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Fowl adenovirus (FAdV) was first reported in Angara Goth, Pakistan, in 1987. For this
reason, it is also known as “Angara disease.” It was later reported in China, Japan, South
Korea, India, the United States, Canada, and other countries and regions, causing huge
economic losses in the poultry industry worldwide. Notably, since June 2015, a natural
outbreak of severe hydropericardium hepatitis syndrome (HHS), associated with a
hypervirulent novel genotype FAdV-4 infection, has emerged in most provinces of
China. The novel virus FAdV-4 spread rapidly and induced a 30-100% mortality rate,
causing huge economic losses and threatening the green and healthy poultry breeding
industry. Vaccines against FAdV-4, especially the emerging novel genotype, play a critical
role and will be the most efficient tool for preventing and controlling HHS. Various types of
FAdV-4 vaccines have been developed and evaluated, such as inactivated, live-
attenuated, subunit, and combined vaccines. They have made great contributions to
the control of HHS, but the details of cross-protection within FAdVs and the
immunogenicity of different vaccines require further investigation. This review highlights
the recent advances in developing the FAdV-4 vaccine and promising new vaccines for
future research.
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INTRODUCTION

Fowl adenovirus (FAdV) belongs to the family Adenoviridea and genus Aviadenovirus and is
further divided into five species (FAdV-A-E) with 12 serotypes (FAdV-1-8a, 8b-11) based on the
profile of restriction enzyme digestion and sera cross-neutralization assay according to the
guidelines of the International Committee on Taxonomy of Viruses (1). FAdVs are capable of
infecting various birds, such as chickens (2, 3), ducks (4–6), geese (7), pigeons (8), peacocks (9), and
other wild birds, inducing severe clinical symptoms or potential infection. FAdVs show different
tropisms for multiple organs and are associated with several high-impact poultry diseases, such as
hydropericardium-hepatitis syndrome (HHS), inclusion body hepatitis (IBH), and gizzard erosion
(GE). FAdV infection associated with HHS, IBH, and GE has been reported worldwide and induces
huge economic losses in the poultry industry.
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HHS associated with serotype 4 fowl adenovirus (FAdV-4)
infection was first found and reported in Angara Goth, a region
of Pakistan, in 1987, so the disease is also known as “Angara
disease” (10). It was later reported in China (3, 11), Japan (12,
13), South Korea (14), India (15), the United States (16), Canada
(17), and other countries and regions, causing huge economic
losses in the poultry industry worldwide. Notably, since June
2015, a natural outbreak of severe HHS associated with a
hypervirulent novel genotype FAdV-4 infection has emerged in
most provinces of China (3, 11). The novel genotype FAdV-4
spread rapidly and induced a 30-100% mortality rate, causing
huge economic losses and threatening the green and healthy
poultry breeding industry. Furthermore, co-infections of FAdV-
4 with other virus further aggravate the harmfulness of the
disease (18–20).

Currently, various types of vaccines have been developed and
evaluated to control HHS, and several inactivated combined
vaccines have been licensed and produced by commercial
companies, which have made important contributions to the
poultry industry. Given the ability to deliver foreign adenovirus
genes, natural non-pathogenic FAdV-4 (16) and artificial
attenuated FAdV-4 (17) have developed efficient vaccine
vectors, which protect chickens against HHS and significantly
reduce the cost of the combined vaccine. This brief review
summarizes vaccine development efforts using inactivated
viruses, live-attenuated viruses, subunit antigens, and
combined vaccines against FAdV-4, especially novel FAdV-4.

Inactivated Monovalent Vaccines
Traditional inactivated vaccine immunization remains the main
preventive method for some poultry diseases, especially
emerging viruses such as SARS-CoV-2 (21, 22). Given the
emergence of the hypervirulent novel genotype FAdV-4,
inactivated vaccine immunization remains the main prevention
method, having the advantages of safety, cost-saving, good
humoral immunity effect, and low influence by maternal
antibodies. For the emerging HHS, Pan et al. isolated and
identified the HLJFAd15 strain as a novel hypervirulent FAdV-
4 from the field layers with HHS in China in 2015 (2).
Subsequently, SPF chickens were immunized with an
inactivated oil-emulsion FAdV-4 vaccine formulated with the
HLJFAd15 strain, and the vaccine’s protective effect was
evaluated (23). The results indicated that the vaccine could
provide a high-level antibody, preferential T helper 2 (Th2)
response, and full protection against a lethal dose of novel
hypervirulent FAdV-4. Similarly, the novel genotype
SDJN0105 strain (24), HN strain (25), and CH/GZXF/1602
strain (26) developed an inactivated vaccine, and all vaccines
induced high levels of antibodies and showed sufficient
protection for chickens from HHS.

