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Introduction
Breast cancer stands as the most prevalent malignant 
tumour globally, constituting approximately 25% of 
all female malignancies.1 Triple-negative breast cancer 
(TNBC) represents a highly aggressive female malignancy 

with significant mortality rates,2 accounting for around 
20% of breast cancer cases.3 The primary clinical treatment 
modalities for TNBC encompass surgery, radiotherapy, 
and chemotherapy, with chemotherapy being the 
foremost therapeutic approach. Despite the development 
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Abstract
Introduction: Fatty acid binding protein 
5 (FABP5) exhibits heightened expression 
levels in triple-negative breast cancer. The 
inhibitor of FABP5, Stony Brook fatty acid‐
binding protein inhibitor 26 (SBFI-26), has 
demonstrated the capacity to suppress cell 
proliferation, migration, and invasion. 
This study delves into the functional 
mechanism and impact of combining 
SBFI-26 with docetaxel in treating MDA-
MB-231 cells of triple-negative breast 
cancer.
Methods: Various concentrations of 
docetaxel and SBFI-26 were chosen for individual or combined treatments. The effects of SBFI-
26, docetaxel, or their combination on cell cycle arrest and apoptosis were assessed using flow 
cytometry. Western blotting was utilised to detect the expression of apoptosis-related proteins, 
namely cysteinyl aspartate-specific proteases 3 (Caspase3), B cell leukemia/lymphoma 2 (Bcl-
2), and Bcl-2 associated X (Bax), while intracellular reactive oxygen species (ROS) levels were 
determined using a fluorescence spectrophotometer.
Results: The IC50 values for SBFI-26 and docetaxel in inhibiting MDA-MB-231 cells were 
determined to be 106.1 μM and 86.14 nM, respectively. Significantly, the combination treatment 
augmented the proportion of G1 phase (apoptotic) cells by 3.67-fold compared to the control 
group (P < 0.0001). Furthermore, the apoptosis rate in the combination group was 2.59-fold higher 
than that in the docetaxel group (P < 0.0001) and demonstrated a significant increase of 1.82-
fold compared with the SBFI-26 group (P < 0.001). Analyses revealed a decrease in the protein 
expression of Bcl-2, while Bax and Caspase3 exhibited an increase in the combination group for 
MDA-MB-231 cells. Moreover, the combined treatment group demonstrated a 2.97-fold increase 
(P < 0.0001) in ROS fluorescence intensity compared to the control group, a noteworthy 1.39-fold 
increase (P < 0.01) compared to the SBFI-26 treatment group, and a substantial 1.70-fold increase 
(P < 0.0001) compared to the docetaxel treatment group.
Conclusion: These findings suggest that the co-administration of SBFI-26 with docetaxel 
effectively enhances apoptosis in triple-negative breast cancer MDA-MB-231 cells by elevating 
intracellular ROS levels.
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of diverse chemotherapy options, TNBC lacks established 
molecular targets, resulting in a recurrence and metastasis 
rate of 35%, accompanied by a shortened survival period.4 
Commonly used targets in TNBC treatment include 
PolyADP-ribose polymerase (PARP) inhibitors and PI3K-
AKT-mTOR pathway inhibitors,5-7 while paclitaxel-based 
regimens have been essential chemotherapeutic agents.8 
However, drug resistance, poor efficacy, and a lack of 
clear therapeutic targets remain significant challenges in 
TNBC clinical treatment.9,10 Combining drugs can often 
achieve therapeutic effects that a single treatment cannot 
achieve.11-13

Due to its therapeutic index, docetaxel, a microtubule-
targeting agent, has garnered significant attention in 
cancer chemotherapy.14 Docetaxel, a taxane oncology drug, 
exhibits cytotoxic potential and clinical efficacy against 
various malignancies, including breast, lung, and ovarian 
cancers. It induces tubulin monomer polymerization, 
inhibits depolymerization, and causes G2/M cell cycle 
arrest during mitosis, ultimately leading to cell death. 
Additionally, it stimulates Bcl-2 phosphorylation to 
induce apoptosis. Despite its wide range of benefits, the 
clinical application of docetaxel is limited by its associated 
side effects and non-specific targeting behaviour.1,2,15 
However, taxane chemotherapy often leads to the 
development of drug resistance. Numerous research 
reports have demonstrated that combination therapy 
effectively addresses this issue.1-4,10,16,17

