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Abstract: Thailand is a tropical country affected by global climate change and has high temperatures
and humidity that cause heat stress in livestock. A temperature–humidity index (THI) is required to
assess and evaluate heat stress levels in livestock. One of the livestock types in Thailand experiencing
heat stress due to extreme climate change is crossbred dairy cattle. Genetic evaluations of heat toler-
ance in dairy cattle have been carried out for reproductive traits. Heritability values for reproductive
traits are generally low (<0.10) because environmental factors heavily influence them. Consequently,
genetic improvement for these traits would be slow compared to production traits. Positive and
negative genetic correlations were found between reproductive traits and reproductive traits and
yield traits. Several selection methods for reproductive traits have been introduced, i.e., the traditional
method, marker-assisted selection (MAS), and genomic selection (GS). GS is the most promising tech-
nique and provides accurate results with a high genetic gain. Single-step genomic BLUP (ssGBLUP)
has higher accuracy than the multi-step equivalent for fertility traits or low-heritability traits.

Keywords: fertility; genomic selection; heat tolerance; tropical Holstein

1. Introduction

As global temperatures have risen, heat stress in dairy cattle has become a severe
concern for the worldwide dairy sector, especially in tropical countries. The average
temperature on Earth increased by 1.09 ◦C during 2011–2020 [1]. Thailand is one of
the countries that has experienced climate change. Thailand has a tropical climate with
high relative humidity and high ambient temperatures. Thailand’s average temperature is
35.0–39.9 ◦C, with 72–74 percent relative humidity [2]. According to the Thai Meteorological
Department, the annual mean temperature in Thailand increased by about 1.50 ◦C from
1970 to 2007 [3]. Hence, livestock in Thailand faces heat stress, especially dairy cattle.

Heat stress is caused by changes in the environment around the animal, including
temperature, relative humidity, solar radiation, and wind speed [4]. The high temperature
and humidity in Thailand may be the main factors causing heat stress in livestock. Livestock
cannot dissipate body heat because of higher environmental heat intensity [5]. This causes
animals to pass through the range of the thermoneutral zone, and heat stress will occur [6].
Heat stress also affects livestock reproduction. The direct effects are changes in endocrine
regulation, interference of ovarian activity concerning steroid hormone synthesis, and
altered progesterone concentrations [2]. Consequently, heat stress reduces estrous activity
and impairs fertility performance, including long days open, a greater length of the calving
interval, and a low conception rate [7]. Heat stress also has various adverse effects on milk
yield and milk quality, thus harming farmers financially [8]. Optimizing feed and housing
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conditions are two techniques for minimizing the consequences of heat stress [9]. Although
these methods can be successful in the short term, they may not be adequate for long-term
strategies. Improving genetics, identifying and breeding animals with a natural resilience
to extreme heat and humidity and establishing management approaches for long-term
solutions should be performed in concert.

Understanding the genetic response to heat stress could help improve the management
of feed or housing modifications for dairy cows. Ravagnolo and Misztal [10] proposed
a strategy for examining the impact of heat stress on the genetic response of dairy cows
using weather station data to predict the level of heat stress tolerance on the performance
of dairy cattle in the United States. Tolerance to heat stress is the adaptive process that
allows animals to endure the impacts of rising ambient temperature beyond the thermal
neutral zone’s temperature–humidity index (THI) limit [11]. The THI limit value at which
performance begins to decrease can determine the level of heat tolerance in animals. A THI
value of 72 for production, and roughly 68 for reproduction was considered the threshold
for heat stress [12].

Genetic differences in thermal tolerance between animals provide clues for selecting
animals that are more tolerant to heat stress [13]. Previous studies on heat tolerance
found genetic variation in the reproductive performance of dairy cattle under heat stress
conditions [9,14,15]. Therefore, genetic improvement via the identification and selection
for tolerance to heat in animals for reproductive traits is possible. In general, the genetic
improvement of dairy cattle is cost-effective since it results in long-term and cumulative
change [16]. However, due to low heritability values and large generation intervals, the
traditional method’s rate of genetic improvement is low [17]. Compared to traditional
breeding, genome selection is more appropriate for selecting heat tolerance, as it allows
faster genetic gain [11]. To predict the breeding value of selection animals, genomic
selection uses single-nucleotide polymorphisms (SNPs), genetic markers found throughout
the genome [18]. This study aims to investigate the appropriate genetic approach for
improving reproductive traits in Thai–Holstein crossbreeds under heat stress conditions.

2. Thai–Holstein Crossbred Cattle

In Thailand, dairy cattle are primarily crossbreeds of Bos taurus (Holstein, Jersey,
Brown Swiss, and Red Dene) and Bos indicus (Sahiwal, Red Sindhi, Brahman, and Thai
Native). However, most (>95%) are crosses between Holstein and Sahiwal cattle or Thai
Native breeds [9]. According to the Thai Department of Livestock Development, Thailand’s
dairy cattle population was reported to be 818,537 heads in 2021, with 358,500 cows on
24,764 farms, producing roughly 3000 tons of raw milk each day [19,20]. Most dairy farmers
in Thailand (>80%) are smallholders, with only a few large commercial dairy farms [19].

The dairy cattle breeding improvement program in Thailand has been carried out for
60 years. In the beginning, both live purebred dairy cows and frozen semen were imported
from subtropical countries, followed by an artificial insemination (AI) program in 1956.
Thai Native cattle were inseminated with that semen, and now, they are being developed
as crossbred Thai dairy cattle, with Holstein Friesian (HF) selected as the predominant
breed [20]. The purpose of crossing those two breeds was to improve milk production,
reproduction, and the tolerance of heat, tick-borne diseases, and other diseases of zebu
cattle [21,22]. The main population in Thailand is now dairy crossbreds with ≥87.5% HF
blood levels [20].

Currently, the development of crossbred Thai–Holstein cattle is still being carried
out to select cattle with good performance and suitable for tropical conditions. Genetic
evaluation of their economic traits is performed through a progeny testing program by the
Thai Department of Livestock Development (DLD) [20].
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3. Reproductive Traits in Dairy Cattle
3.1. Interval Traits
3.1.1. Age at First Calving (AFC)

AFC is the age at which heifers first calve and is also known as the start of the
heifer’s productive life [23,24]. AFC influences the lifetime production, reproduction of
the female, milk production, and lifetime calf crop [25]. Indirectly, AFC affects the cost
invested for rearing cattle. The recommended age for the first calving in local breeds
is three years, with many experts recommending between 23 and 25 months, which is
regarded as optimal for increasing the dairy company’s profitability [24]. Previous studies
on Thai–Holstein crossbred cattle reported an average AFC value of 32.39 ± 5.76 and
30.97 ± 6.65 months [26,27], higher than the recommended age. The same results were
reported in Friesian × Zebu (F1), and Friesian × Arsi (F1) cattle were obtained as 35.3 and
33.9 months, respectively [25]. The lower values of AFC reported in US dairy cattle were
24.5 ± 2.73 months for Holstein, 22.9 ± 2.74 months for Jersey, and 26.3 ± 3.13 months for
Brown Swiss [28]. The reports indicate that crossbreed heifers reach puberty later than pure
breed cows. The variation in the reproductive performances of dairy cattle such as AFC is
affected not only by their genetics but also by other aspects, including diet, management,
health, and the environment. In Thailand, the AFC is not used as a selection criterion
because it is entirely influenced by farmer management to determine the age and body
condition score (BCS) at first service. However, AFC and body weight (BW) at calving have
been found, in several studies, to have a considerable impact on future milk production
and herd survival [29–31]. A greater BW or body condition score (BCS) at calving improves
milk production later [29]. In contrast, excessively increased fat deposition throughout
the raising period, resulting in heavier heifers at first calving, may compromise mammary
development, reducing future milk production [32]. The long-term impact of AFC on
reproductive success is still unclear. Calving heifers between the ages of 25 and 26 months
had shorter recurrent calving intervals than heifers between the ages of 24 and older age
groups [30].

