved, actin-driven
process with roles in nutrient acquisition, immunity, and tissue homeostasis (1–3). The ongoing,
routine phagocytic programs that maintain tissue homeostasis in the absence of infection or injury
are largely performed by tissue-resident phagocytes. These cells are non-migratory and are therefore
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strategically positioned for phagocytic encounters. In some cases,
resident phagocytes are uniformly distributed to optimally
survey the whole tissue by probing the space between them (4,
5). In other cases, they are localized to particular regions that
favor their collection and engulfment of phagocytic loads [e.g.
splenic red pulp macrophages that turnover red blood cells (6) or
bone marrow-resident macrophages that remove nuclei extruded
during erythropoiesis (7, 8)]. In all cases, the efficient removal of
dead cells, parts of cells, and debris by these phagocytes is
essential to prevent secondary necrosis, inflammation, and
autoimmunity (9, 10).

Within the category of tissue resident phagocytes are
“specialized phagocytes”; epithelial derived stromal cells
including the retinal pigment epithelium (RPE) of the eye and
Sertoli cells of the testes (10, 11). As epithelia, these cells
contribute to the formation of blood-tissue barriers while
facilitating the directional transport of oxygen, glucose,
cholesterol, etc. to the tissue from circulation. As specialized
phagocytes, these cells also actively turnover theirs neighbors.
Perhaps the best studied example of specialized phagocytes is
indeed the RPE that intimately associates with photoreceptors
and mediates their turnover (12). A single RPE cell is in contact
with ~30 photoreceptor cells (rods and cones) and is responsible
for the phagocytosis and removal of the distal portions of the
photoreceptor outer segments (POS) that are phagocytosed in a
diurnal fashion (13, 14) (Figure 1). The removed mass is not
trivial; 7–10% is eliminated daily meaning the entire POS
population is turned over every 2 weeks (15). Remarkably, a
burst of phagocytosis is timed with the entry of light to the retina
and, within hours, the phagosomes formed in each healthy RPE
cell are resolved (14, 16).

Expectedly, the removal of the aged regions of the POS and of
metabolic wastes by the RPE is essential for the homeostasis of
the retina (17, 18). Just as critically, the ingested material by the
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RPE needs to be resolved otherwise it accumulates and forms
lipofuscin (comprised of oxidized proteins and lipids), eventually
leading to retinal disorders (19). Lipofuscin also accumulates in
the eye with healthy aging (20, 21), so an understanding of when
and how this causes disease is fundamental. RPE cells are
themselves post-mitotic and therefore resolution of the
vacuoles formed during phagocytosis is integral to RPE
longevity. The resolution process can be envisaged as a
sequence of steps that includes the maturation of the nascent
phagosome, the digestion of luminal macromolecules, the efflux
of solutes from the phagolysosomes, and the resorption of the
phagosomal membrane. Interestingly, the building blocks from
the ingested photoreceptor outer segments (POS) are thought to
be shuttled back to the photoreceptor cells (22), supporting their
continuous regeneration and completing a “heterocellular
metabolic circuit.” Importantly, in the RPE-photoreceptor
relationship, it is appreciated that dysfunction in one cell type
leads to degeneration in the other. Such metabolic coupling and
the sequence of events that complete these circuits, while
recognized in the case of the RPE and photoreceptors, are
poorly understood for other tissue-resident phagocytes (23).

Here we describe the phagocytosis, breakdown, and
resolution of ingested POS by RPE cells. We first illustrate
phagocytosis by the RPE including the binding, ensheathment,
and ingestion of the POS driven by the RPE actin cytoskeleton.
We subsequently describe the maturation steps of the
phagosome that confer on the vacuole its degradative capacity.
The eventual efflux of solutes from the phagolysosome is
discussed in some detail and we describe how these fluxes are
expected to lead to the remodeling of the phagosomal membrane
including its vesiculation and tubulation. Finally, we propose
that the delivery of building blocks back to the tissue
microenvironment supports the health of neighboring cells and
we speculate on how such events may occur.
A B

FIGURE 1 | The retinal pigment epithelium. (A) The retina lines the back of the eye and is comprised of five cell types: rod and cone photoreceptors, bipolar, horizontal,
amacrine, and retinal ganglion cells. (B) The retinal pigment epithelium that underlies the retina is responsible for the turnover of photoreceptor outer segments (POS) by their
phagocytosis and is critical for photoreceptor function. Photoreceptors are choc-a-bloc with membrane discs that harbor opsins which are susceptible to phototoxic damage.
The most distal segments of the POS that contain the oldest discs are therefore removed from the live photoreceptors while new discs are made at the beginning of the
outer segment. Note: as new discs are formed at the base of the POS, old discs are removed by phagocytosis, a process that takes approximately 2 weeks.
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Photoreceptors and the Retinal Pigment
Epithelium: Close Encounters
Light that enters the vertebrate eye is focused onto the neural
retina, a thin tissue (∼200 µm) comprised of five main classes of
cells including photoreceptors, bipolar cells, amacrine cells,
horizontal cells, and ganglion cells (Figure 1). These cells work
concertedly to process and transmit visual information to the
midbrain, thalamus, and visual cortex via the optic nerve (24).
Despite their posterior positioning (e.g. at the back layer of the
retina and the region farthest from incoming light), it is with the
photoreceptor cells where light is captured and the visual
pathway is initiated. The light is entirely absorbed in outer
segments of the photoreceptor. The POS consists of
membranous discs packed with integral membrane proteins
called opsins. Opsins are made to be light-sensitive by their
covalent association with the chromophore retinal (e.g.
rhodopsin in the case of rods) (25) and are perhaps the best
studied of the G-protein coupled receptors. Upon light exposure,
rhodopsin undergoes immediate bleaching which triggers the
visual transduction pathway. Over time, and with repetitive
bleaching and regeneration of rhodopsin, phototoxic damage
can occur in the neighboring proteins and lipids of the discs (26).
To circumvent the accumulation of damaged components,
photoreceptors undergo continuous turnover facilitated by the
synthesis and assembly of new discs at the base of the outer
segment and the simultaneous shedding of the oldest discs from
the growing tips of the POS (Figure 1). This mechanism results
in photoreceptors that are long-lived and discs of the POS that
are short-lived (~2 weeks).