Fatty acid binding protein 5 (FABP5), a non-enzymatic 
protein, has been identified as an indispensable molecule 
in regulating cellular fatty acid transport, skin hemostasis, 
and metabolism.18-20 Overexpression of FABP5 has been 
observed in various human cancers, including breast, 
skin, bladder, pancreatic, prostate, gastric, hepatocellular 
carcinoma, non-small cell lung cancer (NSCLC), head 
and neck squamous cell carcinoma (HNSCC), melanoma, 
and endometrial cancer.21-23 Notably, FABP5 mRNA 
levels are significantly up-regulated by approximately 
5-17 folds in malignant breast cancer and prostate 
cells/tissues compared to benign counterparts,24,25 
highlighting its role as a metastatic factor promoting cell 
dissemination. Moreover, FABP5 has demonstrated its 
ability to enhance breast cancer cell survival/proliferation 
and drive tumour progression.26 Additionally, FABP5 
expression is associated with ER/PR-negative status 
and reduced overall survival among patients with breast 
cancer.23 Numerous inhibitor compounds have been 
screened as potential therapeutic targets of FABP5.27 
SBFI-26 (α-truxilic acid 1-naphthyl mono-ester) exhibits 
inhibitory activity against both fatty acid binding protein 
5 and fatty acid binding protein 7. The chemical structure 
of SBFI-26 is derived from an active ingredient found in 
Incarvillea Sinensis, a Chinese herbal medicine with a 
long history of human use for pain relief and treatment 
of rheumatism.28,29 As a potent chemical inhibitor of 

FABP5, our previous study demonstrated that SBFI-26 
effectively suppresses the proliferation, migration, and 
invasion of castration-resistant prostate cancer (CRPC) 
cells expressing high levels of FABP5 in vitro and in 
vivo, thereby demonstrating its promising therapeutic 
potential.30 Despite its mechanism remaining elusive, 
we investigated the synergistic potential of combining 
SBFI-26 with docetaxel in treating breast cancer cells to 
enhance the therapeutic efficacy of docetaxel.

Materials and Methods
Cell culture and reagents
The human breast cancer cell line MDA-MB-231 was 
procured from the American Type Culture Collection 
(ATCC). MDA-MB-231 cells represent a triple-negative, 
highly aggressive cell line. Cells were cultivated in Roswell 
Park Memorial Institute 1640 (RPMI 1640, Gibco, Life 
Technologies, Grand Island, NY) supplemented with 
penicillin/streptomycin (Gibco, Life Technologies, Grand 
Island, NY) and 10% Fetal Bovine Serum (PAN Biotech 
GmbH, Aidenbach, GER) in a humidified atmosphere 
with 5% CO2 at 37 °C. Adherent cells were subjected to a 
3-minute incubation with 0.25% trypsin-EDTA (Gibco-
Thermo Fisher Scientific, CA), followed by addition to the 
medium to halt the enzymatic reaction and subsequent 
centrifugation. They were then thrice washed with PBS 
buffer without calcium or magnesium (HyClone, Logan, 
UT) before collecting all cells.

Docetaxel and SBFI-26 were procured from Macklin 
(Shanghai, CHN) and GIBCO BRL (Grand Island, NY, 
USA), with their chemical structures depicted in Fig. 1. 
Primary antibodies, namely Bcl-2, Bax, Caspase-3, and 
GAPDH, were employed for western blot analysis 
(Abcam, Cambridge, MA).

Cell viability
The cytotoxicity of SBFI-26 and docetaxel, both 
individually and in combination, was assessed using 
the 2-(2-methoxy-4-nitrobenzene)-3-(4-nitrobenzene)-
5-(2,4-disulfobenzene)-2H-tetrazolium monosodium 
salt (WST-8) colorimetric assay (Beijing ZOMAN 
Biotechnology, Beijing, CHN). MDA-MB-231 cells 
(5000 cells/well) were seeded into 96-well plates and 
incubated for 24 hours at 37 °C in RPMI 1640 media. 

 
 

 

 

Fig. 1. Chemical structures for (a) Docetaxel and (b) SBFI-26.
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Subsequently, MDA-MB-231 cells were exposed to 
varying concentrations of SBFI-26 (50 µM to 125 µM) 
and docetaxel (50 nM to 500 nM) for 24 hours. Following 
the incubation period, cells were treated with CCK (10% 
volume of media) for 2 hours, and the absorbance was 
measured at 480nm using a microplate reader (BioTek, 
VT, USA). The survival rate was then calcu lated according 
to formula (1).