3.1.2. Calving to First Service Interval (CFI)

The number of days between calving and the first artificial insemination or natural
service in cows is defined as the CFI [33]. The recommended value of CFI in dairy cattle
for good management is less than 70 days [34]. The CFI in Thai–Holstein crossbred cattle
reached 101.06 ± 44.88 days [26], higher than Norway dairy cattle of 62.5 days and Japanese
dairy cattle of 84.9 days [33,35]. In Arsi Negele, Ethiopia, for crossbred dairy cows, the
value of CFI was reached at 184 days [36]. Those variations might be due to different genetic
architectures, the environment, herd management and practices, and disease. Similarly,
Softic et al. [37] also reported that extended CFI was influenced by several factors such as
nutrition, endometritis, and a lack of estrus detection. The other factor, uterine infection, has
been associated with extended CFI in dairy cattle and low reproductive performance [33,38].
Poor management techniques, such as failing to detect the presence of estrus in dairy cows,
can also contribute to a long CFI [25].

3.1.3. Interval from First to Last Insemination (IFL)

The IFL is defined as interval days between the first and last service. It is one of
the indicators used by farmers to cull cows after a series of inseminations because it can
increase production costs [39]. The IFL days tend to be prolonged with the increasing
number of services per conception (NSPC) in cattle. The IFL in Thai–Holstein crossbred
cattle was reported to be 49.70 days [26]. The value is nearly the same as the IFL reported
in Czech Holsteins of 43.95–50.13 days [40]. A lower IFL value was found in Japanese Black
cattle, 28 days.
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3.1.4. Days Open (DO)

DO is the time period between calving and successful conception. It is also the part
of the calving interval (CI) that can be shortened by improved dairy management and
genetics [25]. As a result, DO is one of the indicator variables most widely used to assess
dairy cattle fertility. A long DO will cause a prolonged CI and can affect the overall economic
income of farmers. Previous researchers reported that the average DO in Thai–Holstein
crossbred cattle was 149.93 ± 78.60 days, 152 days, and 156.44 ± 20.77 days [9,26,41]. The
other Frisian crossbreeds also have a higher DO, such as Friesian × Arsi (189 ± 9 days),
but this did not occur in Friesian × Horro cattle (91.5 ± 1.20 days) and Jersey × Horro
cattle (79.20 ± 3 days), which have lower values of DO [42,43]. Pure Holstein cattle are
also reported to have a moderate DO of 139.5 days [4]. The high number of DO will affect
the extra costs incurred per day [44]. On US dairy farms, an increase in DO from 112 to
166 causes economic losses of 3.2 USD to 5.1 USD per cow per day [45]. Dairy farmers
of 44 farms in Central Thailand have to spend as much as 268,088 baht (8220.37 USD) for
improving the reproductive performance program every production period [46].

3.1.5. Calving Interval (CI)

The CI is divided into three periods: postpartum anestrus, service period, and gesta-
tion [24]. The ideal CI is 12 to 13 months, assuming an average gestation period of 280 days
and 85 days for DO [23]. The CI is one of the major aspects of reproductive performance that
impacts the livestock production system [47]. The CI in Thai–Holstein crossbred cattle has
been reported by a previous researcher to be 14.27 ± 2.62 months [26] higher than Friesian
Holsteins of 13.12 months, Friesian × Arsi of 14.23 months, Ayrshire of 13.32 months,
Guernsey of 13.10 months, and Jersey of 12.92 months [48,49]. An extended CI can result
in a reduced milk yield, reduced lifetime productivity, and increased culling rates and
replacement cost [23,35]. A prolonged CI may mainly be caused by a longer DO due to
environmental variables such as management practices (poor nutrition, poor housing,
estrus detection, semen handling), postpartum problems, and genetics [3,22]. Reproductive
health problems result in uterine infection, delayed postpartum estrus, decreased fertility,
and an extended CI [43].

3.2. Binary Traits
3.2.1. First Service Conception Rate (FSCR)

The FSCR is the percentage of cows that become pregnant after calving at the first
insemination (35). The values for the FSCR in Thai–Holstein crossbred cattle were reported
to be 54% and 46% [26,50], similar to dairy crossbred cattle in Ethiopia of 41 to 45% [51].
Haile and Yoseph [35] reported that the FSCR was significantly affected by the parity
number and season of calving. Similar results were reported by Hammoud et al. [52]
and Lemma et al. [53], who associated enhanced fertility with an appropriate ambient
temperature and the availability of forage.

3.2.2. Conception Rate (CR)

Most Interbull-participating countries divide the CR into three categories: the heifer
conception rate (HCR), cow conception rate (CCR), and daughter pregnancy rate (DPR).
The HCR is defined as the percentage of inseminated heifers that become pregnant at
each service [54]. The CCR is a measure of the female’s fertility, whereas the SCR is a
measure of the bull’s fertility [55]. The optimum recommended range of CR in dairy
cattle is 80–85% [35]. CCR in dairy cattle in Thailand is reported to be low, at <40% [56].
In contrast, the CCR value of crossbred dairy cows in Ethiopia’s central highlands was
previously found to be 79.3% in a previous study [57]. Haile and Yoseph [35] reported that
the CR was significantly (p < 0.05) affected by the season of calving and parity. The CR of
cows in the rainy season was higher than in dry rainy seasons; this might be because of
moderate climatic conditions and the availability of forage.
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3.2.3. Pregnancy within 90 Days after First Service (P90)

The successful insemination date within 90 days of the first insemination is referred to
as P90. Previous studies showed that the values of the P90 in Thai Crossbred cattle were
75% and 82.17% [26,50], lower than Spanish dairy cattle of 83% [58]. The previous report
by Buaban et al. [50] and González-Recio and Alenda [58] showed that the P90 had positive
genetic correlations with FSCR and test-day milk yield ranging from 0.29 to 0.69 and 0.92
to 0.97. Otherwise, a negative genetic correlation was found in the P90 inseminations per
lactation (INS) of −0.54 [58].

3.3. Count Traits
The Number of Services per Conception (NSPC)

The number of services required for a successful conception is referred to as the
NSPC [57]. The NSPC is a measure of reproductive efficiency that expresses the fertility of
dairy cows [59]. In a dairy farm, the NSP largely depends on the breeding program used.
A lack of knowledge and experience in the timing of insemination, unqualified technicians,
and disease and hygiene problems are the most common reasons for a high rate of the
NSCP [60]. In natural mating, the NSPC is less controlled than using artificial insemination
(AI), and NSPC values higher than 2 can be considered poor [43]. A previous study
reported that natural service conception has lower values (1.18) than artificial insemination
users (1.5 up to 2.3). This might indicate that many environmental factors affect the AI
method, including the availability of feed, the insemination time, and estrus detection in
cattle [24]. The average values of the NSCP of Thai–Holstein crossbred cattle were reported
to be 2.29 ± 1.72 and 1.90 ± 1.37 [26,50]. Those were higher than dairy cows in midland
and low-land areas in Ethiopia reported as 1.54 ± 0.55 and 1.82 ± 0.65, respectively [60].
Different locations may offer different management and affect the NSPC. Feed and high
environmental temperature were also reported to have an effect on the NSPC [59]. NSCP
also has an impact on farmers’ economies. In Korea, dairy calves that were unable to
conceive cost an additional USD 55.40 for reproductive treatment and palpation [61].

4. Heat Stress and Its Effect on Reproductive Traits

Heat stress is one of the significant factors affecting fertility [62]. Heat stress is a
physiological condition in which an animal’s body temperature rises over its typical range
of activity due to total heat gain from both internal and external sources [63]. Hence,
evaporative cooling through sweating is a significant part of the heat-dissipation process
in a high-temperature environment [64]. Since sweating plays an important role in the
mechanism of heat dissipation, skin morphology must also be involved. Previous studies
have found effects between different breeds of Sahiwal (B. indicus), HF (B. taurus), crossbred
with 75% and 87.5% HF, respectively, and the interaction effect between skin color and
the genetic fraction of HF on skin morphology [65]. The study revealed that Sahiwal had
the highest density and volume of sweat glands, as well as the highest density of hair
follicles (1058 glands/cm2; 1.60 µ3 × 10−6) compared with pure HF (920 glands/cm2;
0.51 µ3 × 10−6 and crossbred with 75% and 87.5% HF (709 glands/cm2; 0.68 µ3 × 10−6;
and 691 glands/cm2; 0.61 µ3 ×10−6), respectively (p < 0.01). However, the components
of skin blood flow, such as the capillary diameter, capillary circumference, and capillary
surface, were higher in the HF purebreds (8.33 µm, 26.48 µm, and 2.07 µm per cm2,
respectively), 87.5% HF (7.13 µm, 22.40 µm, and 1.95 µm per cm2, respectively), and
75% HF (7.85 µm, 24.92 µm, 1.83 µm per cm2, respectively) than in the Sahiwal (7.24 µm,
22.49 µm, 1.79 µm per cm2) (p < 0.01). This suggests that skin morphology may influence
cutaneous evaporative heat-loss capabilities and heat tolerance in crossbred cattle.