At the tip of the POS facing the RPE, is the marked
accumulation of phosphatidylserine (PtdSer) exposed on the
outer leaflet of the cell which becomes much more pronounced
with light onset (16) (Figure 2). In virtually all other healthy cell
types, the asymmetric distribution of PtdSer to the inner leaflet is
tightly maintained by the ongoing activity of phospholipid
translocases or “flippases” including ATP11A and ATP11C
(27–30). Only under apoptotic conditions are these flippases
cleaved and inactivated by caspases. The same caspases also
cleave and activate scramblases, which can alternatively be
activated by Ca2+, that begin to randomly flip membrane
phospholipids like PtdSer between the two leaflets (31–34).
Given the tight control over the asymmetric distribution of
PtdSer in most cells, the polarized and relatively sustained
exposure of the phospholipid in the non-apoptotic
photoreceptor is a unique phenomenon. It must require 1) the
very local disruption offlippases/activation of scramblases and 2)
a barrier to the free diffusion of exofacial PtdSer from the distal
POS tip.

The latter may be achieved by secreted molecules that bridge
and tether the PtdSer to RPE receptors. Plenty of bridging
molecules may participate in trapping the exposed PtdSer
including Gas6, Protein S, Tubby, and Tubby-like protein 1
which connect PtdSer to the RPE-expressed MerTK receptor
(35–38) and MFG-E8 which does the same for avb5 integrins
(39). Given that exposed PtdSer remains polarized to the distal
tips of POS inMfge8-/- and Itgb5-/- (b5 integrin) mice (16), there
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may be functional redundancy to this effect or the MerTK ligands
may be the essential factors. Here, at least Gas6 and Protein S are
provided to the interphotoreceptor matrix by their synthesis and
release from the RPEs themselves (35, 37, 40). At least some of
these bridging molecules were recently shown to be transcribed
by the RPE in a circadian fashion (41). Fittingly, experiments
challenging RPEs with POS in vitro are often performed by
augmenting the culture with exogenous Gas6 and/or Protein S
(42) suggesting their requirement and some mechanism(s) of
regulation to their expression by light.

How the local inactivation or exclusion of flippases and
activation of scramblases at the distal tip of the POS occurs
and is regulated in a diurnal fashion, on the other hand, remains
entirely unclear. Notably, scramblases of the anoctamin/
TMEM16 family show a polarized localization in other cell
types (43) and their activation causes membrane expansion
and shedding (44). A role for local Ca2+ flux and caspase
activation has also been suggested (27).

Photoreceptors and the Retinal Pigment
Epithelium: Phagocytosis
The association between the POS of the photoreceptor and the
RPEs is constant: The apical microvilli of the RPE probe and
become elaborated to “ensheath” the outer segments as they
accumulate PtdSer, long before their phagocytosis (Figure 2)
(45–47). Such membrane projections from the RPE can reach
nearly half-way up the POS (up to ~15 µm), yet little is known
about the cytoskeleton and the associated membrane remodeling
that supports these structures. It is unlikely to be mediated by the
features shared between the RPE microvilli and those found in
other epithelial cells like ezrin/radixin/moesin (ERM) proteins
(45, 48) and ERM-binding proteins including NHERF1 (49),
which tend to oppose broad ruffling events (50, 51). Other
features of the RPE apical membrane including the Na+/K+-
ATPase pump, while also unique, are unlikely to directly
drive ensheathment.

Instead, it is known that the ensheathment of POS requires
the engagement of apically targeted MerTK, a member of the
Tyro/Axl/Mer family of receptor tyrosine kinases (52, 53). Once
MerTK is engaged by Gas6 or Protein S, ligand binding induces
its multimerization and trans-autophosphorylation by the kinase
domain. This leads to the recruitment of a number of adaptors
and effectors that facilitate pseudopod extension (Figure 2). For
example, the phosphorylated tyrosines in the cytosolic aspect of
the receptor serve as docking sites for Vav, a potent GEF for Rac
GTPases (54). The ensheathment structures indeed resemble
those of spontaneous ruffles that are observed in macrophages
(55) or that can be stimulated by pathogens (56) in a manner
dependent on the activation of Rac GTPases. MerTK also
stimulates Rac activation by recruiting the p130Cas/CrkII/
Dock180 GEF complex (57). Rac-GTP can then bind and
activate the WASP-family verprolin-homologous protein
(WAVE) regulatory complex (WRC), (58, 59) which functions
as a nucleation promoting factor for Arp2/3-branching of the
F-actin cytoskeleton. Though less appreciated in recent literature,
F-actin branching has long been known to also be mediated by
November 2020 | Volume 11 | Article 604205
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flexible dimers of filamins including filA (60). No matter how they
are formed, heavily branched networks of F-actin are indeed
associated with broad membrane ruffling events akin to those of
ensheathing RPEs (61). That Rac activation is associated with
ensheathment is supported by data demonstrating Rac is indeed
essential for the phagocytosis of POS (62).

