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Women that become mothers face notable physiological adaptations during this

life-period. Neuroimaging studies of the last decade have provided grounded evidence

that women’s brains structurally change across the transition into motherhood. The

characterization of this brain remodeling is currently in its early years of research. The

current article reviews this scientific field by focusing on our longitudinal (pre-to-post

pregnancy) Magnetic Resonance Imaging (MRI) studies in first-time parents and other

longitudinal and cross-sectional studies of parents. We present the questions that are

currently being answered by the parental brain literature and point out those that have

not yet been explored. We also highlight potential confounding variables that need to be

considered when analyzing and interpreting brain changes observed during motherhood.

Keywords: mother, neuroplasticity, MRI, maternal behavior, pregnancy

INTRODUCTION

Motherhood is a transformative experience for women. It confers substantial anatomical and
physiological changes in the endocrine, cardiovascular, respiratory, renal, and musculoskeletal
systems of themother (1). Neuroimaging studies of the last decade have confirmed that the women’s
brain also undergoes visible structural changes during the motherhood transition. However, the
nature of this brain remodeling is still in its early years of research.

In 2017, our group led one of the most notable longitudinal projects on this behalf: a study
that tracked the neuroanatomical MRI data of primiparous women across three sessions: a few
months before their first pregnancy, during the early postpartum, and at 2 years after parturition,
using fathers and non-parents as comparison groups (2). This study found prominent pre-to-
post pregnancy volumetric Gray Matter (GM) reductions in theory-of-mind regions in first-time
mothers. Since then, we have conducted several pre-to-post pregnancy longitudinal MRI studies
to characterize the initially observed GM reductions and understand the potential underlying
mechanisms. Here, we cover the brain structural findings that we have found so far and discuss
variables that need to be considered to correctly interpret brain changes during the motherhood
transition. The manuscript is divided into the main questions that our research group and other
groups have aimed to directly or indirectly respond to through structural MRI. First, we summarize
the neuroanatomic changes that have been detected through the motherhood transition. Then,
we discuss the following topics: 1) which are the mediating factors behind these changes? 2)
which are the underlying neural mechanisms? 3) what do we know about the changes’ temporal
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course? and, 4) are deviations of these adaptations related to
the emergence of postpartum mental health disorders? We also
contemplate other factors not directly related to motherhood
as potential confounders of the observed changes. This review
article aims to provide cohesion to the structural parental brain
literature and set future directions for those critical questions that
remain unresolved.

For the sake of efficiency, during the manuscript, we will
refer to mothers as persons who identify as women that undergo
pregnancy through natural or assisted processes. Future studies
need to address the unique brain processes of mothers that do
not undergo pregnancy.

FIGURE 1 | Schematic representation of the maternal brain GM volume findings and suggested trajectories. (A) Findings of the longitudinal MRI structural studies

tracking the maternal brain. Represented studies are (2–7). (B) Hypothetical trajectories in GM volume across pregnancy and postpartum periods.

NEUROANATOMIC CHANGES DURING
THE TRANSITION TO MOTHERHOOD

Existing human neuroimaging studies have applied both
longitudinal and cross-sectional designs to track the short-term
effects of pregnancy on the brain. Figure 1A and Table 1 sum
up and outline the most relevant findings from structural studies
that track brain changes during the transition to motherhood.

The study of the women’s brain changes associated with
pregnancy dates to the first half of the twentieth century. In
1931, enlargements of the pituitary gland, one of the primary
sources of prolactin during pregnancy, were first observed in
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TABLE 1 | Summary of the characteristics and findings of the longitudinal MRI structural studies tracking the maternal brain.

Oatridge et al. (7) Kim et al. (6) Hoekzema et al. (2) Lisofsky et al. (5) Luders et at. (4) Zhang et al. (3)

Period * Pre-pregnancy (n = 2)

➤22.5 weeks gestation (n =

4) ➤before delivery (n = 9)

➤6 weeks pp (n = 9) ➤24

weeks pp (n = 7) ➤40

weeks pp (n = 3) ➤1 year

pp (n = 3)

3 weeks pp ➤3.5 months

pp

Pre-pregnancy ➤2 months

pp

2 months pp ➤5 months pp 1.5 days pp ➤5 weeks pp 1 year pp ➤2 years pp

Participants 9 mothers 19 mothers 25 mothers and 25

nulliparous controls

24 mothers and 24

nulliparous women

14 mothers 21 mothers

Primiparous Not reported 58% 100% 100% 50% 100%

Age at baseline

(mean ± sd)

Mean: 31 years. Range:

20–38 years.

33.27 ± 6.07 years Mothers: 33.36 ± 3.97

years. Nulliparous: 31.10 ±

5.63 years

Mothers: 28.38 ± 3.41

years. Nulliparous: 25.42 ±

2.95 years

32.8 ± 4.0 years 30.03 ± 2.75 years

Processing method Contour and thresholding

semiautomatic technique

Voxel-based morphometry

toolbox (SPM2)

Voxel-based morphometry

toolbox (SPM12)

Voxel-based morphometry

toolbox (SPM8)

Voxel-based morphometry

toolbox (SPM8)

Volume in Computational

Anatomy toolbox (SPM12)

Contrast and

threshold

- Post > Pre (p < 0.05

FDR-corr, extent > 100

voxels)

Mothers (Post-Pre) <

Nulliparous women

(Post-Pre) (peak level p <

0.05, FWE-corr)

Group by time interaction (p

< 0.05 FWE-corr, exten t

>200 voxels)

Post > Pre (peak level p <

0.001, FWE-corr)

Post > Pre (peak level p <

0.05, FDR-corr)

Direction Brain size decreases until

delivery, then increases

GM volume increases GM volume decreases GM volume increases GM volume increases GM volume decreases

MODIFIED REGIONS

Frontal regions R superior frontal Superior medial frontal Superior frontal

Medial frontal Medial frontal

Middle frontal L Middle frontal Middle frontal Middle frontal

Medial orbitofrontal

L inferior orbitofrontal

L inferior frontal Inferior frontal L inferior frontal Inferior frontal

L Central and frontal

operculum

L Superior Frontal Ventro medial prefrontal

Precentral R medial precentral Precentral

R Paracentral

Temporal regions L superior temporal Superior temporal

Middle temporal

Inferior temporal

Fusiform

Parietal regions Precuneus Precuneus R precuneus R precuneus

Superior parietal L Superior parietal

Inferior parietal

(Continued)
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TABLE 1 | Continued