Du et al. attempted to develop vaccines from both embryo-
adapted and cell culture-derived viruses to optimize the
manufacturing technique of inactivated vaccines (25). The
results showed no mortality in either of the immunized groups
in the challenge experiment. However, cell-culture-derived
vaccines could induce earlier and higher humoral immune
responses and no lesions appeared, but IBH was observed in
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the embryo-adapted derived vaccine, indicating that cell-culture-
derived vaccines could be a better candidate to control
emerging HHS.

For cross-protection of the FAdV-4 inactivated vaccine, Kim
et al. developed an inactivated vaccine with a traditional FAdV-4
strain K531/07 and evaluated the cross-protection of the vaccine
against various serotypes of FAdV causing IBH or HHS,
including serotypes 5, 8a, 8b and 11 (27). They found that the
inactivated FAdV-4 vaccine could provide cross-protection
against various serotypes of FAdV in vaccinated chickens and
progenies of vaccinated breeders, indicating that the FAdV-4
vaccine could be an effective candidate for the prevention of IBH
and HHS. Furthermore, Xia et al. prepared an inactivated vaccine
using a novel genotype FAdV-4 strain CH/GZXF/1602, and the
immunogenicity evaluation results showed that the FAdV-4
vaccine could protect chickens against both virulent FAdV-4
and virulent FAdV-8b (26).

Notably, all inactivated vaccines were derived from wild-type
virulent FAdV-4 strains. As biosafety threats of inactivated
vaccines from potential pathogenic components have been
presented to the poultry industry, safer vaccines are urgently
needed. Zhang et al. replaced the virulent vaccine formulation
with an artificial non-pathogenic FAdV-4 strain rHN20 using a
reverse genetic technique and developed a novel inactivated oil-
adjuvanted vaccine derived from the rHN20 strain (28). The
results showed that the vaccine-induced high titers of
neutralizing antibodies provided full protection from a lethal
dose of virulent FAdV-4 challenge and significantly reduced
potential biosafety threats. The details of inactivated vaccines are
summarized in Table 1.

Live-Attenuated Monovalent Vaccines
For the traditional genotype FAdV-4, Schonewille et al.
developed an attenuated FAdV-4 vaccine by adapting a
pathogenic virus to the QT35 cell line, and no clinical signs or
mortality were observed in birds challenged with the attenuated
virus (29). Although enzyme-linked immunosorbent assay
(ELISA) and neutralization tests indicated a weak antibody
response in some birds following immunization with the live
vaccine, the vaccine provided full protection against the
challenge, which is an interesting phenomenon for FAdVs.

For the novel genotype FAdV-4, Zhang et al. identified the
critical gene and amino acid (aa) for virus virulence (30),
subsequently, two non-pathogenic strains, rHN20 and rR188I,
were rescued by the reverse genetic technique based on the fosmid
system. rHN20 caused no clinical signs or mortality, indicating
that hexon determines the virulence of FAdV-4. Furthermore,
Zhang et al. identified aa 188R of hexon as the critical aa for
virulence of the novel genotype FAdV-4, and the rR188I strain
also showed no pathogenicity in SPF chickens. The
immunogenicity of both rHN20 (28) and rR188I (30) was
evaluated in SPF chickens when they were used as live-
attenuated vaccines. Chickens inoculated with different doses
and routes of rHN20 or rR188I produced high levels of
neutralizing antibodies and were fully protected against a lethal
dose challenge of the pathogenic novel genotype FAdV-4.
Furthermore, the immunized groups showed no clinical
May 2022 | Volume 13 | Article 916290
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symptoms or histopathological changes, and the viral load was
significantly lower after the challenge.