The level of heat tolerance in animals can be determined by the THI limit, where
livestock performance begins to decline. The THI value is used to assess heat stress levels
in dairy cattle by combining the effects of temperature and humidity [2]. The THI chart for
estimating heat stress levels in dairy cattle is presented in Figure 1. The THI in Thailand
could reach the highest range (82.62–82.80) from March to May [2]. Therefore, this situation
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can cause heat stress and has an impact on livestock performance, especially in reproductive
performance.

Figure 1. THI for dairy cows. THI 72 to 78 represents mild heat stress; THI 79 to 89 represents
moderate heat stress; THI > 89 represents severe heat stress. (Source: Habeeb et al. [66]).

The effects of heat stress on livestock reproduction altered endocrine regulation in the
hypothalamic–pituitary–ovarian axis (HPO axis), impaired ovarian activity, and impaired
progesterone concentrations, which reduced estrous behavior and caused a prolonged
number of days open and low conception rate [7,67]. Kornmatitsuk et al. [68] reported that
the days open for Thai dairy cattle in the hot season were higher (111.2 ± 8.9) than in the
cool season (97.4 ± 5.8). The reduction in CR during heat stress can be up to 30%, with
a clear seasonal pattern of estrus detection [62]. Increased ambient temperatures have a
detrimental impact on the cow’s ability to perform natural mating behavior by reducing
the duration and intensity of estrus expression [69].

A previous study stated that heat stress also affected the service period, FSCR, CFI,
and CI in dairy cattle. The cows that calved under heat stress conditions had a longer
service period, 299 ± 11 days, than in the normal condition, reported as 133 ± 7 days [70].
The FSCR rate during the cool season in a commercial farm of Thailand was also reported
as higher, 23.1%, than the hot season, 9.8% [68]. In the same way, Kananub et al. [71] stated
that the FSCR in the winter season had a three-times greater chance of success compared to
the summer season. In Argentina, the CFI in the cows that received their service during the
hot season was longer (97 days) than those that had their service from October to December
(83 days) [72]. In North Africa, cows calving in the absence of heat stress (THI ≤ 70) have a
shorter CI of 420 ± 15.1 days than cows calving in the presence of heat stress (THI ≥ 80) of
487 ± 12.8 days [73].

5. Genetic Parameters and a Model for Reproductive Traits in Dairy Cattle
Experiencing Heat Stress

5.1. Heritability (h2)

Heritability is the difference in the phenotype between animals caused by genetic
factors. Broad-sense heritability is defined as the proportion of phenotypic variation (VP)
due to genetic values (VG), which may include dominance (VD) and epistasis (VI) effects.
Narrow-sense heritability, however, only represents the proportion of genetic variation
owing to additive genetic values (VA) [74]. Narrow-sense heritability is commonly utilized
in animal breeding because the response to artificial (and natural) selection is dependent
on additive genetic variation. Furthermore, additive genetic variation is the primary driver
of relative similarity [74].

Heritability ranges from 0 to 1. A higher value of heritability means that most of the
differences between the phenotypes of animals are genetic [75]. In contrast, while a low
heritability indicates a low VA, it says a lot about VG, but it does not account for total
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genetic variance. As a result, a character h2 might still have a lot of genetic diversity at the
loci that contribute to the observed trait variance. When a variable has a heritability value of
near zero (0), it means that all phenotypic variation in the population is attributable to non-
additive genetic influences and environmental factors. As a result, (VA ≈ 0) does not mean
that the trait has no genetic basis; rather, it implies that the observed trait variation within
the population under consideration cannot be explained by additive genetic variance [74].
Several previous studies of heritability for reproductive traits in some dairy cattle breeds,
including Thai–Holstein crossbred cattle, are presented in Table 1.

Table 1. Heritability (h2) of reproductive traits in dairy cattle.

Traits 1 Breeds h2 Model 2 References

AFC Holstein (Brazil) 0.02 MTM [76]

NSPC

Thai–Holstein crossbred 0.04 UM [26]
Spanish dairy cattle 0.02 STM [58]

Holstein (Iran) 0.04 ALM [14]
Swedish red 0.02–0.03 MTM [77]

Icelandic dairy cattle 0.02 MTM [78]

CFI

Thai–Holstein crossbred 0.07 UM [26]
Spanish dairy cattle 0.05 STM [58]
Finland dairy cattle 0.07 UM [79]

Swedish red 0.02–0.03 MTM [77]
Nordic Holstein 0.05–0.06 REP [80]

IFL

Thai–Holstein crossbred 0.02 UM [26]
Spanish dairy cattle 0.03 STM [58]
Finland dairy cattle 0.03 UM [79]

Icelandic dairy cattle 0.02 MTM [78]
Nordic Holstein 0.01–0.04 REP [80]

FSCR
Thai–Holstein crossbred 0.01 UM [26]

Spanish dairy cattle 0.04 STM [58]
Holstein (Iran) 0.01 ALM [14]

CR
Spanish dairy cattle 0.04 STM [58]
Icelandic dairy cattle 0.02 MTM [78]

Nordic Holstein 0.01–0.03 REP [80]

DO

Thai–Holstein crossbred 0.07–0.08 MTM [9]
Spanish dairy cattle 0.04 STM [58]

Holstein (Iran) 0.02 ALM [14]
Holstein (Brazil) 0.03 MTM [76]

P90
Thai–Holstein crossbred 0.02 TAM [50]

Spanish dairy cattle 0.06 STM [58]

CI

Thai–Holstein crossbred 0.07 UM [26]
Spanish dairy cattle 0.04 STM [58]

Holstein (Iran) 0.03 ALM [14]
Holstein (Brazil) 0.03 MTM [76]

Icelandic dairy cattle 0.03 MTM [78]
1 AFC, age at first calving; NSPC, number of services per conception; CFI, calving to first service interval; IFL,
interval from first to last insemination; FSCR, first service conception rate; CR, conception rate; DO, days open;
P90, pregnancy within 90 days after the first service; CI, calving interval. 2 Model: STM, single-trait model; MTM,
multi-trait model; ALM, animal linear mixed model; UM, univariate model; REP, repeatability model; TAM,
threshold animal model.

The heritability values for reproductive traits in both Thai–Holstein crossbreeds and
the other dairy cattle were low (Table 1). The difference in heritability values is due to
different genetic and phenotypic variations in each population. The heritability of AFC,
NSPC, CFI, IFL, FSCR, CR, DO, P90, and CI ranged from 0.01 to 0.08. The low heritability
values mean the genetic component of these traits was low, and most of the variation of
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reproduction traits in these populations is due to management. In addition, a low value of
heritability indicates that genetic improvement for these traits would be slow.

Faster genetic gain might be achieved by enhancing the accuracy of the heritability
estimate, especially for reproductive traits. Berry et al. [81] reported that the on-farm
usage of low-cost genomic technologies could help in a more precise parentage assignment,
enhancing not only heritability but also genetic assessments. Poor record keeping with
incorrect phenotypic data and pedigree could be a serious factor that can reduce the
accuracy of the analysis. As a result, the recording system must be improved. More
detailed records would allow researchers to partition the genetic effects between traits
and result in more accurate fertility evaluations. In addition, standardized environmental
circumstances can increase heritability by decreasing non-genetic variations among animals.
Modern milking facilities, improved nutrition, and well-trained management personnel
increased the possibility of genetic improvement in reproductive traits [74].