Oatridge et al. (7) Kim et al. (6) Hoekzema et al. (2) Lisofsky et al. (5) Luders et at. (4) Zhang et al. (3)

R middle occipital

Postcentral R postcentral Postcentral

Insular cortex Insula L Insula L insula

Cingulate cortex R anterior cingulate Anterior/posterior cingulates Anterior cingulate

Cingulate

Subcortical regions

L hippocampus

R Parahippocampal Parahippocampal R Parahippocampal

L Nucleus accumbens

R Thalamus Thalamus Thalamus

Cerebellum Cerebellum R Cerebellum

Caudate L caudate Caudate

Substantia nigra

R amygdala

R Putamen

Mammilary body

R globus pallidum

Hypothalamus

L brainstem (pons, medulla)

Additional structural

findings **

Ventricular size increases

until delivery, then

decreases

Cortical thickness and area

decreases (Freesurfer v5.3)

GM decreases maintained

up to 2 years pp

Decreased BRAIN age

index (8)

R hippocampus

(subiculum,CA2 and

CA3) (9) and amygdala

increases (10)

WM increases and cortical

thickness decreases.

Cross-sectional analysis

mothers vs nulliparous

women: lower GM and

cortical thickness, higher

WM and gyrification index

GM decreases maintained

up to 6 years pp (11)

Flattening of the cortex (12)

L nucleus accumbens

decreases (13)

*Periods were reported as the mean time-points when the scans were acquired. **The additional structural findings come from other studies or analyses that have used the same participants sample. pp, postpartum; FDR, false discovery

rate; FWE, family wise error; GM, gray matter; WM, white matter; L, left hemisphere; R, right hemisphere; p, p-value.
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deceased pregnant women (14) and were later corroborated by
in-vivo MRI of this structure (15–17). The gradual increase of
the pituitary gland during pregnancy is thought to reflect an
estrogen-stimulated proliferation and hypertrophy of prolactin
cells (18). Besides the pituitary gland volume assessments, the
first longitudinal study that tracked the whole brain found
increased ventricles and reduced outer border of the brain
peaking at parturition in a small sample of pregnant women (7).

In 2017, our research group longitudinally compared the
brains of first-time mothers from preconception to 2 months
postpartum (pre-to-post hereafter) and found pronounced GM
volume reductions within cortical regions that highly overlapped
with the theory-of-mind or Default Mode (DM) network
(2). The modified structures included frontal and temporal
areas, precuneus, left insula, anterior cingulate cortex, and left
hippocampus and parahippocampal regions. Besides, the pre-to-
post pregnancy cortical changes predicted the quality of mother-
to-infant attachment and the absence of hostility toward their
babies. Such reductions were maintained at 2 years after giving
birth, except for a partial left hippocampal volume recovery
(2). We then extended this research by reporting that the pre-
to-post reductions reflected an overall flattening of the cortex
characterized by decreases in cortical thickness, surface area,
local gyrification index, sulcal depth, and sulcal length, as well as
increases in sulcal width (12). In addition, a recent study using the
same prospective dataset of first-time mothers reported volume
reductions within the left ventral striatum –a subcortical region
containing the nucleus accumbens that acts as the core of the
maternal reward system (13).

Other longitudinal studies have approached this question by
analyzing how the brain changes during the postpartum period
(3–6, 8–10). Luders et al. (8) applied a brain age algorithm
to a prospective dataset of mothers and found that mothers’
brains were considerably younger at 4–6 weeks postpartum
compared to at 1–2 days after childbirth and suggested that such
“rejuvenation” reflected GM increases, rather than decreases. The
same sample of mothers also presented GM increases within
the inferior frontal, precuneus, precentral, and postcentral gyri
occipital and operculum regions, and subcortical regions such
as the thalamus and caudate (4), the right CA1 and CA3
hippocampal regions (9), and the superficial and centromedian
regions of the amygdala (10). Kim et al. (6) scanned mothers
at a later postpartum period (at 2–4 weeks and at 3–4 months
after birth) and found increasing GM trends in similar frontal,
parietal and subcortical areas, but the GM increases further
extended to the superior temporal gyrus, cingulate cortex,
insula, hypothalamus, putamen, globus pallidum, cerebellum
and brainstem. In addition, the higher the volume within the
subcortical regions, the higher the maternal positive perception
of her baby (6). Lisofsky et al. (5) applied a similar postpartum
design to Kim et al. (6) and extended it by including a control
group of nulliparous women and by excluding multiparous
participants. Compared to non-mothers, mothers displayed GM
volume increases in anterior cingulate cortex, middle frontal
and medial prefrontal regions, cerebellum, and left nucleus
accumbens, from 1–2 to 4–5 months postpartum (5). Changing
regions were similar to those reported by Kim et al. (6), but less

in number, likely due to the inclusion of a nulliparous control
group. Moreover, mothers had smaller GM volumes at 1–2
months postpartum compared to non-mothers, and this volume
difference diminished at 3–4 months postpartum (5). This
finding suggests that the postpartum GM increases are preceded
by initial reductions, in agreement with the results of Hoekzema
et al. (2). Notably, this study also found that the younger the
mothers were, the stronger the GM increases from 1–2 to 3–4
months postpartum, suggesting that samples with older mothers
might display different GM postpartum trajectories. Finally,
Zhang et al. (3) scanned primiparous mothers at 8 months
and 2 years after birth and found GM reductions and white
matter (WM) increases in frontal areas, superior parietal gyrus,
precuneus, and insula, WM increases in temporal regions and
GM reductions in subcortical regions such as parahippocampal
gyrus, thalamus, caudate, and cerebellum, which were positively
associated with the mother’s empathic abilities. Similarly, the
authors found lower GM and higher WM volumes when
comparing the mothers’ initial postpartum scans with non-
mothers’ scans (3). Most of the changing regions coincided with
the longitudinal analysis with mothers, while middle temporal,
anterior cingulate, putamen, and globus pallidum were uniquely
modified. This suggests that such regions might change at an
earlier postpartum state [in agreement with the results of Kim
et al. (6)] but are no longer modified during late postpartum.