Not only was the hexon-edited virus significantly attenuated,
but the fiber-1 and fiber-2 edited viruses were rescued and
identified as non-pathogenic to SPF chickens. Mu et al. rescued
the recombinant virus FAdV4-RFP_F1 via the CRISPR/Cas9
technique, which contained a fusion protein of RFP and fiber-1
(31). The recombinant virus was efficiently attenuated and
provided full protection against the lethal challenge of FAdV-4,
demonstrating that fiber-1-edited FAdV4-RFP_F1 could be a live-
attenuated vaccine candidate and fiber-1 could be a potential
insertion site for novel vaccine development. In addition, Xie et al.
generated a recombinant virus FA4-EGFP expressing EGFP-fiber-
2 fusion protein via the CRISPR/Cas9 technique (32). FA4-EGFP
caused no clinical signs or mortality in chickens, indicating that
the virus was significantly attenuated.

Moreover, FA4-EGFP could also provide efficient protection
against a lethal dose challenge, suggesting that fiber-2 edited
FA4-EGFP is a vaccine candidate and a potential insertion site
for delivering foreign antigens. Furthermore, Xie et al. replaced
the fiber-2 gene with egfp and rescued FAdV-4-EGFP-rF2, which
could efficiently replicate in LMH-F2 cell lines expressing fiber-2
protein (33). FAdV-4-EGFP-rF2 was highly attenuated and
provided full protection against the pathogenic FAdV-4
challenge. The FAdV-4-EGFP-rF2 vaccine-induced neutralizing
antibodies are at the same level as FA4-EGFP. The details of live-
attenuated monovalent vaccines are summarized in Table 1.

Subunit Monovalent Vaccines
Subunit vaccines are safer than vaccines based on the whole virus
in production and vaccination procedures, and researchers have
made important efforts to develop subunit vaccines against FAdV-
4. Different subunit antigens, expression systems, and adjuvants
have been evaluated to develop FAdV-4 subunit vaccines.

Before the novel genotype FAdV-4, several studies tried to
develop a subunit vaccine of the traditional genotype FAdV-4.
Frontiers in Immunology | www.frontiersin.org 3
Shah et al. utilized a prokaryotic expressed structure protein
penton base coupled with Freund’s complete adjuvant (FCA) to
develop a subunit vaccine that showed 90% protection for
chickens (34). Aziz et al. evaluated both the prokaryotic
expressed full-length and epitope-focused 1-225 aa of penton
formulated with Montanide ISA 71VG adjuvant, and both
vaccines showed protection rates of 50% (35). Schachner et al.
compared the immunogenicity of different capsid proteins of
FAdV-4, including fiber-1, fiber-2, and L1 region of hexon (L1-
hexon) (36). Fiber-1, fiber-2, and L1-hexon were simultaneously
expressed in the baculovirus system and composed of GERBU
Adjuvant LQ no.3000, and fiber-2 (27/28) showed better
protection efficacy than fiber-1 (16/26) and L1-hexon (7/26),
highlighting that fiber-2 might be an ideal antigen component
for subunit vaccine development. Shah et al. first tried a
prokaryotic-expressed non-structural protein 100 K of FAdV-4
coupled with FCA; unfortunately, it showed only a 40%
protection rate (37).

Although HHS associated with a novel genotype FAdV-4
emerged in 2015, great progress has been made in subunit
vaccine development. Wang et al. tested the efficacy of FAdV-4
surface protein fiber-1, fiber-2, L1-hexon, and penton base
expressed in Escherichia coli and formulated with FCA (38).
The results indicated that fiber-2 (50 µg/bird) and fiber-1 (100
µg/bird) could induce complete protection, while protection of
the L1-hexon and penton bases could induce considerable
protection at high dosages but not completely. The good
immunogenicity of prokaryotic expressed fiber-2 was further
confirmed when fiber-2 was coupled with different adjuvants,
such as FCA (39), Montanide ISA 71VG (40), and Sigma
adjuvant (41), respectively. However, fiber-1 showed better
protection than fiber-2 when expressed in a eukaryotic system,
although the protection rates of both fiber-1 and fiber-2 were
higher than those of the penton base (42). Wang et al. utilized a
commercial adenovirus vector to express antigens in HEK293
cells, and the antigen was assembled into a penton-
TABLE 1 | List of inactivated and live-attenuated vaccines against FAdV-4.