According to Table 1, the most popular model used in analyzing the variance com-
ponents for these reproductive traits was MTM. Guo et al. [82] and Karaman et al. [83]
reported that MTM outperformed STM for traits with poor heritability and a small number
of records because phenotypic information for all traits of interest is not always accessible
for all animals in a reference population; this is critical in practical breeding efforts. For
example, there is typically a limited quantity of data for difficult or expensive traits to
assess, such as carcass quality, feed efficiency, and disease traits. For traits with limited
phenotypic data, the accuracy of EBV or GEBV derived via an STM will be low. An MTM
will increase the accuracy derived by including information from associated and more
readily measurable traits. Prediction using the MTM model gives more reliable results.
Budhlakoti et al. [84] also reported that MTM has great potential to increase genetic gain
and contributes to estimating the breeding value more precisely.

5.2. Genetic Correlation (rg)

Genetic correlations measure how closely two traits are related genetically [85]. Pleiotr-
opy of genes is the major cause of the association, although linkage disequilibrium can
also play a role. Pleiotropy refers to a gene’s ability to alter more than one character [74].
Genetic correlations are determined from the additive genetic variance and covariance
between traits, rg = covg (X, Y) /

√
VgXVgY, where X, Y are traits, and VgX, VgY are the

variances of the traits.
Genetic correlations ranged from −1.0 to 1.0, and they can be positive or negative.

The presence of positive or negative coefficients merely denotes whether the relationship
is direct or inverse. Genetic correlations reveal how traits “covary” or change in tandem.
When genetic correlations are near zero, each attribute is controlled by a distinct set of
genes, and selection for one trait has minimal impact on the other. If the genetic correlation
is positive, selection for one characteristic will increase the other, while selection for the
other trait will reduce it if the genetic correlation is negative [74]. Genetic correlations
are used by farmers to increase accuracy, minimize assessment time, and broaden the
area of genetic evaluation [75]. The genetic correlation between reproduction traits in
Thai–Holstein crossbred cattle is presented in Table 2.

Genetic correlations values in this study ranged from 0.36 to 1.00 and are included
in the high category (Table 2). Strong positive genetic correlations (≥90) were observed
between NSPC-IFL, CFI-DO, CFI-CI, IFL-DO, IFL-P90, and DO-CI. High positive genetic
correlation values (0.36–0.89) were found between NSPC-CFI, NSPC-DO, NSPC-CI, CFI-
IFL, IFL-CI, and FSCR-P90. Similar findings for NSPC-IFL, IFL-DO, and DO-CI were
reported by González-Recio and Alenda [58] in Spanish dairy cattle: 0.91, 0.99, and 0.99,
respectively. The values of genetic correlation between DO and CI in this study were
also similar to those reported by Rahbar et al. [14] and Ghiasi et al. [86], of 0.98 and 0.99,
respectively. The values between NSPC-CFI and CFI-IFL in Thai–Holstein crossbred cattle
were higher than Spanish dairy cattle reported by González-Recio and Alenda [58] of 0.11
and 0.50, respectively. Differences in the additive variance and covariance of each trait in
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the population might explain the disparity in these results. High positive values imply that
these reproductive traits are nearly genetically identical and are affected by the same genes.
This means that the selection between traits with positive genetic correlations would be
followed by an increase in other traits.

Table 2. Genetic correlations within reproductive traits in Thai–Holstein crossbred cattle.

Traits 1 NSPC CFI IFL FSCR DO P90 CI
NSPC 0.36 0.95 −0.80 0.64 −0.76 0.63

CFI 0.63 −0.58 0.90 −0.64 0.91
IFL −0.93 0.90 −0.99 0.89

FSCR −0.85 0.51 −0.85
DO −0.53 1.00
P90 −0.96
CI

1 NSPC, number of services per conception; CFI, calving to first service interval; IFL, interval from first to last
insemination; FSCR, first service conception rate; DO, days open; P90, pregnancy within 90 days after the first
service; CI, calving interval. Source: Buaban et al. [26].

The high negative values of genetic correlations (>−0.53) in Thai–Holstein crossbred
cattle were found between NSPC-FSCR, NSPC-P90, CFI-FSCR, CFI-P90, IFL-FSCR, FSCR-
DO, FSCR-CI, DO-P90, and P90-CI (Table 2). A negative value of genetic correlations
indicates that these traits have an inverse relationship with one another. For example,
selection for a lower NSPC, for example, might result in a higher number of FSCR and
P90, and a selection within traits that have a negative genetic correlation value will also be
the same.

A study of Thai–Holstein crossbred dairy cattle also found a positive genetic correla-
tion between reproductive traits (P90) and milk yield (MY) of 0.69 [50]. This result revealed
that the selection of the P90 trait would increase milk production. The other study on
tropical dairy cattle in Ethiopia showed negative genetic correlations between AFC-MY,
CI-MY, and DO-MY of −0.24 ± 0.11, −0.10 ± 0.13, and −0.02 ± 0.14, respectively [87].
Conversely, the negative genetic correlation between CI-MY and DO-MY suggests that
when milk output increases, fertility can be improved in this herd.

5.3. THI and Genetic Model for Heat Stress
5.3.1. THI Model

THI is calculated from temperature (◦C) and relative humidity. Several formulas in
the previous studies reported by Nascimento et al. [88] were compared to calculate the
THI; however, this was the best model that produced the most accurate results according
to Berman et al. [5]:

THIs = 3.43 + 1.058 × T − 0.293 × RH + 0.0164 × T × RH + 35.7

where T is the average daily temperature (◦C) and RH denotes the average daily relative
humidity (%). Then, as a dummy variable, f(THI), a function of THI, was developed to
quantify the reduction in reproductive performance under heat stress situations.

f (THI) =
{

0 i f THI ≤ THIthreshotd
THI − THIthreshold i f THI > THIthreshold

THIthreshold were investigated at several different critical levels or threshold points,
and the optimal model was determined by the lowest 2logL Akaike information criterion
(AIC) and Bayesian information criterion (BIC) [15,89,90].
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5.3.2. Genetic Model

Several models were applied to evaluate variance components for heat tolerance in
dairy cattle (Table 1). Sigdel et al. [15] and Aguilar et al. [89] purposed a multi-trait linear-
repeatability test-day model (REP) to analyze the variance components for conception
per insemination (binary trait) and multiple lactations at heat stress levels. Furthermore,
Aguilar et al. [89] utilized the multiple-trait model (MTM) on DIM and f(THI) with the same
effects as the REP model. Boonkum et al. [9] also used the MTM to estimate the variance
components of DO. In agreement with Boonkum et al. [9], Oseni et al. [91] purposed the
MTM and random regression model (RRM) to analyze the DO. In another study, Rahbar
et al. [14] used an animal linear mixed model and univariate threshold models to analyze
variance components for FSCR, gestation length (GL), NSPC, insemination outcome (IO),
CI, calving birth weight (CBW), and DO. The (co)variance structure of each study was
created according to the model, objectives, and problems of each study.

Some software is used by researchers to support the data analysis of each model.
Aguilar et al. [89] used GIBBS2F90 to conduct their MTM on multiple lactations; the
software implements Gibb’s sampling with a joint sampling of random correlated effects
and traits [92]. Boonkum et al. [9] and Oseni et al. [91] used the SAS’s GLM method and
AIREMLF90 program for their analysis of DO. Rahbar et al. [14] also used AI-REML in the
DMU software package [93] to estimate variance components of reproductive traits using
their genetic model.

6. The Approach of Genetic Selection for Reproductive Traits in Dairy Cattle
6.1. Traditional Breeding Method

The goal of livestock breeding is to select animals that will produce superior animals
with higher yields [94]. The traditional breeding method (TAB) used the information of
phenotypic records or pedigree for animal selection. This method is complicated for traits
with low heritability values, such as reproductive traits, because they are more difficult to
improve, and there are long generation intervals [95].