Of note, many of the modified regions found by these
longitudinal studies coincide (Table 1). Cortical regions that
consistently change in mothers include frontal areas, superior
temporal and parietal gyri, precuneus, postcentral, and precentral
gyri, anterior cingulate cortex and insula, most of which
are DM nodes, and common subcortical regions are the
hippocampus, amygdala, thalamus, caudate, nucleus accumbens,
and cerebellum.

Cross-sectional designs have also found GM structural
variations in the maternal brain. Lisofsky et al. (19) found that, as
compared to nulliparous women (N = 30), early postpartal first-
time mothers (N = 30) had lower volume in the left putamen, a
striatal region involved in navigation strategies. Also, the higher
the prepartal estrogen levels and allocentric navigation strategy
(flexible learning) vs. egocentric navigation strategy (stimulus-
response learning) in mothers, the greater postpartal reductions
the mothers displayed within the left putamen (19). Kim et al.
(20) detected a positive association between postpartum months
and prefrontal cortical thickness in a group of 39 first-time
mothers with diverse socioeconomic and racial backgrounds,
and these results were independent of the mother’s age, race,
income levels or depressive symptoms. Moreover, higher cortical
thickness within those prefrontal regions was associated with
higher self-reported parental efficacy (20).

Brain regions whose structure changes in mothers (Table 1)
are consistent with functional modifications reported during
postpartum. A group of event-related functional MR studies
scanned mothers at 48 h of delivery and again at 4–7 weeks
postpartum and found that the later postpartum session was
characterized by lower activity during response inhibition within
inferior frontal, anterior cingulate and precentral regions (21),
higher emotion reactivity within the insula and frontal regions
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(22), and decreased reactivity during emotional anticipation in
the anterior cingulate cortex (23). Also, resting-state functional
MR (rsfMRI) acquisitions of first-time mothers at 1 and 2
year postpartum revealed changes in the local neural activity
strength and coherence of DM regions such as precuneus,
cingulate, insula, and frontal and temporal regions between
these two time points (24). Finally, Dufford et al. (25) found
an association between postpartum months and resting-state
functional connectivity between the left amygdala and the
anterior cingulate gyrus, left nucleus accumbens, caudate, right
putamen, left pallidum, and left cerebellum, and between the
right amygdala and the caudate. These findings indicate that
structural and functional changes co-occur in overlapping DM
and subcortical regions during the transition into motherhood.

Taken together, literature suggests that motherhood is
associated with dynamic brain adaptations in cortical regions that
overlap with the DM/ theory-of-mind network and subcortical
reward regions. These adaptations seem to differ in magnitude
and direction depending on the time frame studied. Specifically,
longitudinal studies indicate a GM volume decrease (2, 7) and
a flattening of the cortex (12) in mothers scanned before and
after pregnancy, followed by volume increases during the early
postpartum (4–7, 9, 10), and volume decreases again during the
late postpartum (3). Finally, changes in GM volumes do not reach
pre-pregnancy levels at 2 years (2) or 6 years (11) postpartum.
If one were to unify these longitudinal results, several GM
structural trajectories emerge as plausible, which are outlined
in Figure 1B. First, GM might decrease in volume during
pregnancy, increase right after birth until reaching baseline
levels and fall again late postpartum (Figure 1B, Option 1).
Alternatively, the prenatal GM decrease might be more abrupt
during the peripartum period, and postnatal trajectories might
not reach pre-pregnancy baseline levels (Figure 1B, Option 2).
Another possibility would be a combination of the prenatal and
postnatal trajectories reflected in Options 1 and 2 (Figure 1B,
Option 3).

WHICH ARE THE MEDIATING FACTORS?

Researchers have not disentangled yet which factors trigger
and coordinate the brain morphometric changes observed in
mothers. Theoretically, these changes could be mediated either
by intrinsic pregnancy-related hormonal factors, by extrinsic
environmental factors that translate to internal signals, or a
combination of both. As discussed in the previous section,
the brain adaptations to motherhood are not linear but
instead seem to differ during pregnancy and postpartum, two
periods characterized by unique physiological events (gestation
vs. lactation), endocrine fluctuations (26, 27), and immune
responses (28). This difference is also observed from a
psychological point of view. Whereas an expectant mother often
engages in imagination and simulation, the brain of a postpartum
mother often engages in executive functions for planning the
tasks necessary to take care of the newborn. It is therefore
reasonable to think that the factors that mediate the neural
changes in mothers might be distinct before and after the birth.

Pregnancy Hormones
The transition to motherhood is characterized by unparalleled
hormonal fluctuations that orchestrate the physiological changes
that mark pregnancy, parturition, and lactation (26, 27, 29, 30).
Sex-steroid hormones such as progesterone and estradiol (E2)
are mainly produced by the placenta during pregnancy (31).
Accordingly, they increase steadily across the three trimesters, fall
off rapidly at parturition after placental separation, and remain
low during postpartum (29, 30). Oxytocin and prolactin are
neurohormones synthesized by the hypothalamus and anterior
pituitary and are released both centrally and peripherally
from the posterior and anterior pituitary, respectively (32, 33).
Oxytocin levels remain inhibited during pregnancy and rise at
parturition, following a pulsatile secretion pattern to regulate
uterine contractions and stimulate milk ejection (30). Prolactin
levels increase during pregnancy, to prepare the breasts for
lactation (29, 30). Prolactin also stimulates lactogenesis in the
breast epithelial cells [(26), see section Lactation], but the
high progesterone levels during pregnancy inhibit this process,
ensuring that lactation does not initiate beforehand [(34),
see section The prolactin system. Preparation for lactation].
Progesterone drops after delivery releasing prolactin from
inhibition and therefore enabling milk production [(34), see
section The prolactin system. Preparation for lactation]. Once
established, lactation is sustained by the synchronized action
of oxytocin and prolactin, whose secretion is triggered by the
baby suckling (30). Prolactin maintains milk production while
oxytocin stimulates the milk ejection (30). Aside from their
peripheral functions, these hormones are also synthesized and
released in the brain, where they act as neuromodulators or
neurotransmitters of the maternal brain circuitry (35).