Inactivated vaccine Live-attenuated vaccine

Strain Origin Adjuvant Dosage (/bird) Immune
route

Survival
rate (%)

Strain Origin Dosage
(/bird)

Immune
route

Survival
rate (%)

HLJFAd15 CELa Oil 106 TCID50 IMf 100 FAdV-4/QT35 QT35 5×104 TCID50 IM 100
CH/GZXF/1602 CEKb Oil 4.5×105 TCID50 Hg 100 rR188I LMH 105 PFU IM 100
SDJN0105 CEFc Oil 106 TCID50 IM 100 rHN20 LMH 106 PFU IN 100
HN LMHd Oil 106 TCID50 Hh 100 rHN20 LMH 106 PFU IM 100
HN CEe Oil 106 TCID50 H 100 (IBH) rHN20 LMH 106 PFU H 100
K531/07 CEL Seppic ISA 70 5×105 TCID50 IM 80 FAdV4-RFP_F1 LMH 2×105 TCID50 IM 100
rHN20 LMH Oil 3×106 PFU IM 100 FA4-EGFP LMH 106 TCID50 IM 100
rHN20 LMH Oil 3×106 PFU H 100 FAdV4-EGFP-

rF2
LMH 2.5×104

TCID50

IM 100
May 2022 | V
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aChicken embryo liver cells.
bChicken embryo kidney cells.
cChicken embryo fibroblast cells.
dLeghorn male hepatocellular cells.
eChicken embryo.
fIntramuscular.
gSubcutaneous.
hIntranasal.
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dodecahedron (Pt-Dd), which provided 100% protection (42). Jia
et al. constructed a recombinant Lactococcus lactis and
Enterococcus faecalis expressing truncated hexon protein or
fused with a dendritic cell-targeting peptide, which was orally
immunized and induced protection rates varying from 50 to 90%
(43). These studies provide a solid theoretical basis for the
research and development of subunit vaccines.

In addition, several studies have been conducted to obtain
many results. Yin et al. constructed a pVAX1-Fiber2 DNA
vaccine, but the protection was also insufficient (60%) for the
novel genotype FAdV-4, and the above studies require further
optimization (41). Nevertheless, many improvements have
achieved good results. Hu et al. developed a fusion subunit
antigen of fiber-2 (Gly275- Pro479) and hexon (Met21-Val51)
that was capable of providing full protection for chickens (44).
Tufail et al. displayed several highly conserved epitopic regions of
hexon on the virus-like particle (VLP) of the core protein of the
hepatitis B virus (45). The VLP vaccine containing Asp348-
Phe369, Ser19-Pro82, and Gly932-Phe956 confer 90%, 70%, and
Frontiers in Immunology | www.frontiersin.org 4
40% protection. The details of subunit vaccines against FAdV-4
are summarized in Table 2.

Combined Vaccines
Adenovirus, especially the commercial human adenovirus, is an
efficient and stable delivery carrier widely used for gene therapy
(46) and vaccines against emergent viruses, such as Ebola (47)
and SARS-CoV-2 (48). With gene editing and reverse genetic
technology, the emerging novel genotype, FAdV-4, has been
successfully modified as a viral vector and applied to construct
combined vaccines. Pan et al. firstly developed a novel genotype,
FAdV-4, and identified the natural large genomic 1966bp
deletion as a foreign gene insertion site (49). Mu et al. also
optimized the CRISPR/Cas9 operating platform to insert a
foreign gene into the fiber gene of FAdV-4 (31). Meanwhile,
Yan et al. established an easy-to-use reverse genetics system
based on Gibson assembly to modify the right and partial left
genes (50). Pei et al. developed an infectious clone based on
cosmid and found that ORF16 and 17 were important for virus
TABLE 2 | List of subunit vaccines against FAdV-4.

Subunit vaccine

Antigen Strain Expression system Dosage (/bird) Adjuvant Immune route Survival rate (%)

penton PR-06 E. colie 25 mg FCAh H i 90
penton NIAB/NIBGE 01 E. coli 100 mg Montanide ISA 71VG H 50
penton
(1-225 aaa)

NIAB/NIBGE 01 E. coli 100 mg Montanide ISA 71VG H 50

fiber-1 KR5 Baculovirus 50 mg GERBU Adjuvant LQ no.3000 IM j 61.5
fiber-2 KR5 Baculovirus 50 mg GERBU Adjuvant LQ no.3000 IM 96.4
L1-hexonb KR5 Baculovirus 50 mg GERBU Adjuvant LQ no.3000 IM 26.9
100K NIAB/NIBGE 01 E. coli 25 mg FCA H 40
fiber-1 SXD15 E. coli 100 mg