Furthermore, the new method was designed with the combination of the phenotypic
and those of relatives into the estimated breeding value (EBV), called the best linear unbi-
ased prediction (BLUP) [94]. This method successfully increases the genetic response to
selection by improving the reliability of the EBV [96]. In addition, this method includes
all systematic effects and exploits all pedigree information of the animals using a numer-
ator relationship matrix to account for increases in additive genetic variance caused by
inbreeding or assortative mating [97].

However, according to Ibtisham et al. [94], there are still a few limitations in using
the BLUP method: (1) making accurate early selection decisions by regularly and timely
recording of phenotypes is costly; (2) for some economics traits with low heritability,
longevity traits, sex-limited traits, or expensive or difficult traits such as meat quality and
disease resistance, it is less accurate and inefficient; (3) the breeding process is lengthy
but necessary to collect sufficient phenotypic data to increase precision in performing the
genetic evaluation.

Many models have been utilized for the genetic evaluation of reproductive traits,
especially for interval traits, including the sire model (SM), sire–dam model (SDM), and
the animal model (AM). However, a study comparison between these models revealed that
AM could improve stability and accuracy in evaluating fertility traits in dairy cattle [98].
The SDM is comparable to the AM in terms of performance, although it is not significantly
different. The AM has the benefit of delivering EBV of cows with intermediate reliability,
and therefore it is better for interval traits.

The several traits of animal reproduction are observed as discrete outcomes. A thresh-
old model has been proposed and applied to the problems of animal breeding which
assumes that no observable normal variable is defined as a threshold. Evaluations based on
threshold models for categorical traits showed that they could provide a greater response
to selection than those derived from linear models [99].
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6.2. Marker-Assisted Selection (MAS)

MAS is the combination between traditional breeding methods and molecular genetic
methods. This method was introduced in 1900, with the concept of using specific markers
on genes that affected economic traits in animals [94]. MAS requires accurate information
about the relationship between genetic markers and related quantitative traits loci (QTL) for
more precise results [100]. It provides an opportunity to predict the genotype of superior
animals in the next generation, regardless of environmental conditions.

MAS has several advantages compared with the TAB method: (1) the process is faster
since the phenotype of an individual may be forecasted at an early stage; (2) it is more
profitable for sex-limited characteristics and difficult late-life traits; and (3) it is more useful
for crossbreeding programmed by interrogating animals with superior genetics and better
breeding value into local breeds [94]. However, the MAS technique uses a small number
of loci that only account for a small amount of genetic variation, and can thus result in a
small genetic gain [101]. Another limitation of MAS is that this method is quite expensive
and economically inefficient when applied in commercial breeding programs [102]. The
application of MAS in breeding programs is also limited because only a few markers have
been proven to have a significant impact on animals’ economic traits, and they only account
for a small percentage of genetic diversity [103].

Identifying and characterizing candidate genes and genetic variations associated with
economically significant traits is essential in animal breeding. Each candidate gene has
its own regulatory region or coding region [104]. Several potential genes associated with
reproductive traits in dairy cattle were discovered in previous studies (Table 3).

Table 3. Candidate genes that were previously associated with fertility traits in cattle.

No. Traits 1 SNP ID Chromosomes Genes 2 Type of Mutation References

1 FSCR

rs109137982 3 FCER1G missense

[105]
rs43745234 11 FSHR missense

rs110789098 6 IBSP missense
rs109629628 25 PMM2 missense
rs110660625 25 TBC1D24 missense
rs109956567 4 LEP missense

[106]rs29004508 4 LEP missense

2 NSPC

rs137601357 7 CAST missense

[105]

rs109621328 7 CD14 missense
rs109137982 3 FCER1G missense
rs41893756 18 FUT1 missense

rs109262355 20 FYB missense
3 DO rs109669573 13 BCAS1 missense

rs110217852 6 BSP3 missense
rs137601357 7 CAST missense
rs109621328 7 CD14 missense
rs109137982 3 FCER1G missense
rs109956567 4 LEP missense

[106]rs29004508 4 LEP missense
4 AFC rs41256848 11 LHR missense [107]

rs109956567 4 LEP missense
[106]rs29004508 4 LEP missense

5 CFI rs29004508 4 LEP missense [107]
6 CI rs109956567 4 LEP missense

[106]rs29004508 4 LEP missense
rs29017188 8 TLR4 missense

1 FSCR, first service conception rate; NSPC, the number of services per conception; DO, days open; AFC, age at
first calving; CFI, calving to first service interval; CI, calving interval. 2 FCER1G, fc epsilon receptor Ig; FSHR,
follicle-stimulating hormone receptor; IBSP, integrin-binding sialoprotein; PMM2, phosphomannomutase 2;
TBC1D24, TBC1 domain family member 24; LEP, leptin; CAST, calpastatin; CD14, CD14 molecule ; FCER1G,
Fc epsilon receptor Ig; FUT1, fucosyltransferase 1; FYB, FYN binding protein; BCAS1, brain enriched myelin-
associated protein 1; BSP3, binder of sperm protein 3; PIT1, pituitary transcript factor 1; LHR, luteinizing
hormone/choriogonadotropin receptor; TLR4, Toll-like receptor 4.
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6.3. Genomic Selection (GS) Method

Many SNPs covering whole genomes in animals have been discovered with genome-
sequencing technology. Based on the genotypic information from whole genomes, a
genomic selection (GS) method was proposed by using markers to estimate breeding values
with high accuracy. Genomic selection is a useful tool and has been proven to raise genetic
gain for low-heritability traits or difficult-to-measure traits [108]. Hence, this tool is suitable
for reproductive traits in dairy cattle. Studies of the GS application strategies, the factors
that influence GS accuracy, and the implementation of GS have been conducted in animal
breeding [103].

In principle, GS predicts the breeding value of each genotyped individual using high-
density (HD) markers that span the entire genome, which is subsequently referred to as
genomic estimated breeding value (GEBV). Several approaches for determining the GEBV
for cattle have been proposed, including a single-step Genomic Best Linear Unbiased
Prediction (ssGBLUP) and a weighted ssGBLUP (WssGBLUP). A hybrid matrix (H) in the
ssGBLUP is created by combining the pedigree-based relationship matrix (A) with the
genomic relationship matrix (G), and when compared to multi-step genomic predictions,
this advantage improves the accuracy and decreases the prediction bias of GEBVs [109].
However, the ssGBLUP does not assume the exact differences between the SNPs and
their biological point of view; hence, the WssGBLUP method has been proposed [110].
The WssGBLUP accounts for locus-specific variance and uses various SNP weights when
computing the G matrix [111]. These two approaches have been compared and contrasted
in various studies and are commonly used in genomic prediction studies [112,113].

GS has the potential to overcome the limitations of MAS and more correctly forecast
breeding values [114]. In MAS, only a few markers have been proven to significantly
impact economically relevant traits. GS can fully utilize genotypic information from whole
genomes in the genetic evaluation of animals, and breeding values can be predicted with
high accuracy using genetic markers alone. GS is the latest technology and promises greater
genetic advantages than TAB methods in dairy cattle. According to Gutierrez-Reinoso
et al. [115], GS has higher reliability of 73.3% to 93.5% compared to TAB of 46% to 72%,
depending on the number of progenies studied. GS also requires a relatively shorter
time than a TAB to obtain progeny testing results. Although it requires more expensive
equipment, the technology advances constantly, decreasing its cost. GS is more accurate and
unbiased for modeling with unknown parent groups to predict the genetic merit [115]. For
genetic variance estimation using pedigree matrices, GS produces high-reliability values
for young bulls without pedigree or known sires [115]. GS also produces a high genetic
gain of 50–100% for yield traits [116].

The application of GS in dairy cattle significantly increased the economic efficiency of
animal breeding programs [117]. The benefits of GS in the dairy industry are generally due
to a shorter generation interval, a reduction in costs for progeny testing, and an increase in
the accuracy of EBV and genetic gains [118,119]. According to García-Ruiz et al. [116], the
introduction of GS decreases the generation interval, especially for the sire(s) of bulls and
dam(s) of bulls path from 7 to 2.5 years and from 4 to 2.5 years, respectively. In addition,
Lund et al. [120] and Wiggans et al. [121] stated that the application of GS might improve
genomic prediction reliability by 0.8 for production traits and 0.7 for fertility traits. Positive
genetic trends also occur in low-heritability traits such as the productive life, daughter
pregnancy rate, and somatic cell score [116]. Therefore, the benefit of GS for reproductive
traits or traits with low heritability is high compared to TAB and MAS.