MerTK also recruits and activates PI3K which in turn
phosphorylates PtdIns(4,5)P2 to generate PtdIns(3,4,5)P3 a
phosphoinositide that can subsequently be converted to PtdIns
Frontiers in Immunology | www.frontiersin.org 4
(3,4)P2 (63). PtdIns(3,4,5)P3 and potentially PtdIns(3,4)P2
support Rac activation by recruiting Rac GEFs and also
dismantle linear actin networks by recruiting Rho specific
GAPs (64) (Figure 2). The latter is critical for removing the
submembrane highly bundled actin cables of the cortex that
allows for the focal delivery of membrane from the endocytic
pathway. Collectively, these actions relieve membrane tension
that opposes membrane ruffling (65–68) and helps to explain
why PI3 kinases are critical for the phagocytosis of large particles
A

B

FIGURE 2 | Phagocytosis by the retinal pigment epithelium. (A) Like all types of phagocytosis, the engulfment of POS by the RPE is driven by actin polymerization.
PtdSer is first exposed and tethered by bridging molecules that bind the distal portion of the POS and MerTK receptors. To relieve membrane tension, linear
networks are removed by the activation of PI3K. Branched networks are stimulated by nucleation promoting factors that bring actin monomers to the Arp2/3
complex. Both activities are mediated by MerTK (see also panel B). (B) MerTK initiates a series of signaling pathways that stimulate branched actin polymerization,
networks that attach to the membrane via integrins. The major RPE integrin is avb5, which also binds to PtdSer but via MFG-E8. As actin advances the
pseudopodia tips of the RPE and facilitates severing of the POS, clearance of actin from the base of the cup allows for the delivery of new membrane, a PI3K-
dependent process.
November 2020 | Volume 11 | Article 604205
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but not small ones (69, 70). While the phagosomes formed by the
RPE are only 1-2 µm in diameter, a single RPE needs to engulf
~30 targets at once—a number that can in fact be much higher in
the center of the retina—while maintaining junctions with its
neighbors. Given the amount of new membrane delivered and/or
the unfurling of the microvillar membrane that would require
substantive F-actin disassembly for ensheathment, it makes sense
that PI3K activation is indeed a prerequisite for synchronized
POS phagocytosis and that its inhibition leads to increased F-actin
at aborted phagocytic cups (71). That Rho inactivation is central to
the process is supported by experiments demonstrating decreased
phagocytosis when Rho kinase is made to be constitutively
active (72).

While branched networks of F-actin propel and advance
broad regions of the plasma membrane, they must be
stabilized and connected to adhered transmembrane proteins
to prevent the retrograde flow and collapse of the entire effort
(Figure 2). Such points of stability are described as “molecular
clutches” that limit the slipping of the branched F-actin networks
(73) and yield efficiency to phagocytosis in many contexts (74,
75). A molecular clutch in the RPE membrane could be
facilitated by the binding of the RPE cadherins to the neural
cell adhesion molecule (N-CAM) expressed in the POS (76).
Interestingly, aged whole animal KO Ncam-/- mice have thinned
photoreceptor cell layers and premature vision-loss (77). A
specific role for N-CAM in the RPE has not been identified
but is well-expressed in these cells. Another obvious molecular
clutch for the ruffling RPEs is the major RPE integrin, avb5
which is targeted apically. A role for the integrin here would
explain why ensheathment is not stimulated by peppering the
RPEs with MFG-E8 alone (45) but that the efficient, diurnal
removal of the portions of the POS indeed requires the integrin
and its ligand (16, 78).

Crosstalk Between MerTK and avb5
The MerTK and avb5 pathways are not mutually exclusive
(Figure 2) (57). Like other integrins, avb5 is thought to exist
primarily in a “bent” or closed conformation with low affinity for
ligand (79). Its inside-out activation is triggered by receptor
tyrosine kinases like MerTK. Once MerTK is engaged, a number
of SH2-containing proteins are then recruited to the
phosphorylated tyrosine residues including the adaptors Vav,
Crk, and Grb2 as well as the phospholipase C gamma (PLCg)
(80–82) (Figure 2). Importantly, these multi-molecular
assemblies favor the recruitment and activation of Rap
GTPases which in turn recruit the proteins necessary to
disrupt the inactive conformation of the integrin including the
Rap1-GTP-interacting adapter molecule (RIAM) and Talin (83)
leading to its inside-out activation. Talin, once bound to the b5
subunit of the integrin heterodimer, provides binding sites for F-
actin and F-actin-binding proteins like vinculin.

Such an effect is critical in the case of MerTK which itself does
not bind F-actin directly or even, to our knowledge, indirectly.
Since integrins provide the mechanical linkage between actin
polymerization to the ruffling/ensheathing membrane to yield
traction, it makes sense that their activation by primary
phagocytic receptors is observed in many types of phagocytosis
Frontiers in Immunology | www.frontiersin.org 5
(84). In this regard, it is noteworthy that MerTK-mediated
phagocytosis involves focal adhesion kinase (FAK) (85),
regulation of FAK activity (62), and the cleavage of PtdIns(4,5)
P2 to generate Ins3P/diacylglycerol (DAG), which are normally
associated with integrin and Rap activation respectively (86).
Still, and as previously described, other ancillary transmembrane
clutches are possible. Just as integrins can augment MerTK
initiated phagocytosis, other receptors also participate
including Tyro3 of the Tyro/Axl/Mer family of receptor
tyrosine kinases (87) and the scavenger receptor CD36 (88).
The relative contribution of Tyro3 and CD36 is still unclear and
MerTK remains the canonical phagocytic receptor of the RPE;
only the ablation of MerTK in the RPE leads to severe
photoreceptor degeneration.