50 ug
FCA
FCA

IM
IM

100
75

fiber-2 SXD15 E. coli 50 mg FCA IM 100
L1-hexon SXD15 E. coli 50 mg FCA IM 70
penton SXD15 E. coli 50 mg FCA IM 35
fiber-2 HB1501 E. coli 2.5 mg FCA H 100
fiber-2 – E. coli 10 mg Montanide ISA 71VG IM 100
fiber-2 GZ-QL E. coli 150 mg

100 ug
50 ug

Sigma
Sigma
Sigma

IM
IM
IM

100
100
80

fiber-1 SXD15 Ad-HK2 0.5 mg N/Al IM 100
fiber-2 SXD15 Ad-HK2 0.5 mg N/A IM 80
penton SXD15 Ad-HK2 0.5 mg N/A IM 67.7
PtDdc SXD15 Ad-HK2 0.5 mg N/A IM 100
DC-hexond GX01 L. lactisf 1010 CFU N/A O k 60
hexon GX01 L. lactis 1010 CFU N/A O 50
DC-Hexon GX01 E. faecalisg 5×109 CFU N/A O 90
hexon GX01 E. faecalis 5×109 CFU N/A O 80
May 2022 | Volume 1
aAmino acid.
bLoop 1 region of hexon.
cPenton-dodecahedron.
dDC-Hexon: hexon fused with dendritic cell targeting peptide.
eEscherichia coli.
fLactococcus lactis.
gEnterococcus faecalis.
hFreund’s complete adjuvant.
iSubcutaneous.
jIntramuscular.
kOral.
lNot applicable.
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replication and unsuitable for foreign gene insertion (51).
Finally, Pan et al. built a reverse genetic technique based on
the fosmid system to operate the genome of the novel genotype
FAdV-4 and further identified 10 ORFs at the left end and 13
ORFs at the right end of the novel FAdV-4 as non-essential
regions for virus replication, which provided a good foundation
for foreign gene delivery (52).

Virulence weakening is critical for vector development because
of the high pathogenicity of the novel genotype FAdV-4. Zhang et
al. first identified the critical gene and key aa for the virulence of
the novel FAdV-4 (30) and subsequently obtained the non-
pathogenic strain rHN20, posting the basis for development and
application. Subsequently, the immunogenetic VP2 gene of the
very virulent infectious bursal disease virus (vvIBDV) was inserted
into the natural 1966Del deletion site and induced complete
protection in chickens against both the novel genotype FAdV-4
and vvIBDV challenge when used as an inactivated vaccine (53) or
live vectored vaccine (52). Lu et al. inserted a FAdV-8b fiber into
the fiber-2 position of FAdV-4, which simultaneously protected
chickens from novel genotype FAdV-4 induced HHS and FAdV-
8b induced IBH (54).

Inaddition to the above FAdV-4vectoredvaccines, several other
combined vaccines were evaluated and showed good effects. Luca et
al. constructed a chimeric fiber protein (crecFib-4/11) capable of
simultaneously protecting chickens against HHS and IBH (55),
highlighting a new concept: chimericfiber vaccines can be extended
across viral species. Tian et al. developed a recombinant Newcastle
disease virus (NDV) LaSota vaccine strain expressing fiber-2 of
FAdV-4 (rLaSota-fiber2) and live and inactivated vaccines derived
from rLaSota-fiber2 (56). Both vaccines provided complete
protection against virulent NDV. However, the live rLaSota-fiber2
vaccine provided better protection against the FAdV-4 challenge
than the inactivated vaccine, indicating that the NDV-vectored
FAdV-4vaccine is apromisingbivalentvaccine candidate to control
both HHS and ND.
Frontiers in Immunology | www.frontiersin.org 5
CONCLUSIONS

Although various vaccines against the novel genotype FAdV-4
have been developed, and great progress has been made in
controlling emerging HHS, many studies need further
investigation. Preliminary evaluation of the inactivated vaccine
derived from the traditional genotype FAdV-4 has been
conducted in cross-protection with other serotypes of FAdV,
but cross-protection vaccines based on the novel genotype
FAdV-4 need systemic analysis within different serotypes of
FAdV. Furthermore, the FAdV-4 vaccine vector needs to be
deeply explored as an efficient vector to deliver multiple foreign
antigens to reduce vaccine costs further. Meanwhile, studies on
novel vaccine adjuvants, subunit antigens, and new vaccines such
as DNA or mRNA vaccines against the novel genotype FAdV-4
have been limited, and more research is needed on the control
of HHS.
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