Cell survival rate (%) = [(As-Ab)/(Ac-Ab)] × 100%         (1)

As: Experimental well (contains cell culture medium, 
CCK, toxic substances)

Ac: Control well (contains cell culture medium, CCK, 
no toxic substances)

Ab: Blank well (medium without cells and toxic 
substances, CCK)

The synergistic effect of the combination of SBFI-26 
and docetaxel was assessed using SynergyFinder (https://
synergyfinder.fimm.fi).31 

Immunoblotting
The cells were rinsed with DPBS buffer and subsequently 
treated with 0.1 mL of RIPA buffer containing 
phenylmethylsulfonyl fluoride (New Cell & Molecular 
Biotech Co, Suzhou, CHN). The protein concentration 
in the cell lysate was determined using the BCA protein 
detection kit (ZOMANBIO, Beijing, CHN). Following 
this, proteins were denatured by heating at 100 °C, 
separated on a 10% SDS-PAGE gel, transferred onto a 
PVDF membrane, and non-specific binding was blocked 
with a no-protein blocking agent (1% in 1 × TBS; Sangon 
Biotech, Shanghai, CHN) at 25 °C. The membrane was 
then incubated with the primary antibody overnight at 4 
°C, followed by three washes with TBST. Subsequently, 
it was incubated with a secondary antibody for one hour 
at room temperature. Proteins were developed using ECL 
kits (Affinity Biosciences, Beijing, CHN) and visualized 
by ChemStudio (Analytik Jena, Jena, Germany).

Cell cycle assay
Following the guidelines of the Cell Cycle and Apoptosis 
Analysis Kit (Beyotime Biotechnology, Shanghai, CHN), 
MDA-MB-231 cells in the logarithmic growth phase 
(concentration of 1 × 105 cells/mL) were treated with SBFI-
26 and docetaxel (either individually or in combination). 
After a 24-hour incubation period, the cells were 
harvested, centrifuged at 1000 r/min for 3 min, washed 
with pre-cooled DPBS, and fixed using 70% ethanol. After 
overnight fixation, the ethanol was removed through 
centrifugation, and the cells were further washed with 
pre-cooled DPBS before being stained with propidium 
iodide (PI) at 37 °C for 30 minutes in darkness. Flow 
cytometry analysis was performed using BD FACS to 
determine cell cycle phase distribution, while Mod Fit 

software was utilised for analysing cell DNA content. 
Each experimental group comprised no fewer than three 
replicate samples.

Annexin V-FITC staining
Apoptotic cells were quantified using the Annexin 
V-FITC kit (ZOMANBIO, Beijing, CHN) following the 
manufacturer's instructions. Approximately 5 × 104 cells 
were resuspended in 500 μL of the manufacturer-supplied 
1 × binding buffer and mixed with 5 μL Annexin V and 
10 μL propidium iodide. Incubation in the dark at room 
temperature for 15 min, followed by analysis using a 
BD FACS flow cytometer, detected cellular apoptosis. 
CytExpert software was employed for analyzing cell 
apoptosis.

ROS assay
ROS production was analysed using a fluorescence probe 
and DCFH-DA staining with a reactive oxygen species 
assay kit (Beyotime Institute of Biotechnology, Shanghai, 
CHN). Briefly, cells were plated at a density of 1 × 105 
cells/well in six-well plates and treated with SBFI-26 and 
docetaxel (either individually or in combination) for 24 
hours. The cells were then incubated with DCFH-DA at 
a final concentration of 10 μM in RPMI 1640 at 37 °C for 
30 min and washed three times. Subsequently, the cells 
were collected, counted, and diluted to a uniform cell 
concentration with DPBS. DCF fluorescence intensity 
was detected by a fluorescence spectrophotometer 
(HITACHI, Tokyo, JPN) with excitation at 488 nm and 
emission at 525 nm.

Statistical analysis
Data were presented as means ± SEM. Statistical analysis 
was conducted using a one-way analysis of variance 
with the Tukey post hoc test (GraphPad Prism, version 
8.0.2), considering P < 0.05 as statistically significant. All 
data were derived from a minimum of three independent 
experiments, and the values provided in each figure 
legend correspond to each distinct trial.