Sealing of the Nascent RPE Phagosome
The final steps of phagocytosis—sealing of the nascent
phagosome by fusion of the pseudopodia tips—is the least
understood step in all instances of engulfment and is especially
poorly understood in the case of the RPE. This is remarkable
since the RPEmust apply a sufficient amount of local force on the
POS to deform and generate scission through two lipid bilayers
of an intact, live cell. The nascent phagosomes formed by RPE
cells are indeed regular in their size (1–2 µm in diameter) as
observed by electron (18) and light microscopy (89), as would be
expected given the regular turnover of the POS, so the steps
leading to scission must also be regulated. The site of eventual
scission may be demarcated on the POS by the polarized
distribution of PtdSer, which expands just before the scission
event (16). However, the final, inward constricting force to
complete phagocytosis remains enigmatic. In other systems,
this has been attributed to the dynamin machinery employed
in generic forms of endocytosis (90) and this could also be the
case for the RPE. Alternatively, or in addition to dynamin,
myosins may provide a “purse-string” constricting force as has
been observed during the phagocytosis of targets by
macrophages (91). Impressively, such a constricting force is
sufficient to deform the skeleton of red cells (91) and to
remove parts of live cells during ‘trogocytosis” (92). Indeed,
MerTK activation in the RPE leads to the marked recruitment of
Myosin II-A and Myosin II-B to the phagocytic cup, and the
pharmacological or genetic ablation of Myosin II partially
prevents POS engulfment in vitro (93). However, like the
majority of the systems used to investigate RPE phagocytosis,
here the targets were delivered in a pre-severed state. Clearly,
further studies are necessary to visualize these events and to
determine the mechanism(s) involved.

Phagosome Maturation
Following its scission from the plasma membrane, the nascent
RPE phagosome undergoes graded fusion with endosomes and
then lysosomes in a complex process termed “maturation”
(Figure 3). Maturation can be envisaged as a series of steps
marked by changes in the signaling phosphoinositides found
within the limiting membrane of the phagosome and changes
in its association with Rab GTPases in particular (12,
94). Importantly, maturation results in the acquisition of the
November 2020 | Volume 11 | Article 604205
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V-ATPase and the delivery of enzymes from lysosomes that
grant the vacuole its degradative properties. Maturation also
coincides with—and is highly dependent on—the motor-driven
movement of the phagosomes toward the basolateral side of the
epithelial cell where they collect in a juxtanuclear location (95,
96). While the movement of the POS-containing phagosome
through the cytosol differs markedly from the phagosomes
formed in myeloid cells, the maturation process otherwise
shares many of its salient molecular features. In this section,
we therefore describe maturation in general terms and highlight
what is known in the RPE system.

The Rab family of GTPases that orchestrate membrane fusion
events and organellar trafficking are indispensable for maturation
(94). Following its sealing, Rabex-5, a guanine nucleotide exchange
factor (GEF), is targeted to the early phagosome to recruit and
activate Rab5, Rab21, and Rab22 (97). While these Rab5 subfamily
members all play important roles in phagosome maturation
(98), Rab5 remains the best characterized member (99). Once
active, Rab5 binds to its effectors including Rabaptin-5 which in
Frontiers in Immunology | www.frontiersin.org 6
turn re-stimulates Rabex-5, triggering a positive-feedback loop
(100). Additionally, Rab5 exerts its function through the
recruitment and activation of the phosphatidylinositol 3-kinase
(PI3K) Vps34, which results in the rapid production of
phosphatidylinositol 3-phosphate (PI3P). PI3P is necessary for
the recruitment of early endosomal antigen 1 (EEA1), a protein
that is essential for phagosomematuration by promoting its fusion
with endosomes (99).

Rab5 and EEA1 are indeed reported to localize to the early
RPE phagosome along with PI3P (101). Moreover, the
conditional knockout of Vps34 leads to disordered phagosome
trafficking, impaired lysosome fusion, and retinal degeneration in
mice, supporting a similar role for PI3P in the RPE system (102).
As the RPE phagosome matures, marked by its incorporation of
LAMP proteins, the localization of Rab5 and EEA1 are
expectedly depressed (101). Though mechanisms remain to be
elucidated, the LAMP family of lysosome-resident glycoproteins
is indeed required for the fusion of lysosomes with the
phagosome (103). It is therefore noteworthy, that the loss of
FIGURE 3 | Maturation of the RPE phagosome. Internalized POS particles are sealed in a nascent phagosome that undergoes step-wise maturation which involves
the graded fusion of endosomes and then lysosomes. The maturation of the phagosome is delineated by its association with Rab GTPase and its phosphoinositide
constituents, which act to coordinate fusion. Maturation also involves microtubule-based movement toward the cell center, a switch in Rabs [Rab5 ! Rab7] and
phosphoinositide [PI(3)P ! PI(3,5)P2] composition, a drop in pH [6.5 ! 4.0], and the activation of phagosomal proteases. In the RPE, the movement of the
phagosome is dependent on kinesins which traverse the cytosol towards the plus ends of the microtubules on the basal side of the cell. Once solutes are
transported from the phagolysosome, the compartment undergoes fragmentation to reform and replenish the pool of lysosomes.
November 2020 | Volume 11 | Article 604205
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just one of these family members, LAMP2, in the murine RPE
causes delayed POS degradation and the build-up of POS debris
(104). In fact, the loss-of-function mutations in LAMP2 that
cause Danon disease in humans is also associated with retinal
and macular degeneration (105).