In animals, maternal behavior is triggered by the hormonal
events of late pregnancy and parturition (35). Oxytocin
and estradiol (E2) prime the medial preoptic area (mPOA)
region so that maternal behavior emerges. The activation
of maternal behavior involves functional plasticity through
synaptic strengthening and inhibition, and structural plasticity
through modifications of the dendrites, soma size, glial cells, or
neurogenesis. These modifications affect critical regions of the
maternal circuit (mPOA, hippocampus, olfactory bulb, and PFC)
and translate into visible macroscopic structural changes with
neuroimaging techniques (36) as well as into behavioral changes.

In humans, the primary approach to investigate how
hormones impact the brain is to analyze the women’s brain
during natural steroid hormonal transitional periods. The
common thread of every woman’s hormonal transition, either
natural (menstrual cycle, puberty, pregnancy and menopause) or
assisted (oral contraceptives and hormone replacement therapy)
are fluctuations of the E2 steroid hormone. Although mainly
synthesized by the gonads, E2 can also be secreted within many
brain regions, including the hippocampus, where it exerts rapid
cell-to-cell paracrine effects and regulates memory and learning
processes (37). E2 fluctuations have been associated with altered
neuroplasticity in female rodents across their lifespan (38). In
humans, transitional periods characterized by rapid sex-steroid
fluctuations such as puberty, the menstrual cycle, contraceptive
use, menopause, and hormone therapy are characterized by
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visible structural and functional modifications of the brain
(39, 40). A recent dense-sampling rsfMRI study across one
entire menstrual cycle showed that peaks of estradiol confer
increased coherence across the brain and increased within-
network integration in the DM network (41). The same dense-
sampling protocol was repeated under contraceptive use (42).
The authors found that high progesterone levels rendered
altered GM volumes within medial temporal areas -including
the hippocampus- during the natural menstrual cycle, and
progesterone suppression induced by contraceptives altered
these cycle-dependent effects. Cross-sectional studies have also
found interactions between hormonal contraceptive use and GM
structure within the right putamen (43), left amygdala, and
left parahippocampal regions (44). Notably, all these regions
coincide with those where women display structural changes
when becoming mothers for the first time (Table 1), suggesting
that sex-steroid hormones might modulate DM and subcortical
networks activity and structure across a woman’s lifespan.
Beyond the effects of estradiol and progesterone, pregnancy
outcomes -including the emergence of maternal behavior- are
indeed the result of a complex interplay between sex-steroid and
non-sex-steroid hormones (such as oxytocin and prolactin). For
instance, at the end of a rat’s pregnancy, estrogen activates mPOA
neurons provided that progesterone levels are already low (45).
Once primed, this region becomes responsive to oxytocin (46)
and prolactin (47), which are essential for the display of maternal
behavior and breastfeeding (26, 47). Also, the bursts of oxytocin
and prolactin during peripartum are subject to the release
of magnocellular neurons and anterior pituitary, respectively,
from a tonic progesterone and opioid-mediated inhibition that
operates during pregnancy (48). Similar to these pregnancy
outcomes, neuroplasticity events occurring during motherhood
transition are likely to be mediated by the interaction of different
fluctuating hormones.

Adolescence is the transitional period closest to pregnancy in
terms of hormonalmilieu, since both periods are characterized by
steady increases in sex-steroid hormones. Moreover, widespread
GM brain changes (12) and increased risk for mental health
disorders (49, 50) have been described in both transitions.
Given these similarities, we hypothesized that a similar profile
of brain morphometric changes was operating in pregnancy
and adolescence. To test this hypothesis, we compared the
longitudinal MR changes that take place in first-time mothers
with those occurring in a sample of female adolescents (12).
By doing so, we showed that the morphometric changes
occurring during the transition to motherhood are comparable
in magnitude, shape and direction to those occurring during the
adolescence period. Specifically, we quantified the change over
time in a detailed set of metrics that fully characterize the brain’s
anatomy using MRI prospective data of three groups: 25 female
adolescents who had never been pregnant, a group of 25 first-
time adult mothers, and a group of 20 adult females who had
never been pregnant. Both adolescence and pregnancy groups
displayed total brain volume reductions together with decreases
in cortical thickness, surface area, local gyrification index, sulcal
depth, and sulcal length, as well as increases in sulcal width. These
findings suggest that the sex-steroid hormonal fluctuations of

pregnancy and adolescence exert similar morphometric effects
on the cortical mantle.

Parenting Experience
Although the above literature leads us to consider pregnancy-
induced hormones as the primary mediators of maternal brain
changes, there are also reasons to think that experience-
dependent changes associated with approaching parenthood—
which include, but are not restricted to, the interaction
with the baby—might also account for the pattern of neural
changes observed in mothers. Brain plasticity can also be
induced by environmental signals (51). In many rodent species,
once the maternal circuit is primed by the endocrine events
associated with pregnancy and parturition, maternal behavior
is independent of hormonal control and is further maintained
by environmental cues derived from the interaction with the
offspring [(52) Chapter 3]. When the hormonal events of
gestation wane, olfactive and tactile sensory inputs coming from
interacting with and nursing the pups stimulate the maternal
circuit and maintain maternal behavior. This effect is not limited
to dams that go through pregnancy and parturition. In rats,
the mere exposure to foster pups through a “sensitization”
process converts a female’s approach behavior from “avoidant” to
“maternal” (53), and co-housed virgin females with dams further
boosts the “sensitization” in the virgins to behavematernally (54).
Moreover, when retrieving pups, “sensitized” females activate the
same hypothalamic hubs that trigger maternal behavior in dams
(54) and display signals of neural plasticity (55).