6.3.1. Bayesian Approaches

The data are modeled at two levels using Bayesian estimation. The first is a model
at the data level, while the second is a model at the variances of the chromosomal seg-
ments [122]. Several Bayesian statistical approaches have been applied in genomic assess-
ment, with the hypothesis of marker effect distributions differing. Meuwissen et al. [108]



Vet. Sci. 2022, 9, 163 13 of 22

presented distinct a priori distributions between the Bayes A and Bayes B approaches for
simulating the variances of the effects of the markers.

The Bayes A technique assumes that the variance-of-marker effect varies across loci.
The scaled inverted chi-square distribution is used to simulate the variances, χ−2 (v, S),
where S denotes the scale parameter, and v denotes the degree of freedom. This is a valuable
option since the resultant posterior distribution is similarly a scaled inverted chi-square
when the information from the previous distribution is joined with the information from
the data [108].

The Bayes B approach assumes variances of SNP effects in a genomic assessment
context, with many SNP contributing to zero effects and a few contributing to substantial
impacts on the trait [122]. Meuwissen et al. [108] presented a model in which a fraction
of the markers have no impact (arbitrarily set at 0.95). Because some markers have a
high likelihood of having zero variance, Gibbs sampling cannot be utilized to estimate the
effects and variances of the Bayes B model. According to Meuwissen et al. [108], the Bayes
B approach is commonly regarded as the “benchmark” in terms of genome prediction,
although it is exceedingly time consuming in terms of computing.

Habier et al. [123] expanded the Bayesian alphabet by introducing the Bayes Cπ
approach, in which the effect of SNP markers on π is considered to be zero, and a normal
prior distribution is assumed for the variances relevant to the remaining (1 − π) markers,
and the mixing parameter, π, may be inferred from the data rather than presumed to
be known. Other approaches, such as the Bayesian LASSO reported by de los Campos
et al. [124], assume that a double exponential prior distribution has also been utilized in
animal breeding. Furthermore, Erbe [125] presented the Bayes R approach, which assumes
a combination of normal prior distributions and accommodates SNPs with zero, small,
medium, and high effects more effectively. In instances where one or more QTL with
moderate or high effects exist, Bayesian regression approaches outperform GBLUP by a
small margin, but when the trait is impacted by many genes, each with a small effect,
GBLUP performs as well as or better than the Bayesian regression model [126].

Bayesian methods have some drawbacks. According to Legara et al. [127], the SNP
effects might be modeled using a Bayesian approaches if the individual SNP variances
were known and kept in the diagonal matrix B. This is different from the single-step
genomic model, which allows for flexible modeling of SNP effects in terms of the number
and (co)variance structure of fitted SNP markers. Moreover, for Bayesian SNP models
assuming heterogeneous SNP variances for the various qualities, it is no longer easy to
deduce correlations of traits at the SNP level from those at the genome level. This makes
the Bayesian models more challenging to extend to multiple traits than the BLUP SNP
models [127].

6.3.2. Multi-Step Genomic Evaluation

Several strategies have been developed since genomic selection was initially proposed
in animal breeding. A multi-step procedure was introduced by VanRaden et al. [101]
for GS in dairy cattle using field datasets. The steps in the multi-step procedure are:
(1) estimating the traditional breeding values, (2) generating fictitious observations for
genotyped animals (bulls) such as daughter yield deviations (DYD) and the degressed
evaluation (DD), (3) determining the direct genomic values (DGV) for genotyped animals
using approaches based on SNP effects or genomic connections with DYD or DD as
phenotypic observations, and (4) constructing an index based on pedigree and genomic
predictions to estimate GEBV by the formula:

GEBV = w1PA + w2DGV − w3PI

where PA denotes the parent average, and PI denotes the parental index derived from
genotyped animals’ pedigree relationships. Because only a small percentage of animals in
a lineage are genotyped, the quantity of phenotypic data required to compute DGV is often
less than that required to calculate PA [101]. In this scenario, using DGV to account for the
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normal sire–dam PA, as well as the PA computed from a selection of genotyped ancestors
in an index, can assist to enhance genomic predictions [128]. Furthermore, a previous study
found that expanding a genotyped group’s reference population had a greater influence
on prediction accuracy than increasing the number of SNP markers. Pseudo-observation
might be computed as degressed proofs (DRP) instead of DYD, which is time-consuming
and involves considerable work [121].

The multi-step approach was well suited to situations where the datasets belong to sep-
arate organizations and are condensed into a limited number of animals to genotype [128].
This includes a population with large numbers of average bulls with many daughters.
The multi-step method has some limitations. It is difficult to create a DRP that is free
of double counting when the population comprises both males and females, especially
when genotyping includes parents and their progeny [127]. Weighting factors, such as
variance components or selection index coefficients, are downsides of this strategy, as is
information loss [101,129,130]. Moreover, these disadvantages may negatively affect the use
of marker-assisted selection, especially for cows [131]. According to Misztal et al. [128] the
multi-step approach is rather complex, and it relies on the existence of animals (bulls) with
high correct EBVs based on pedigree information in its first form. Conversely, this method
also needs to construct pseudo-observations that become biased by genomic preselection
when a population contains non-genotyped animals with phenotypes because of BLUP,
and the move to a single step is necessary [132].

6.3.3. Single-Step Genomic Evaluation

Single-step genomic BLUP (ssGBLUP) was designed to solve possible issues by com-
bining phenotypes, by merging phenotypic, pedigree, and genomic links into a combined
relationship matrix. Furthermore, by substituting the connection matrix with the com-
bined matrix, pedigree-only studies may be converted to genomic analyses, and pseudo-
phenotypes are no longer required. This method also allows for the simultaneous evaluation
of non-genotyped animals and genotyped animals. It is a simple and more accurate method
that can reduce the number of steps in the evaluation [109].

Compared to multi-step genomic predictions, the ssGBLUP combines the pedigree-
based relationship matrix (A) and the genomic relationship matrix (G) into a hybrid matrix
(H). This benefit boosts the accuracy and minimizes the prediction bias of GEBVs [109]. In
addition, Patry and Ducrocq [132] reported that ssGBLUP accounts for preselection due
to pedigree BLUP, which can minimize bias, and is different from multi-step that does
not take this into account. However, the ssGBLUP does not assume the exact differences
between the SNPs and their biological point of view; hence, the WssGBLUP method has
been proposed [110]. The WssGBLUP accounts for locus-specific variance and uses various
SNP weights when computing the G matrix [111]. These two methods have been evaluated
in various studies and are commonly used in genomic prediction studies [112,113].

The previous study suggested that the ssGBLUP method is a better option than
the WssGBLUP method for crossbreeding with polygenic traits [111]. When comparing
WssGBLUP to ssGBLUP for less-polygenic variables, Lourenco et al. [133] found that
WssGBLUP might be more accurate. WssGBLUP can be beneficial for phenotypes with
a small number of causal genes. It assumes that the traits are affected by a finite number
of markers [111]. Below are some interesting factors of ssGBLUP according to Leggara
et al. [127]:

1. All relatives of genotyped individuals are automatically accounted for, as are their
performances.

2. Fitting genetic data and estimating additional effects are performed at the same time
(e.g., contemporary groups). As a result, there will be no data loss.

3. Feedback: all of a genotyped individual’s relatives benefit from the greater accuracy.
4. Extensions are simple. Because this is a linear BLUP-like estimator, it can be imme-

diately applied to more complex models (multiple traits, threshold traits, test day
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records). Any model that can be fitted with relationship matrices may also be fitted
with combined relationship matrices.