In all cases, progression to the late phagosome is marked not
just by the acquisition of LAMP proteins and its luminal
acidification (described later), but also by the transition from
being Rab5- to Rab7-positive, known as a Rab5-Rab7 “switch”
(106). The sharp transition between Rab5 and Rab7 is explained
by Rab7 GEFs that inhibit Rab5 activation. Specifically, Mon1, a
subunit of the Rab7 GEF Mon1-Ccz1 that recruits and activates
Rab7, also ousts Rabex-5 and arrests the Rab5 feedback loop
(107). The Rab5-Rab7 transition promotes the subunit
substitution necessary for the transformation of CORVET, a
protein complex associated with early endosomal fusion, to
HOPS, associated with later stage endosomal fusion (108).

In addition to facilitating fusion with late endosomes and
lysosomes, Rab7 activation also coordinates the inward
movement of the phagosome. In myeloid cells, the Rab7
effectors Rab7-interacting lysosomal protein (RILP) (109) and
OSBP-related protein 1 (ORP1L) (110) form complexes that
cluster dynein motors on the phagosome to cooperatively
facilitate retrograde movement (111). The apical to basal
movement of phagosomes in the RPE, while indeed dependent
on Rab7 and microtubules (112, 113), differs markedly. First, the
phagosomes formed by the RPE are initially engaged by Myosin
VIIa, an unconventional myosin that moves along F-actin.
Myosin VIIa is of particular interest since mutations in the
MYO7A gene cause Usher syndrome 1B which involves
progressive retinal degeneration (114). Fittingly, Myosin VIIa
is largely expressed in the apical region of the RPE where it may
facilitate the initial transport of the phagosome through a dense
apical F-actin network until it can latch on to microtubule
motors (96, 115). Second, the RPE phagosomes are then bound
by kinesin motors and their associated kinesin-1 light chain 1
(KLC1), rather than dynein. The RPE phagosomes on the apical
side of the cell lose their association with Myosin-VIIa as they
begin to associate with KLC1, an event that coincides with their
movement toward the basolateral side (95, 116). Mice lacking
KLC1 show delayed phagosome progression to the basal region
of the cell, the accumulation of debris and drusen, and ultimately
the loss of photoreceptors (96, 116). In contrast to myeloid cells,
a strong association with dynein motor complexes is in fact
associated with delayed phagosome maturation and impaired
phagosome motility in RPE (95). The obvious difference in
phagosomal transport through the cytosol between cell types is
attributed to the polarity of the microtubule tracks that are
inversely oriented in the RPE (12): The plus ends of the
microtubules are found at the basolateral side of the RPE.
Rab7-GTP on the RPE phagosome must therefore mediate
connections between the organelle and kinesins. Interestingly,
active Rab7 binds FYCO1 and kinesin light chain/KIF5 (117). A
role for this complex in orchestrating phagosome motility in the
RPE is unknown, though FYCO1 is known to at least control the
positioning of lysosomes in RPE cells (118).
Frontiers in Immunology | www.frontiersin.org 7
The precise regulation of Rabs by their posttranslational
modification is also essential for phagosome maturation,
especially in the RPE. For example, the ablation of the Rab
escort protein (Rep1), a geranylgeranyltransferase that acts on
Rab7 and others, causes a delay in phagosome maturation and
POS clearance, the accumulation of debris in the RPE, and a
pathology resembling age-related macular degeneration (119,
120). Clearly, the efficient mobilization and maturation of the
RPE phagosome is critical for retinal health and homeostasis and
has some unique features that warrant further study.

Acidification of the Phagosome
As phagosomes form in the RPE every morning, their lumens
acidify. The drop in pH is largely driven by the vacuolar ATPase
(V-ATPase) that hydrolyzes ATP to pump protons into the
lumen. Many of the digestive hydrolases, delivered to the
phagosome by its fusion with endolysosomes, are then
activated by the decrease in pH. That the acidification of the
phagosome is indeed critical for the proper digestion of POS is
exemplified by experiments demonstrating that inhibiting the V-
ATPase in the RPE causes their accumulation of swollen
phagolysosomes that do not degrade opsin proteins (121–123).
This ultimately leads to the build-up of undigested debris
between the Bruch’s membrane of the choroid and the RPE, a
phenotype akin to age-related macular degeneration (AMD) in
humans (12).

Despite the imperative role for acidification of the phagosome
via the V-ATPase, it is a process that remains remarkably
enigmatic in the RPE system. This is partly explained from an
operational standpoint. Reliable measurements of phagosomal
pH entail the selection of a suitable probe and the ability to target
it to the phagosome. In the case of retinal flat mounts, phagocytic
targets (i.e. POS) cannot be readily and specifically labeled. Most
pH determinations of the RPE phagosome, and even of their
lysosomes, have therefore been estimated by qualitative or
semiquantitative means using predominantly membrane-
permeant weak bases that accumulate in acidic organelles (89,
124). These include fluorescent dyes like LysoTracker (89), that
accumulates in the phagosome without altering its fluorescence
or LysoSensor that undergoes a pH-dependent spectral shift
(124). While such sensors are acceptable indicators of acidity,
they come with limitations (125). For example, when used at
sufficiently high concentrations, membrane-permeant basic
probes can themselves alter the pH of the (phago)lysosome.
Nevertheless, LysoSensor has been used to determine that
lysosomes in RPE cells in culture are pH 4.5 on average (124).