Results
The combination of SBFI-26 and docetaxel reduced the 
viability of MDA-MB-231cells
Firstly, we investigated the in vitro proliferation of 
the cancer cell line MDA-MB-231 under varying 
concentrations of SBFI-26 and docetaxel, both 
individually and in combination. The cells were incubated 
with SBFI-26 (0 to 125 μM) and docetaxel (0 to 500 nM) 
for 24 hours. Fig. 2a illustrates that, compared to the 
control, SBFI-26 at 50 and 125 μM exhibited an increasing 
inhibitory effect as the concentration increased; the IC50 
value was determined to be 106.10 μM. As depicted 
in Fig. 2b, a concentration-dependent decrease in cell 
viability was observed within the tested range of docetaxel 
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concentrations. Notably, a decline in drug sensitivity 
was evident between 50 and 500 nM, with an IC50 value 
of 86.14 nM. The drug storage solution was accurately 
prepared to facilitate the investigation of combined 
drug administration. For subsequent experiments, a 
concentration of 100 μM for SBFI-26 and 80 nM for 
docetaxel were chosen. Fig. 2c demonstrates that the 
combination groups, comprising SBFI-26 (100 μM) and 
docetaxel (80 nM), exhibited a significant decrease in 
cell viability compared to treatment with SBFI-26 alone. 
Specifically, we observed a remarkable 34.59% reduction 
in cell viability when treated with the combination 
groups. Furthermore, when comparing the effects of the 
combination therapy to treatment with docetaxel alone 
at a concentration of 80 nM, we found that the former 
resulted in a notable 23.01% decrease in cell viability. The 
findings suggest that the addition of SBFI-26 enhances 
the efficacy of docetaxel in reducing cell viability. Fig. 
2d demonstrates that synergyfinder calculated synergy 
scores for the combination of two drugs; synergy scores 
of 5.308 indicate that the combination of the two drugs 
exhibited an additive effect, while a significant synergistic 
effect was not observed.

The combination of SBFI-26 and docetaxel increased the 
population of sub-G1 phase in MDA-MB-231 cells
Flow cytometry was utilised to perform a cell cycle 

assay. As illustrated in Fig. 3a, the analysis of cell cycle 
distribution revealed a noteworthy increase in the 
number of G1 phase (apoptotic cells) cells in the SBFI-26, 
docetaxel, and combination treatment groups compared 
to the control group. Specifically, there was a 1.68-fold 
increase (P < 0.05) in the docetaxel-treated group, a 3.10-
fold increase (P < 0.0001) in the SBFI-26-treated group, 
and a 3.67-fold increase (P < 0.0001) in the combination 
treatment group when compared with controls. Notably, 
co-treatment with SBFI-26 and docetaxel resulted in 
a significantly higher proportion of cells entering the 
Sub-G1 phase than when each compound was used alone.

The induction of apoptosis in MDA-MB-231 cells by the 
combination of SBFI-26 and docetaxel
MDA-MB-231 cells underwent treatment with docetaxel, 
SBFI-26, and a combination of both for 24 hours. Cell 
apoptosis was quantified utilising the Annexin V-FITC/
PI double-staining method and analysed through flow 
cytometry (Fig. 3b and 3d). The respective apoptosis 
rates were 14.21%, 20.22%, and 36.78%. In comparison 
to the control group, the docetaxel group displayed a 
3.86-fold increase in apoptosis rate, the SBFI-26 group 
exhibited a 5.49-fold increase, and the combination group 
demonstrated a remarkable 9.99-fold increase in apoptosis 
rate compared to controls. Furthermore, the combination 
group displayed a significantly higher apoptosis rate than 
the docetaxel alone, with a 2.59-fold increase (P < 0.0001), 

 
 

 

 

Fig. 2. Effects of SBFI-26 and docetaxel on the cell viability of MDA-MB-231 cell line. The cell viability was determined by the CCK8 assay (n = 3). The 
results were expressed as the mean ± SEM (n = 3). (a) SBFI-26 inhibited the growth of MDA-MB-231 cells at 24 h. (b) Docetaxel inhibited the growth of MDA-
MB-231 cells at 24 h. (c) The combination of SBFI-26 and docetaxel inhibited the growth of MDA-MB-231 cells at 24 h (*P < 0.05, **P < 0.01, ***P < 0.001). 
(d) Synergy score for SBFI-26 and docetaxel.
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or SBFI-26, with a 1.82-fold increase (P < 0.001).