In the human literature, researchers have tried to disentangle
the reproductive-induced and experience-induced effects by
studying the associations between the degree of maternal brain
changes and variables that account for the amount of time the
mother spends with her infant. Several studies, including our
investigations, have addressed this approach by including in
their analyses the time between the birth and the neuroimaging
assessment (2, 20). In Hoekzema et al. (2), we did not find
associations between the longitudinal structural changes in
mothers and the baby age. In contrast, the cross-sectional design
of Kim et al. (20) found a positive correlation between the
mothers’ cortical thickness and the baby age during the first 6
months postpartum. Although it works as an indirect estimate,
the baby’s age does not accurately indicate how much a mother
has interacted with her infant after birth. The amount of mother-
infant interactionmight be better captured with devices that track
the real-time physical proximity between mothers and infants,
which are currently under development (56). Complementing
such quantitative measures with qualitative assessments of
mother-infant interactions such as the “still face” and “strange
situation” behavioral tasks would further characterize the quality
of that maternal investment.

One other approach to disentangle the reproductive-induced
from the experience-induced influence over the parental brain is
to analyze the brain adaptations in individuals that experience
the parental transition without the reproductive experience.
Following that research line, we conducted a longitudinal study
in first-time fathers and a group of childless men as a control
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group (57). We found that fatherhood entails “preconception-
to-postpartum” cortical volume and thickness reductions that
were positively associated with the father’s neural response to
pictures of his baby. These reductions were less pronounced and
affected fewer parts of the brain compared with those observed
in first-time mothers (57). Neural changes in fathers have also
been reported during the postpartum period (58) and were
different in direction and affected regions compared to those
reported in mothers in a similar study by the same group (6).
One plausible interpretation of these findings is that the maternal
brain changes are mediated by the cumulative effects of the
drastic gestational factors and the continued interaction with
the baby during postpartum. In contrast, in fathers, the baby’s
postpartum interaction might be the most relevant operator of
the observed neural changes. Another plausible hypothesis is that
the parental brain becomes sensitive to postpartum experience
factors only in the absence of gestation, similar to what has
been described in allomaternal rodent models [(52) Chapter
7]. Finally, researchers are beginning to shift the focus to the
expectant parental brain (59). Besides the gestational factors and
the parenting experience, the in-pregnancy simulation of certain
aspects of parenting is also a candidate factor to trigger the
parental brain circuits’ remodeling. Indeed, neural responses to
infant’s stimuli are known to start changing before birth both
in mothers (60) and fathers (60, 61), and to predict parenting
attunement in the postpartum (62).

Other Mediating Factors
Beyond parent-infant interaction, there are additional
experiences often associated with parenting that might as
well contribute to the observed maternal brain changes. 44.5%
and 55% of mothers have poor sleep quality during pregnancy
and postpartum, respectively (63). A recent study in men
and women in their twenties revealed that one night of sleep
deprivation was sufficient to induce GM density increases
and GM cortical thickness decreases (64). We thus cannot
exclude with certainty a partial contribution of perinatal sleep
deprivation to the observed GM changes. Stress, either arising
from a challenging perinatal environment or from complications
during gestation or childbirth, can also influence how women
adjust to motherhood (65). Indeed, functional MRI studies find
associations between high parenting stress and mothers’ brain
responses to their infants (66). Future studies should test whether
stress disrupts the neuroadaptations to parenting.

Taken together, current evidence suggests that both
pregnancy-induced and experience-induced factors can
trigger structural changes in the mother’s brain. Future studies
collecting more specific reproductive-induced (such as hormonal
levels) as well as experience-induced factors (such as maternal
care, or stress and sleep quality) and comparing the maternal
brain adaptations between gestational and non-gestational
mothers will help better discern the impact of gestational and
environmental factors on the maternal brain.

WHAT ARE THE NEURAL MECHANISMS?

Our current understanding of the potential neural mechanisms
that evoke the macroscopic changes observed during

motherhood primarily relies on non-human animal experiments
and a few human naturalistic experiments.

In non-human animals, there is extensive evidence that
maternal behavior activation involves neural plasticity within
several maternal brain regions such as the hippocampus,
prefrontal cortex (PFC), basolateral amygdala, nucleus
accumbens, and hypothalamus [(52) Chapter 5]. Neural
modifications include changes in the number and morphology
of neurons and glial cells (astrocytes, oligodendrocytes, and
microglia) and synaptic plasticity events that vary depending
on the studied species. This warns us that, beyond the similar
maternal brain circuits found across mammals, the neural
mechanisms behind the maternal brain might not be entirely
translatable among species. In humans, inferring neural
mechanisms from structural MR imaging is challenging.
Although the ex vivo human brain has been recently scanned
with an ultra-high resolution of 100µm isotropic (67), the
resolution of conventional in vivo neuroimaging sequences
is still 1mm isotropic. That resolution can capture major
neuroanatomic trends but is insufficient to capture cellular-
level processes. These findings imply two things: 1) same
neuroanatomic trends could mask different neural processes,
and 2) neural processes behind the visible changes are more
likely to involve processes that dramatically change the number
of brain cells (such as apoptosis or altered proliferation) or
the WM myelination, rather than morphological changes in
those cells (which are likely to also be happening but would
not translate in macroscopic changes). Recalling the human
maternal brain literature, two major trends have consistently
been found in mothers: pre-to-post pregnancy GM reductions
and GM increases during postpartum (Figure 1A). Below we
discuss several plausible neural mechanisms through which such
GM changes could arise. Reduced proliferation of microglial
cells, synaptic pruning, and a myelination process are among the
discussedmechanisms. These neural processes are not necessarily
mutually exclusive but instead can be operating simultaneously.