More recently, a genetically encoded chimera of an
intralumenal, pH-sensitive GFP tethered to a cytosolic
mCherry via a lysosomal transmembrane domain has been
utilized to measure the pH of RPE lysosomes (126). Such a
system also has caveats. First, the pKa of GFP is ~6.0 which is not
optimal for determinations of the more acidic pH values
expected within lysosomes and phagolysosomes. Second, the
proteases within the lysosome are expected to degrade the
internal GFP thereby conflating measurements of the proteolytic
activity and the pH of the compartments.
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Generally, the pH of the POS-containing phagosome or the
rate at which it acidifies has not been formally assessed but has
been inferred by the degradation of its contents (123) or by
LysoTracker (89). Other, non-ratiometric dyes like rhodamine-
based pHrodo®, that exhibit strong fluorescence in acidic
environments have also been used to grossly estimate the pH
of RPE phagosomes (127, 128).

The rates and extent of acidification should not be tacitly
assumed to occur in all phagocytes similarly. One consideration
is that in isolation, the V-ATPase driven proton influx required
for acidification is self-limiting as it creates a membrane potential
detrimental to the efficient acidification of the phagolysosome.
Such an undesirable electrogenic consequence is circumvented
by accompanied counterion fluxes that dissipate the building
voltage. This can be achieved by cation efflux (e.g. the expulsion
of Na+ or K+) or concurrent anion influx (e.g. of Cl−) (129) and
these pathways may differ widely between cell types. Little is
known about counterion flux mechanisms in any phagocyte,
however, it is noteworthy that the whole animal loss of ClC7 or
ClC3, chloride exchangers that can provide such counterion
fluxes, results in retinal degeneration. While a direct role for
ClCs in the RPE is not yet known, this phenotype could suggest
that Cl- flux into the RPE phagosome may be critical for its
acidification and breakdown of POS (130, 131).

Taken together, given that the rapid acidification supersedes
enzymatic breakdown of the POS in the phagosome and is
critical in maintaining retinal health, additional experiments
should be done in this area. Clearly, a complete picture for the
mechanisms that regulate the V-ATPase, pH, and maturation of
the RPE phagosome has yet to emerge.
Distilling and Breaking Down
Macromolecules
The delivery of the V-ATPase and acidification of the phagosome
is concomitant with the enzymatic breakdown of its contents
(Figure 3). Though published results vary, as much as 70% of the
POS dry mass is heavily glycosylated opsin, and the remaining
30% is polyunsaturated lipids, and therefore the proper digestion
in the phagosome requires the delivery and activation of proteases,
glycosidases, and lipases (132). The removal of water from the
phagosome is also thought to be an important early step that
facilitates membrane recycling, decreases the volume required for
the pump to acidify, and increases the contact between enzymes
and their substrates (133). This early step is initiated by
monovalent ion efflux followed by outward movement of
osmotically-obliged water (5) that presumably exits through
aquaporins or other pores and channels that make mammalian
membranes water-permeant.

The proteases involved in breaking down opsins which account
for >95%of the protein content of the shed POS (134) into peptides
and amino acids are primarily cathepsins. Cathepsin D, a
ubiquitously expressed aspartyl protease, has garnered particular
attention as it is both highly-expressed in the RPE and its genetic
inactivation in mice leads to incompletely digested rhodopsins in
the phagosome, the general accumulation of undigested phagocytic
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debris, and photoreceptor death (135, 136). There are numerous
cathepsins that function as cysteine proteases in the RPE, on the
other hand, so while these have also been suggested to play a role in
proteolytic degradation of the OS target, there is likely functional
redundancy between them (12). Making matters more complex, in
addition to their autoactivation, aspartyl proteases like cathepsin D
can be cleaved and activated by these cysteine proteases in the RPE
lysosome (137).

The major phospholipids of the POS are phosphatidylcholine
and phosphatidylethanolamine which account for ~80% of the
total lipid, followed by phosphatidylserine (13%), and minor
contributors like phosphatidylinositol and sphingomyelin (138).
As the photoreceptor discs age, their cholesterol content tends to
decrease, going from 30% of the molar lipid when first generated
by their invagination from the plasma membrane to 10% when
shed as part of the distal POS (139). Ingested photoreceptor
lipids, including phospholipids and glycolipids, are broken down
in the RPE phagolysosome by pH-dependent lipid hydrolases,
namely phospholipase A1 and A2 (140). Cholesterol, on the other
hand, is liberated from the POS and possibly de-esterified via the
lysosomal acid lipase type A (141) and once soluble, transported
into the limiting membrane of the phagosome. This requires a
system of cholesterol-binding proteins that support movement of
the hydrophobic molecule through tunnel-like structures. It can
be achieved by the concerted action of Niemann–Pick type C
(NPC) 1 and 2 (142) as well as by LIMP-2 (143). Niemann-Pick
proteins are indeed necessary for normal retinal function (144).
Upon its incorporation into the phagolysosomal membrane,
cholesterol transport to extra-lysosomal destinations occurs
through vesicular and non-vesicular routes (i.e. membrane
contact sites). By these means, cholesterol can be delivered to
lysosomes and/or trafficked to the plasma membrane, the Golgi
apparatus and the endoplasmic reticulum. Remarkably, as
discussed later, the efflux of POS-derived cholesterol back to
the photoreceptor by the RPE appears to be a means for
its reutilization.