Augmentation of apoptotic protein expression by the 
combination of SBFI-26 and docetaxel
Western blot analyses unveiled a reduction in Bcl-2 
protein expression, accompanied by an elevation in 
Bax and Caspase 3 levels upon combination treatment 
with MDA-MB-231 cells (Fig. 4a,b,c). The heightened 
Caspase 3 expression is indicative of apoptosis. The 
combined treatment significantly enhanced Caspase 3 
expression in MDA-MB-231 cells, as depicted in Fig. 4 
(a, c). In comparison to the docetaxel group and SBFI-
26 group, the combined treatment group exhibited a 
significant 1.63-fold increase (P < 0.01) and 1.52-fold 
increase (P < 0.05), respectively, in the relative expression 
of Caspase 3. Bcl-2 is an anti-apoptotic protein, whereas 
Bax enhances apoptosis. The reduced ratio of Bcl-2/Bax 
promotes cell apoptosis (Fig. 4 d,e). In comparison to 
the docetaxel and SBFI-26 groups, there was a significant 
3.05-fold decrease (P < 0.05) and 3.15-fold decrease 
(P < 0.01), respectively, in the relative expression of Bcl-
2. Conversely, the combined treatment group exhibited a 
significant approximately 3.5-fold increase in the relative 

expression of Bax compared to both the docetaxel and 
SBFI-26 groups.

Elevation of ROS levels in MDA-MB-231 cells induced by 
the combination of SBFI-26 and docetaxel
Intracellular reactive oxygen species (ROS) levels were 
assessed using a fluorescence spectrophotometer after 
staining with DCFH-DA. Intracellular ROS can oxidise 
non-fluorescent DCFH to generate fluorescent DCF and 
can be employed to quantify the level of intracellular 
ROS. Fig. 5 illustrates that treatment with SBFI-26 and 
docetaxel for 24 hours increased ROS fluorescence 
intensity in MDA-MB-231 cells, as measured by 
a fluorescence spectrophotometer. The combined 
treatment group exhibited a significant 2.97-fold increase 
(P < 0.0001) compared to the control group, a 1.39-fold 
increase (P < 0.01) compared to the SBFI-26 treatment 
group, and a 1.70-fold increase (P < 0.0001) compared to 
the docetaxel treatment group.

Discussion
The triple-negative breast cancer (TNBC) subtype, 
characterized by the absence of well-defined therapeutic 

 
 

 

 

 

Fig. 3. Effect of SBFI-26 and docetaxel on the cell cycle and apoptosis of MDA-MB-231 cells. Data were expressed as the mean ± SEM (n = 3). (a) Flow 
cytometry assays the DNA counts of MDA-MB-231 cells with propidium iodide staining. (b) Flow cytometry assays the apoptosis of MDA-MB-231 cells with 
Annexin V-FITC plus propidium iodide staining. Q1 shows necrotic cells, Q2 shows late apoptotic cells, Q3 shows early apoptotic cells, and Q4 shows viable 
cells. (c) The sub-G1 phase underwent statistical analysis (*P < 0.05, ***P < 0.001, ****P < 0.0001). (d) The apoptosis cells underwent statistical analysis 
(***P < 0.001, ****P < 0.0001).



He et al

BioImpacts. 2025;15:301376

targets, manifests high recurrence rates, resistance to 
treatment, delayed clinical response, and formidable 
invasiveness. Despite advances in early detection and 
elucidation of the underlying signalling pathways and 
molecular mechanisms, approximately 25% of patients 
remain unresponsive to chemotherapy.32 The exploration 
of novel targets for pharmacotherapy holds significant 
therapeutic promise. The observed synergistic effect 
between COR and PTX has the potential to induce 
apoptosis in the MDA-MB-231 cell line, offering 
a promising anticancer strategy against TNBC.33 
Additionally, Moghtaderi and colleagues' research 
highlighted the cytotoxic and apoptotic effects of gallic 
acid and curcumin on MDA-MB-231 human breast 
cancer cells.34

The compound SBFI-26 acts as a potent inhibitor of 
FABP5, which exhibits elevated expression levels in both 
triple-negative breast cancer and castration-resistant 
prostate cancer.31,35-37 SBFI-26 effectively inhibits the 
proliferation, migration, and invasion of castration-
resistant prostate cancer cells expressing high levels of 
FABP5, underscoring its therapeutic potential.26,31,38 