During pregnancy, sex-steroid hormones coordinate changes
in the mother’s immunological system to adapt it to the specific
needs of every gestational stage. The three main immune stages
are a first pro-inflammatory burst during implantation, followed
by an anti-inflammatory state to tolerate the fetus and a final pro-
inflammatory peak at parturition (28). The pregnancy-related
neuroimmune adaptations extend to the central nervous system,
populated by immunocompetent cells known as microglia (68).
When activated by pro-inflammatory cues, these cells act as
macrophages and remove neuronal debris. A study by Haim
et al. (69) showed that, compared to virgin females, dam rats
displayed reduced microglial proliferation in maternal brain
regions such as the basolateral amygdala, the medial prefrontal
cortex, the nucleus accumbens, and the hippocampus prior to
parturition and at early postpartum. Notably, the location of
such changes is highly resemblant to where GM reductions have
been found in mothers (2, 13), suggesting that neuroimmune-
mediated microglial reductions might also operate in the human
maternal brain. Given their immunosuppressive activity during
gestation (70–72), perinatal rising estrogens, progesterone, and
glucocorticoids levels are candidates to suppress the proliferation
of microglia. In such a case, the pregnancy-induced microglial
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reduction could buffer the pro-inflammatory activity triggered
by the sex-steroid rapid fall after delivery. A reduced microglial
coverage would lead to concurrent increases in brain water
diffusivity, which has been reported in rats scanned beforemating
and during pregnancy (73). Diffusion and spectroscopy MRI
studies are required to corroborate this microglial phenomenon
in human mothers.

Besides their role as immune macrophages, microglia also
sculpt neural circuits during brain maturational periods. During
adolescence, microglia mediate synaptic pruning by promoting
synaptogenesis and engulfing faulty synapses (74–76). Synaptic
pruning selectively eliminates redundant synapses during this
transition, which is thought to enhance the brain circuitry
efficiency in adolescents (77, 78). It has been suggested that
the reductions in neuropil and glial elements that surround the
pruned synapses, rather than the pruned synapses themselves, are
more likely to contribute to the cortical volume and thickness
reduction seen in adolescence (79). As previously mentioned,
we compared the cortical and sulcal morphometric changes that
occur during pregnancy with those occurring during female
adolescence and observed the same pattern of morphometric
changes in both female samples, that is, a loss of surface area
and cortical thickness, and a sulcal widening, causing an overall
flattening of the cerebral cortex (12). Based on the similar profile
of brain changes and sex-steroid burst between adolescence and
pregnancy, we hypothesized that similar neural mechanisms
might be behind both life periods.

Rat studies have revealed another pregnancy-induced
neuroplasticity event that involves reductions. Physiological
events that stimulate oxytocin pulsatile firing (i.e., parturition,
lactation, or dehydration) reduce the astrocytic coverage of
oxytocin secreting magnocellular neurons in the hypothalamic
supraoptic nucleus of rats (80, 81). This increased juxtaposition
of nearby neurons facilitates the formation of new synapses,
stimulating the contractile (82) and anti-diuretic (83) properties
of the oxytocin during birth and lactation. In humans, the small
size of the hypothalamus and the lack of clear contrast with its
surrounding tissue makes the detection of changes within this
region very challenging. Combining more precise automatic
segmentation tools of the hypothalamus (84) with higher
resolution T1 and T2-weighted MR acquisitions is promising for
investigating pregnancy-induced hypothalamic changes.

A third mechanism that might be operating in the observed
GM reductions is WM myelination. Pregnant women with
demyelinating illnesses such as Multiple Sclerosis (MS) have
significantly fewer relapses during the last gestation trimester
(85) -when sex-steroid and prolactin hormonal levels are
highest-, suggesting that hormonal factors at the end of
pregnancy ameliorate the demyelination of this disease. Rodent
studies are revealing the mechanism through which such
MS improvement might occur. After inflecting WM lesions
to pregnant, virgin, and postpartum female rats, Kalakh
and Mouihate (86) found less demyelination in pregnant
rats compared to the other two groups, an effect that
diminished after blocking the dam’s GABA receptors or when
allopregnanolone (a progesterone metabolite) was antagonized.
This study evidenced that the progesterone-mediated GABAergic

inhibition that down-regulates the stress axis during pregnancy
promotes myelin repair by enhancing the proliferation of
oligodendrocytes. The authors also suggested that microglia cells
contributed to such re-myelination process by phagocytizing
myelin debris. Pregnancy seems to also induce myelination
in healthy, free of WM lesions dams. For instance, Gregg
et al. (87) found increased oligodendrocytes proliferation during
pregnancy, followed by increased axon myelination during
postpartum in dams compared to virgin females. Similarly to
Kalakh and Mouihate (86), these authors found a pregnancy-
induced increased myelin repair capacity after using an acute
demyelinating injury. However, Gregg et al. (87) found that
prolactin rises -instead of progesterone rises—triggered the
observed oligodendrocyte proliferation. Chan et al. (73) found
increased whole-brain diffusivity during rat pregnancies, which
is a sign of a more diffusion-friendly environment for the water
through brain tissues. Based on Gregg et al. (87) and Kalakh and
Mouihate (86) findings, it is plausible that pregnancy enhances
myelin repair processes, in turn increasing WM integrity,
myelination and water diffusivity. However, other processes such
as increased extracellular fluid or cell shrinkage might also
contribute to these enhanced water diffusion properties. All in
all, these rodent studies suggest that pregnancy promotes myelin
repair and that both prolactin and progesterone might play an
essential role in this process.