As opsins are replete with glycans, a series of glycosidases are
also deployed by the RPE to the phagosome including alpha-
mannosidase, beta-glucouronidase and alpha fucosidase (145).
Human diseases involving a deficiency of these enzymes
commonly have retinal phenotypes, including degeneration,
photoreceptor death, vision loss, and undigested phagocytic
debris, suggesting that these enzymes play an important role in
POS catabolism (146, 147).

Finally, the POS is in fact embedded within an
interphotoreceptor matrix (IPM) that has a unique molecular
composition that differs from other extracellular matrices. The
major insoluble components of the IPM are in fact
glycosaminoglycans (i.e. hyaluronic acid and proteoglycans with
heparan, chondroitin, and keratan sulfate chains) (148). While the
soluble fraction of the IPM contains only small amounts of these,
the RPE is expected to take up portions of the IPM along with the
POS during phagocytosis andmay even facilitate the turnover of the
IPM over time. It follows that deficiencies in the enzymes
responsible for the breakdown of the glycosaminoglycans
(mucopolysaccharidoses) have some sort of retinal phenotype (149).
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Solute Efflux and Resolution of the RPE
Phagolysosome
Organic and inorganic solutes liberated or accumulated in the
phagosome need to be effluxed from the vacuole in order for the
compartment to “resolve” (Figure 3). Resolution is a normal part
of the phagocytic process but remains the least understood aspect.
In the case of the RPE, the return of the phagosomal membrane to
replenish the pool of lysosomes is essential. Indeed, there are no
observed circadian changes in the expression of prototypical
lysosomal proteins in the RPE and so the pool of lysosomes
used by the phagosomes must be returned to the cell (89).

In the final stages of resolution, the efflux of solutes is in fact
proposed as the mechanism that drives the reformation of
lysosomes (Figure 4). Here, tubulation and vesiculation requires
extreme deformations to the limiting phagosomal membrane and is
opposed by any tension on the vacuole (133). Tension comes in the
form of osmotic pressure, generated because the solute
concentrations of the phagosome can be higher than those of the
cytosol. As solutes flux out of the phagosome, such pressure is
relieved and the membrane becomes more pliable to these
deformations by clathrin for example (150).

The exit pathways for solutes come in the form of solute carrier
proteins (SLCs), and enormous family of transporters. While SLCs
that flux amino acids and dipeptides out of the phagolysosome are
the best appreciate in this regard (151–154), others that flux
monosaccharides, metals, Na+ (155), Ca2+ (156), etc. will all be
critical to the resolution process. The control of the efflux pathways
is only recently becoming appreciated. The mammalian target of
rapamycin (mTOR) and its associated complexes form major
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regulatory hubs that can both inhibit and stimulate amino acid
efflux by SLCs (151, 152, 157) and even inhibit Na+ channels (155).
We anticipate that the “phagosome-lysosome reformation” (PLR)
will require exquisite control over its timing. For example, the
organic solutes that contribute less osmotically to the compartment
overall may be effluxed before more prevalent monovalent ions to
ensure that the complete digestion and efflux of proteins and amino
acids precedes the reformation of lysosomes. Of course, these ideas
remain to be tested.

Recycling Between the RPE
and Photoreceptors
The photoreceptor outer segment (POS) grows as it is consumed by
theRPE,marking a couplingbetweenahighly anabolic cell type and
a catabolic one (Figure 4). Throughout this review, we have
emphasized the astonishing amount of material that the RPE
must turnover per day. As 90% of the membrane shed in the POS
derives fromthephotosensitivemembranes of the internal discs, the
total surface membrane of a phagosome is ~30 µm2 and the RPE
consumes ~900 µm2 of surfacemembrane on average daily. It is not
surprising that membrane-associated elements can be recycled by
theRPEback to the photoreceptor (18). In some cases, the recycling
pathwaysbetween theRPEandphotoreceptors arewell-established,
especially for the retinoid cycle (158). As described previously, the
phototransduction by opsins occur when the bound 11-cis-retinal
undergoes isomerization to all-trans-retinal which in turns alters
the conformation of the opsin. The return to the photosensitive
receptor conformation requires the rejuvenation of the 11-cis-
retinal from all-trans-retinal. Aside from the reduction of the all-
FIGURE 4 | Digestion and solute efflux in the mature RPE phagolysosome. The retinoid cycle necessitates the active participation of the RPE. Upon
photoisomerization of 11-cis-retinal to all-trans-retinal, the chromophore activates opsins and phototransduction. The removal of all-trans-retinal can then occurs by
active means or passive diffusion but importantly, is delivered to the RPE for its esterification (catalyzed by lecithin:retinol acyltransferase/LRAT). Isomerization to 11-
cis-retinol and oxidation to 11-cis-retinal also occurs in the RPE before diffusion back to the POS. The coupling between the POS and the RPE does not stop there.
Glucose is transported to the interphotoreceptor matrix from circulation by the RPE and could conceivably also come from the phagolysosome. Similarly, high
density lipoprotein mediates lipid efflux from the RPE to be used by the photoreceptors. Lipids, including cholesterol, are either transported from circulation or
recycled from the POS-containing phagosome. Finally, other building blocks like amino acids may be supplied to the IPM by means not yet determined.
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trans-retinal to retinol, all reactions that support the retinoid cycle
in fact take place in the RPE (159). The all-trans-retinol enters the
RPE from circulation but a significant portion seems to be shuttled
through the IPM (159) or by phagocytosis of the POS. The return of
the 11-cis-retinal to the photoreceptor is in turn mediated by
binding proteins, passive diffusion through the IPM, or
direct transport.