Standard treatment for triple-negative breast cancer 
primarily involves chemotherapy and radiotherapy; 
however, this subtype often displays resistance to 
chemotherapy. Docetaxel, a commonly employed 
chemotherapeutic agent for managing metastatic breast 

 
 

 

 

 

 

Fig. 4. Western blot analysis of the protein expression of Caspase 3, Bcl-2, and Bax. Cells were treated with SBFI-26, Docetaxel, or SBFI-26 in combination 
with docetaxel for 24 h and probed with antibodies to Caspase 3, Bcl-2, and Bax. Blots were stripped and reprobed with antibodies to GAPDH to verify equal 
loading. (a) Western blot image, (b) Bax, (c) Caspase 3, and (d) Bcl-2 protein expression in MDA-MB-231 cells. (e) Relative expression value of BCl-2/Bax. 
Data are calculated as a percentage of control and expressed as the mean percentage of control ± SE of three independent experiments. P values were 
determined using a T-test. Bars with different symbols are significantly different (* P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001).

 
 

 

 

 

 

Fig. 5. Enhancement of ROS production by SBFI-26 in combination 
with docetaxel. (a) MDA-MB-231 cells were analysed by a fluorescence 
spectrophotometer. (b) Bars represent a relative percentage of 
fluorescence integral area in four independent experiments. Data 
are calculated as a percentage of control and expressed as the mean 
percentage of control ± SE of three independent experiments. P 
values were determined using a t-test. Bars with different symbols are 
significantly different (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
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cancer, faces challenges due to the development of drug 
resistance and associated adverse effects. Combinations 
involving docetaxel and other compounds have shown 
promise in enhancing antitumor efficacy while mitigating 
issues associated with docetaxel-resistant breast cancer.39,40 

MDA-MB-231 cells were subjected to docetaxel 
treatment, with the dosage ranging from 50 to 500 nm, 
resulting in a ten-fold increment. However, a marginal 
increase of 1.41-fold, elevating from 49.82% to 70.67%, 
was observed. These results suggest a subdued cellular 
response to docetaxel, aligning with prior literature 
reports.41 The combination of docetaxel with the SBFI-26 
group exhibited a significantly enhanced inhibition rate 
compared to individual treatments (P < 0.01). Moreover, 
a notable rise in Sub-G1% and apoptotic cells was evident 
compared to the effects of docetaxel or SBFI-26 alone. 
Key apoptosis-related proteins, Caspase 3, Bcl-2, and Bax, 
exhibited significant alterations in their expression levels. 
Specifically, the apoptotic regulator Caspase 3 and the 
pro-apoptotic protein Bax showed substantial increases, 
while the anti-apoptotic protein Bcl-2 demonstrated a 
marked decrease. SBFI-26 displayed a positive additive 
effect, and its chemically modified products, SBFI-102 
and SBFI-103, demonstrated a synergistic effect against 
prostate cancer cells when combined with docetaxel or 
cabazitaxel.42

Reactive oxygen species (ROS) play pivotal roles in 
diverse cellular processes, including cell transformation, 
apoptosis, carcinogenesis, and senescence.43-45 Tumour 
cells maintain a high and balanced ROS system, and 
any disruption triggers a cascade of apoptotic events 
leading to cell death.43,46-48 Certain anticancer drugs 
leverage this mechanism for therapeutic effects.40,49-51 

3,3´-diindolylmethane enhances breast cancer cell 
sensitivity to docetaxel treatment by increasing ROS, 
promoting apoptosis.3 This study demonstrated that 
SBFI-26 and docetaxel treatment in MDA-MB-231 cells 
increased ROS levels significantly, fostering intracellular 
ROS accumulation. This combinated treatment approach 
enhances apoptosis through ROS accumulation. However, 
the precise mechanisms governing ROS regulation in 
response to combined SBFI-26 and docetaxel therapy 
remain elusive, warranting further investigations.

Conclusion
In conclusion, our study substantiates that SBFI-26, 
functioning as a FABP5 inhibitor, robustly enhances the 
cytotoxic and apoptotic effects of docetaxel—a prevalent 
chemotherapeutic agent in clinical practice—against 
TNBC cells. The joint administration of SBFI-26 and 
docetaxel instigated apoptosis in TNBC cells through the 
upregulation of intracellular ROS levels. These findings 
posit the potential of this combined therapeutic strategy 
as a universally applicable approach in cancer treatment.
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