Increased myelination can also lead to voxels at the WM
and GM interface being misclassified as GM, thus inducing an
apparent decrease in cortical volume. It is also plausible that
increases in WM are concomitant to the observed cortical GM
changes. Together with reporting GM volume and thickness
changes, Zhang et al. (3) also detected WM increases within
the insula, postcentral gyrus, inferior parietal, and superior
and middle temporal gyri during late postpartum. Some of the
modified regions overlapped with the GM volume reductions
found by the same study (insula and postcentral gyri), while
other impacted areas were unique (inferior parietal and superior
and middle temporal gyri), suggesting that some GM and
WM changes in mothers are simultaneous while some others
are independent. Conversely, in Hoekzema et al. (2) we did
not detect significant pre-to-post pregnancy changes in WM
volume compared to the non-pregnant group. Other than
anatomical T1-weighted estimations of WM volume, diffusion
MRI provides more precise estimates of WM integrity, fiber
orientation, myelin density, and axon diameters (88), which
can improve the comprehension of the WM modifications of
the maternal brain. Despite being a promising tool, no study
has applied this technique to study the human maternal brain
during gestation or postpartum so far. The only diffusion-based
neuroimaging study in the maternal brain literature is a recent
large-scale cross-sectional study with middle-aged mothers (54–
81 years) of the UK Biobank neuroimaging database (89).
This study revealed that the more parity the less estimated
brain age based on their WM characteristics, which suggests a
protective effect of parity on WM later in life. However, the
cross-sectional nature of the samples does not allow us to discern
between the effect of reproductive experience and that of other
individual variables.
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A last possibility would be that the GM reductions in
mothers reflect neurodegenerative processes. E2 drop after birth
provokes a microglial pro-inflammatory state that can lead
to neural injury. It is thus possible that a disbalance of the
neuroimmune environment during the motherhood transition
could lead to neural injury and predispose for mental health
disorders. Indeed, inflammatory levels were ranked as the
second-best, after depression history, predictor for postpartum
depression levels (90). However, we believe it is unlikely that
the changes in GM that occur during a healthy motherhood
transition reflect a neurodegenerative process. Pregnant women
often report memory deficits while pregnant (91). However,
the few cognitive assessments during postpartum have mixed
findings: some authors report poorer cognitive performance in
postpartum mothers compared to non-mothers (92–94), while
other studies have not found any cognitive decline in mothers
(95) nor cognitive differences betweenmothers and non-mothers
(95). The reported cognitive impairments could be biased by
the physical (i.e., sleep levels) or psychological stressors that
come with the motherhood transition, rather than reflecting a
neural-mediated cognitive incapacity. In support of this, scholars
have recently proposed the “cognitive costs of reproduction
model,” which hypothesizes that perinatal cognitive declines
result from the mother’s temporary reallocation of metabolic
and attentional resources to boost the fetus’ development and
the mother-infant relationship (96). Neuroimaging studies that
have compared the mother’s brain with the brain of nulliparous
women have not found cognitive differences among these two
groups (2, 5), and rather suggest that the motherhood-related
brain changes are associated with behavioral outcomes that
improve the mother’s ability to deal with the challenges ahead.
Specifically, the degree of structural brain adaptations in mothers
predict higher levels of mother’s positive perception (6) and
attachment (2) to the baby, and stronger functional activation
to their babies’ signals (13). Also, brain reductions in DM
regions observed before and after pregnancy (2) have been
argued to reflect an in-pregnancy down-regulation of higher-
order cognitive functions in favor of low-order brain functions
that provide mothers greater resilience to stress and pain during
childbirth (59). Altogether, current results suggest that maternal
brain changes reflect a neural adjustment or specialization rather
than a neurodegenerative process. Neuroimaging studies with
larger and more heterogeneous samples and cognitive measures
that directly compare the brain changes in mothers and the
brain changes in individuals with neurodegenerative disorders
will further clarify these preliminary indications.

In contrast to the GM reductions observed from before to after
pregnancy, the postpartum period is characterized by increases
in GM volume (4–6, 9, 10). Such postpartum GM increases
affect frontal cortical areas and extend to subcortical regions
such as the hypothalamus, amygdala, hippocampus, and nucleus
accumbens, which together form the subcortical maternal core
circuit. The hypothalamus, amygdala and hippocampus, among
other subcortical regions, have also been recently detected to
increase in volume in mice mothers (36). At a neuronal scale,
late gestation and parturient rats display increased cell body size
(97) and higher dendritic complexity of hypothalamic mPOA

neurons (97), and higher dendritic spine concentration within
the anterodorsal medial amygdala (98) and within CA1 and
CA3 hippocampal regions (55). At a cellular scale, neurogenesis
changes have been consistently found in the hippocampus and
olfactory bulb of dams. However, there is no consensual pattern
of changes in neurogenesis among animal studies -the results
are time-dependent and vary among species- [(99), Important
considerations], making the interpretation and translation to
the human mother brain very challenging. This comes as no
surprise given the differences among species in terms of degree
of maturity and mobility (i.e., precociality) of the newborns,
and mating and parenting strategies, all of which can result
in unique maternal brain adaptations. The widespread GM
increases observed in humanmothers during postpartum involve
multiple cortical and subcortical regions, and therefore are likely
to reflect more complex processes. Some authors believe that
these postpartum changes might reflect a partial recovery from
the reductions during pregnancy (5, 8). Following the above-
exposed microglial hypothesis, it might be the case that the
observed GM increase reflects a microglial proliferation after the
postpartum hormonal environment returns to its “normal” non-
inflammatory state. This hypothesis needs to be further tested
with neuroimaging modalities that can estimate cellular types
such as H1 spectroscopy and diffusion MRI.

The human maternal brain literature has mainly relied on
T1-weighted images, a modality with limited ability to capture
tissue contrasts other than the GM and WM ones. Multimodal
MR imaging (that is, combining information from different MR
contrasts or modalities) is a promising approach to overcome the
limitations of each MR modality and provide a comprehensive
non-invasive histological picture of the brain. Complementing
T1-weighted MR sessions with other MR contrasts or modalities
will inform on different tissue macrostructure aspects such
as hippocampal and hypothalamic subfields (through high-
resolution T2-weighted sequence), and microstructure aspects
such as the types of cells (neuronal or glial) and processes
(apoptosis, neurogenesis, differentiation) involved (through 1H
multivoxel spectroscopy).

In conclusion, motherhood-induced anatomical brain
changes are likely to involve simultaneous neural processes
affecting both GM and WM tissues, and microglia seems to
have a crucial role regulating these processes. Also, distinct
neural mechanisms seem to be operating under pregnancy
and postpartum periods, resulting in opposite neuroanatomic
directional trends. MR advances that increase the anatomical
resolution of the images and better determine themicrostructural
tissue properties are required to elucidate the neural mechanisms
behind the macroscopic brain changes observed in mothers.

WHICH IS THE TEMPORAL COURSE OF
THE CHANGES?

Another critical research line in the parental brain focuses on
determining the temporal course of the motherhood-induced
brain changes. Existing longitudinal studies have not yet resolved
whether this plasticity emerges during pregnancy, parturition,
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or postpartum. Also, there are mixed results on whether the
mother’s brain returns to baseline levels after the first 2 years
postpartum or remains altered beyond this critical period of
maternal investment. Some studies are even considering that the
motherhood-induced changes might be permanent.