The retinoid cycle represents just one of the recycling
pathways between the cells. For example, the phospholipids of
the photosensitive membrane discs of the POS are enriched in
docosahexanoic acid (DHA), an omega-3 fatty acid. Remarkably,
the retina can retain DHA even during long periods of dietary
deprivation of omega-3 fatty acids (160). Careful experiments
using radiolabeled DHA tracked the fatty acid through the POS
and into the RPE and found that phagosomes are indeed packed
with DHA to the same extent as the distal POS. Moreover, these
types of experiments found that labelling in the RPE cytosol
remains low and diffuse throughout extended (days long) periods
of tracing, demonstrating that the DHA is quickly recycled back
to the photoreceptors (22, 161).

Whilebeyond the scopeof this review, it shouldbementioned that
normal functions of RPE include maintaining an anti-inflammatory
microenvironment and this is owed to the ongoing lipidmetabolism
of the phagosome. In particular, not all of the DHA is necessarily
recycled back to the POSas is. TheDHAsupplied to theRPE can also
be enzymatically converted to derive resolvins including
neuroprotection D1 (NPD1) (162). NPD1 is a potent anti-
inflammatory mediator that inhibits pro-apoptotic proteins and
induces anti-apoptotic proteins, yielding cell-protective effects
(162). On the other hand, the RPE can also contribute to pro-
inflammatory pathways in certain contexts. Under sustained
oxidative stress, for example, the RPE makes inflammatory
cytokines including IL-6 and IL-1b and this can lead to AMD (163).

In addition to supplying the photoreceptor with retinal and
DHA, the RPE sources the photoreceptors with glucose. To do
so, the RPE expresses remarkably high levels of GLUT1 at their
apical and basolateral surface (164). Glucose in the cytosol would
normally be quickly converted for its use in glycolysis, but this is
effectively suppressed in the RPE by the lactate that is produced
and exported by the photoreceptor and because kinases that act
on sugars are inhibited or expressed at sufficient low levels (164,
165). Conversely, such kinases (e.g. pyruvate kinase) are highly
enriched in the photoreceptor making the cell highly glycolytic
(164). When the RPE is made to consume more glucose, the
neighboring photoreceptors become starved and ultimately
degenerate. Using the same Glut1-based transport and others,
we anticipate monosaccharides could be recycled from the RPE
phagosome back to the IPM as well.

Finally, like other phagocytes, the RPE specialize in lipid/
cholesterol efflux as emphasized by their robust expression and
use of the cholesterol efflux regulatory protein ATP-binding
cassette transporter A1 (ABCA1) (166). Here, ABCA1 shuttles
cholesterol from the cytoplasm onto HDL. In the RPE, ABCA1 is
targeted to both basolateral and apical membranes and can
mediate efflux towards the subretinal space (i.e. the IPM) or, to
a lesser extent, the choroidal space. Such efflux is more evident
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when the cells are given liver X receptor agonists or POS targets.
Notably, the RPE is well-endowed with other cholesterol efflux
proteins like SRB1 and ABCG1 (166). The RPE also metabolizes
fatty acids found in the POS like palmitate to produce beta-
hydroxybutyrate (167). Interestingly, photoreceptors were also
recently found to use palmitate as an energy source through
oxidative phosphorylation (168). The shuttling of palmitate or
beta-hydroxybutyrate from the RPE to the photoreceptor as
potential substates could therefore generally serve to maintain
photoreceptor function (169).

It remains to be tested if other building blocks like sugars and
amino acids are indeed recycled back to the photoreceptor once
fluxed out of the RPE phagosome. Forms of direct transport,
where photoreceptors and the RPE could be coupled by GAP
junction proteins that support direct connections of the cytosol,
are conceivable.
CONCLUSION

The routine phagocytosis performed by the RPE of their
photoreceptor neighbors serves as a reasonable guide for future
investigations of heterocellular metabolic circuits as formed by
tissue-resident phagocytes and the cells they prune and turnover.
Unlike in the retina, other tissues can quite readily expand and
contract with abrupt dietary changes or with developmental
programs like involution. In these cases, the growth of resident
populations of phagocytes are kept in check by the stroma: Well-
defined paracrine growth factor circuits between stromal cells and
macrophages can stabilize the ratios of these populations and this
requires intimate contacts between the cells (170). Supporting
mitogenesis in such circuits with nutrient supplies may be an
overlooked feature of the coupling. A recent emphasis on cell-cell
competition in tissues (171) may benefit from understanding the
circuits, cell-cell sharing and recycling, and themetabolic ecosystems
that ensure tissue homeostasis. Such studies would immediately lend
themselves to an appreciation for how tumor-associated
macrophages support the growth of lesions. Additionally, more
emphasis on phagosome resolution and the handling of solutes in
the endocytic pathway of phagocytes iswill certainly lead to strategies
that break or support such processes and cycles. The RPE-
photoreceptor coupling is a well-defined Yin and Yang relationship
but represents one of many more circuits to be uncovered.
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