Previously, the single step method has been used to evaluate the genetics for production
traits of Thai–Holstein crossbred cattle. In a recent study, Sungkhapreecha et al. [134,135]
proposed the ssGBLUP and ssGREML method to investigate the effect of heat stress
on genetics for milk yield traits. The results revealed that the ssGBLUP technique was
more accurate than the BLUP method, while ssGREML results are not much different
from the REML method in genomic predictions. However, Buaban et al. [136] generated
GEBV using a single-step random regression test-day model (ssRR-TDM) in contrast to
an estimated breeding value (EBV) based on the pedigree-based model by utilizing the
RR-TDM approach. The results showed that ssRR-TDM raised individual accuracies by
0.22 and validation accuracies by 0.07 in comparison to RR-TDM, when only bull genotypes
were employed. Individual accuracies also increased by 0.02 with cow genotypes, while
validation accuracies increased by 0.06. Based on these findings, a single-step method is
commonly used in Thai–Holstein crossbred cattle because it generates a greater accuracy
for genomic prediction. It is also possible to use the technique in genetic evaluation for
reproductive traits in the future.

6.3.4. Accuracy of GS

GS could increase the accuracy of EBV testing at an early age [137]. The square root
of the proportion of genetic variation captured by the SNP panel (q) and the precision
with which the genetic effects captured by SNPs can be assessed are used to calculate the
accuracy of GEBV (r) [138]. The size of the reference population, the heritability of the
phenotypes in the reference dataset, and the number of different QTLs that impact the trait
are additional factors [139].

GS is now being used on a broad scale in cattle; however, it is mostly focused on
production traits [18,139]. The accuracy of GS for dairy traits in developed countries varies
from 0.50 to 0.85 for production traits with medium to high heritability to roughly 0.20–0.50
for fertility and survival variables with lower heritability [140,141]. According to Hayes
et al. [142], ssGBLUP has a greater accuracy of 0.69 and 0.60 for production traits (protein
yield and protein percentage), respectively, than the multi-step approach of 0.67 and 0.54.
In other studies related to milk yield and fat percentage, the accuracy of these steps is
higher than multi-step methods [143,144]. Recently, in Thai dairy cattle, a GS study on
milk production traits and somatic cell score using a single-step method revealed increased
average individual accuracies by 0.22 [136].

Several studies on GS were reported in dairy cattle regarding fertility traits, including
AFC, the non-return rate, and calving ease [143]. The accuracy of prediction for AFC using
the ssGBLUP model was 0.299 in the Thai crossbred cattle [144] and 0.56 in the Gyr dairy
cattle breed [145]. For the non-return rate, the accuracy of genomic prediction was 0.39 in
Canadian Holstein cows [145]. A GS study on calving ease in Holsteins (Canadian) showed
that the accuracy performance was 0.69 [109]. Most researchers use the ssGBLUP method
for reproductive traits because it has higher accuracy. In a previous study, ssGBLUP had
higher accuracy than multi-step analysis, 0.43 vs. 0.42, respectively [142].

6.3.5. Challenges and Opportunities in Applying GS

Thailand has had a dairy cattle breeding development program for about 60 years.
They have attempted to produce its tropical dairy breed based on Holstein Friesian (HF)
and indigenous Thai cattle through selection and inter se mating. Improving reproductive
performance and resistance to heat is one of the main objectives of this crossbreeding pro-
gram. The central database system of the Bureau of Biotechnology for Livestock Production,
Department of Livestock Development, hosts milk-production data, reproduction data,
and pedigree information. Several studies on genetic evaluation of reproductive traits in
Thai–Holstein crossbred cattle have been carried out using these data [9,50,146]. THI may
be estimated using climate data acquired from the nearest meteorological center based on
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postal code to evaluate heat resistance [12,135]. The small number of prospective bulls
selected from Thailand’s dairy population, however, might be a problem. This matter will
limit the intensity of selection and inaccurate prediction of young animals if they are still
using the traditional evaluation method. To increase the size of the reference population,
Thai government’s bureau began collecting genotypes of daughter-proven bulls and phe-
notyped cows in 2015 [136]. These genotypic data could be used to estimate GEBV, which
gives a higher accuracy value than traditional methods. Sungkhapreecha et al. [134,135]
previously estimated GEBV using the ssGBLUP method for milk yield and heat tolerance in
Thai–Holstein crossbreed cattle. The results indicated that the ssGBLUP technique’s predic-
tions were more accurate than the BLUP method’s, with a ratio of accuracy of 32–54% [134].
There is still no research on GS for fertility traits in Thai dairy cows under heat stress;
hence, this is an excellent opportunity, considering the availability of data from the Thai
government’s bureau. The application of GS in Thai–Holstein crossbred cattle is expected to
reduce generation intervals to simplify the selection process and reduce maintenance costs.
Using the ssGBLUP method will also provide an overview of the GS research reference
model for improving reproductive traits under heat stress, especially in tropical countries.

Most dairy farmers in Thailand (>80%) are smallholders with an average of 30 animals
per farm [146]. Smallholder farmers have two key challenges: (i) lack of infrastructure and
(ii) human capacity, notably in the areas of technological competency, data processing, and
interpretation [147]. The small genetic trends in Thai dairy populations imply that farmer
capacity to learn new technology and absorb new information for improving dairy perfor-
mance and profitability may be limited [148,149]. To overcome these limitations, Thai dairy
farmers will require a program that incorporates systematic training and ongoing assistance
to increase milk production and earnings in a long-term way. Furthermore, strengthening
collaboration is needed among academics, industry, farmers’ groups, the public sector,
charitable organizations, and development agencies to advance the development and
implementation of genetic improvement programs.

7. Conclusions

Genetic evaluations for reproductive traits have been carried out in dairy cattle, espe-
cially in Thailand. The genetic variance for reproductive traits in livestock is generally low,
indicated by low heritability values (<0.1). However, there were moderate to strong genetic
correlations between reproductive traits and between reproductive traits and production
traits. THI should be included in the model for genetics evaluation under heat stress.
Several approaches have been used for the genetic selection of reproductive traits, and GS
may be the appropriate genetic technique for Thai dairy cattle. For reproductive traits in
dairy cattle, the single-step genomic BLUP (ssGBLUP) technique is more accurate than
the multi-step method. The implementation of GS for reproductive traits in Thai–Holstein
cattle is interesting to study in the future because it has not been widely adopted.

Author Contributions: Conceptualization, A.F., M.D., V.C., and W.B.; methodology, A.F., M.D., and
W.B.; writing—original draft preparation, writing—review and editing, A.F., M.D., and W.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the KKU Scholarship for ASEAN and GMS Countries No.
588/2021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.



Vet. Sci. 2022, 9, 163 17 of 22

References
1. Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al.

Climate Change 2021: The Physical Science Basis, the Working Group I contribution to the Sixth Assessment Report; Cambridge University
Press: Cambridge, UK, 2022; pp. 1–35.

2. Thammahakin, P.; Yawongsa, A.; Rukkwamsuk, T. Effect of Heat Stress on Reproductive Performance of Dairy Cows under
Tropical Climate: A Review. J. Kasetsart Vet. 2020, 30, 122–133.

3. Kachenchart, B.; Kamlangkla, C.; Puttanapong, N.; Limsakul, A. Urbanization effects on surface air temperature trends in
Thailand during 1970–2019. Environ. Eng. Res. 2020, 26, 200378. [CrossRef]

4. Mader, T.L.; Davis, M.S.; Brown-Brandl, T. Environmental factors influencing heat stress in feedlot cattle. J. Anim. Sci. 2006, 84,
712–719. [CrossRef] [PubMed]

5. Berman, A.; Horovitz, T.; Kaim, M.; Gacitua, H. A comparison of THI indices leads to a sensible heat-based heat stress index for
shaded cattle that aligns temperature and humidity stress. Int. J. Biometeorol. 2016, 60, 1453–1462. [CrossRef] [PubMed]

6. Wang, X.; Bjerg, B.S.; Choi, C.Y.; Zong, C.; Zhang, G. A review and quantitative assessment of cattle-related thermal indices.
J. Therm. Biol. 2018, 77, 24–37. [CrossRef]

7. Schüller, L.; Michaelis, I.; Heuwieser, W. Impact of heat stress on estrus expression and follicle size in estrus under field conditions
in dairy cows. Theriogenology 2017, 102, 48–53. [CrossRef]

8. Nasr, M.A.; El-Tarabany, M.S. Impact of three THI levels on somatic cell count, milk yield and composition of multiparous
Holstein cows in a subtropical region. J. Therm. Biol. 2017, 64, 73–77. [CrossRef]

9. Boonkum, W.; Misztal, I.; Duangjinda, M.; Pattarajinda, V.; Tumwasorn, S.; Buaban, S. Short communication: Genetic effects of
heat stress on days open for Thai Holstein crossbreds. J. Dairy Sci. 2011, 94, 1592–1596. [CrossRef]

10. Ravagnolo, O.; Misztal, I. Effect of Heat Stress on Nonreturn Rate in Holsteins: Fixed-Model Analyses. J. Dairy Sci. 2002, 85,
3101–3106. [CrossRef]

11. Thulani, S.; Maliviwe, M.; Ayodeji, I.P. Heat tolerance level in dairy herds: A review on coping strategies to heat stress and ways
of measuring heat tolerance. J. Anim. Behav. Biometeorol. 2019, 7, 39–51. [CrossRef]

12. Boonkum, W.; Misztal, I.; Duangjinda, M.; Pattarajinda, V.; Tumwasorn, S.; Sanpote, J. Genetic effects of heat stress on milk yield
of Thai Holstein crossbreds. J. Dairy Sci. 2011, 94, 487–492. [CrossRef] [PubMed]

13. Bohlouli, M.; Shodja, J.; Alijani, S.; Eghbal, A. The relationship between temperature-humidity index and test-day milk yield of
Iranian Holstein dairy cattle using random regression model. Livest. Sci. 2013, 157, 414–420. [CrossRef]

14. Rahbar, R.; Aminafshar, M.; Abdullahpour, R.; Chamani, M. Genetic analysis of fertility traits of Holstein dairy cattle in warm
and temperate climate. Acta Sci. Anim. Sci. 2016, 38, 333–340. [CrossRef]

15. Sigdel, A.; Liu, L.; Abdollahi-Arpanahi, R.; Aguilar, I.; Peñagaricano, F. Genetic dissection of reproductive performance of dairy
cows under heat stress. Anim. Genet. 2020, 51, 511–520. [CrossRef]

16. Wall, E.; Simm, G.; Moran, D. Developing breeding schemes to assist mitigation of greenhouse gas emissions. Animal 2010, 4,
366–376. [CrossRef]

17. Nguyen, T.T.; Bowman, P.J.; Haile-Mariam, M.; Pryce, J.; Hayes, B. Genomic selection for tolerance to heat stress in Australian
dairy cattle. J. Dairy Sci. 2016, 99, 2849–2862. [CrossRef]

18. Silva, M.V.; dos Santos, D.J.; Boison, S.A.; Utsunomiya, A.; Carmo, A.S.; Sonstegard, T.S.; Cole, J.B.; Van Tassell, C.P. The
development of genomics applied to dairy breeding. Livest. Sci. 2014, 166, 66–75. [CrossRef]

19. Department of Livestock Development. Summary of Livestock Information by Animal Species, Fiscal Year 2021. Available online:
https://ict.dld.go.th/webnew/images/stories/stat_web/monthly/2564/jun64/2---Dairy.pdf (accessed on 30 July 2021).

20. Buaban, S.; Puangdee, S.; Duangjinda, M.; Boonkum, W. Estimation of genetic parameters and trends for production traits of
dairy cattle in Thailand using a multiple-trait multiple-lactation test day model. Asian-Australas. J. Anim. Sci. 2020, 33, 1387–1399.
[CrossRef]

21. VanRaden, P.; Sanders, A. Economic Merit of Crossbred and Purebred US Dairy Cattle. J. Dairy Sci. 2003, 86, 1036–1044. [CrossRef]
22. Chanvijit, K.; Duangjinda, M.; Pattarajinda, V.; Reodecha, C. Model comparison for genetic evaluation of milk yield in crossbred

Holsteins in the tropics. J. Appl. Genet. 2005, 46, 387–393.
23. Adisu, A.; Zewdu, W. Reproductive Performance of Indigenous Cow Breeds of Ethiopia: A Review. J. Anim. Health Behav. Sci.

2021, 5, 105.
24. Tadesse, G. Reproductive Performance and Wastage in Large Ruminant (Cattle) in Ethiopia-Review. J. Dairy Vet. Sci. 2018, 8,

555729. [CrossRef]
25. Alem, W.T. Review on Reproductive and Productive Performance of Dairy Cow in Ethiopia. Int. J. Ecotoxicol. Ecobiol. 2021, 6, 14.
26. Buaban, S.; Sanpote, J.; Duangjinda, M. Estimates of genetic parameters for dairy crossbred female fertility traits. Khon Kaen Agric.

J. 2018, 46, 767–778.
27. Yodklaew, P.; Koonawootrittriron, S.; Elzo, M.A.; Suwanasopee, T.; Laodim, T. Genome-wide association study for lactation

characteristics, milk yield and age at first calving in a Thai multibreed dairy cattle population. Agric. Nat. Resour. 2017, 51,
223–230. [CrossRef]

28. Hutchison, J.; VanRaden, P.; Null, D.; Cole, J.; Bickhart, D. Genomic evaluation of age at first calving. J. Dairy Sci. 2017, 100,
6853–6861. [CrossRef]

http://doi.org/10.4491/eer.2020.378
http://doi.org/10.2527/2006.843712x
http://www.ncbi.nlm.nih.gov/pubmed/16478964
http://doi.org/10.1007/s00484-016-1136-9
http://www.ncbi.nlm.nih.gov/pubmed/26817655
http://doi.org/10.1016/j.jtherbio.2018.08.005
http://doi.org/10.1016/j.theriogenology.2017.07.004
http://doi.org/10.1016/j.jtherbio.2017.01.004
http://doi.org/10.3168/jds.2010-3491
http://doi.org/10.3168/jds.S0022-0302(02)74397-X
http://doi.org/10.31893/2318-1265jabb.v7n2p39-51
http://doi.org/10.3168/jds.2010-3421
http://www.ncbi.nlm.nih.gov/pubmed/21183060
http://doi.org/10.1016/j.livsci.2013.09.005
http://doi.org/10.4025/actascianimsci.v38i3.31377
http://doi.org/10.1111/age.12943
http://doi.org/10.1017/S175173110999070X
http://doi.org/10.3168/jds.2015-9685
http://doi.org/10.1016/j.livsci.2014.05.017
https://ict.dld.go.th/webnew/images/stories/stat_web/monthly/2564/jun64/2---Dairy.pdf
http://doi.org/10.5713/ajas.19.0141
http://doi.org/10.3168/jds.S0022-0302(03)73687-X
http://doi.org/10.19080/JDVS.2018.08.555729
http://doi.org/10.1016/j.anres.2017.04.002
http://doi.org/10.3168/jds.2016-12060


Vet. Sci. 2022, 9, 163 18 of 22

29. Ettema, J.; Santos, J. Impact of Age at Calving on Lactation, Reproduction, Health, and Income in First-Parity Holsteins on
Commercial Farms. J. Dairy Sci. 2004, 87, 2730–2742. [CrossRef]

30. Evans, R.; Wallace, M.; Garrick, D.; Dillon, P.; Berry, D.; Olori, V. Effects of calving age, breed fraction and month of calving on
calving interval and survival across parities in Irish spring-calving dairy cows. Livest. Sci. 2006, 100, 216–230. [CrossRef]

31. Pirlo, G.; Miglior, F.; Speroni, M. Effect of Age at First Calving on Production Traits and on Difference Between Milk Yield Returns
and Rearing Costs in Italian Holsteins. J. Dairy Sci. 2000, 83, 603–608. [CrossRef]

32. Cooke, J.S.; Cheng, Z.; Bourne, N.E.; Wathes, D.C. Association between growth rates, age at first calving and subsequent fertility,
milk production and survival in Holstein-Friesian heifers. Open J. Anim. Sci. 2013, 3, 1–12. [CrossRef]
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