There is no solid evidence on when exactly human maternal
brain changes start. Rodent studies give us some preliminary
insights. Haim et al. (69) analyzed the brain’s immune cells
of dam rats at the beginning, middle, and end of gestation
and found reduced microglial density from late pregnancy
extending into the postpartum period. Besides, Barrière et al.
(36) scanned longitudinally pregnant mice and found GM
increases in subcortical regions key for maternal behavior, some
of which started during late gestation (mPOA, bed nucleus
of stria terminalis, and paraventricular nucleus), and some
of which started after birth (hippocampus and amygdala).
Therefore, maternal neural plasticity in rodents is evident already
in pregnancy. In humans, the only study that has scanned
mothers before, during, and after pregnancy used a small sample
size (nine participants, of whose only two underwent an MR
before conception), and did not include a control group of
nulliparous women (7). They found steady reductions in brain
size and increases in ventricular size starting around the second
trimester of pregnancy and peaking at parturition. To further
validate these findings, researchers need to conduct similar
studies with higher sample sizes and to include nulliparous
women to control for other potential variables and minimize
the noise induced by image acquisition, image processing and
statistical analyses. Identifying the onset of the neural remodeling
in mothers is necessary to determine when a mother’s brain is
more vulnerable to environmental stressors (a plastic brain is a
vulnerable brain) and would hint at the mediating factors behind
the changes.

The other question regarding the temporal course of the
changes is whether they are confined to the period of maximal
maternal investment or instead persist beyond that period.
During the first 2 years of life, infants are highly dependent and
require substantial parental investment. This period is equivalent
to the “pre-weaning” period of rodents. Several studies using
diverse timeframes have detected GM changes in mothers from
birth until 2 years postpartum, but most of the studies have
not explored the maternal brain beyond that “weaning” period.
Literature in rodents indicates that reproductive experience
confers both long-term behavioral and neural changes that are
evident beyond weaning, and short-term neural changes that
restore at late postpartum. On the one hand, post-weaned dam
rats are less anxious and fearful than virgin rats and have
better foraging strategies (100, 101), and spatial learning and
memory skills (100–102). At the neural level, aged parous rats
present modifications in hippocampal plasticity (103, 104) and
estrogen sensitivity (105) and less markers of brain aging (102).
On the other hand, microglia density changes detected in rats
during late gestation and early postpartum return to baseline
levels after weaning (69). In humans, similar processes are
likely to happen: some neural changes might be lasting while
others not [reviewed in Duarte-Guterman et al. (106)]. With a
notable difference: unlike the rest of the non-human altricial

species, human maternal behavior extends beyond the “weaning”
period and is often everlasting. Therefore, more long-term neural
modifications are expected in human mothers compared to any
other animal species.

Trying to fill this gap of knowledge, in a recent study we
followed the primiparous mothers of the study of Hoekzema
et al. (2) and scanned seven of them again at 6 years postpartum
(11).We compared the brains of the primiparous and nulliparous
women before conception, during early postpartum and at 6
years postpartum, restricting the analysis to those regions that
underwent GM volume reductions between the pre- and post-
pregnancy sessions (2). We found that the brain of a mother
is still different from that of a nulliparous woman even at
6 years after delivery. Specifically, most of the GM volume
reductions were found to persist at 6 years postpartum, being
able to classify women as having been pregnant or not with a
91.67% of total accuracy. These preliminary findings suggest that
the pregnancy-induced brain changes are long-lasting and open
the possibility that they are indeed permanent. There are two
plausible explanations for these enduring effects of motherhood
on the brain. On the one hand, these enduring brain changes
could be due to the organizational effects of hormones during
pregnancy and peripartum periods (meaning that the effects last
beyond the period of hormonal exposure). On the other hand,
other plausible mediators of the motherhood’s enduring GM
effects might be the long-term alertness and sleep disruption that
the parents often experience.

Other brain regions have been found to change during
pregnancy but fully or partially reverse to baseline levels
after the immediate postpartum. The gradual increase of the
pituitary gland observed during pregnancy returns to normal size
coinciding with the end of breastfeeding (16, 17), a finding that
was further replicated by Hoekzema et al. [(2); Supplementary
Figure 3]. Hoekzema et al. (2) also found that, while all regions
that displayed volume changes remained reduced up to 2
years postpartum, the GM reductions within the hippocampus
partially recovered at the 2 year postpartum visit.

Recent investigations have approached the long-term effects
of parenthood by analyzing how elderly subjects who became
parents decades ago differ neuroanatomically from those who did
not have children. In elder women, a higher number of previous
children has been found to be associated with less apparent
brain aging in WM (89), cortical (89, 107) and subcortical
regions (108), larger global GM cortical volume (89) and
thickness (109) and distinct patterns of resting state functional
connectivity (110). In Ning et al. (111), middle-aged females
and males with a higher number of children displayed better
visual memory, faster response time, and lower predicted brain
age, suggesting that lifestyles associated with parenting, rather
than the physiology of pregnancy and lactation themselves, might
be beneficial for brain aging processes. Altogether, these studies
suggest that motherhood exerts neural changes that persist into
older age.

Given these findings, we believe it is necessary that human
neuroimaging databases and studies that track brain trajectories
across lifespan start including parity-related variables as part of
the participants’ relevant demographic information.
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DO THESE STRUCTURAL CHANGES HAVE
AN IMPLICATION IN POSTPARTUM
MENTAL HEALTH?

The physiological and endocrine signals around the peripartum
ensure labor and help establish lactation, while putting the
mother at risk for developing mental health disorders. Placental
separation at birth causes rapid progesterone and estradiol
withdrawal, whose levels remain low during the early postpartum
(112). This rapid drop triggers neurochemical deficiency in the
serotonin and dopamine systems and affects the GABAergic
inhibitory system, a neurochemical pattern that resembles a
depression-like scenario [discussed in Sacher et al. (113)].

Postpartum mood changes resulting from such hormonal
changes and increased stress and loss of sleep are expected in
mothers after birth, but one in every five postpartum mothers
experience a much more severe disorder: postpartum depression
(PPD) (50). In the Diagnostic and Statistical Manual of Mental
Disorders (DSM 5th edition) (114), PPD is still vaguely defined
as a “major depression event with peripartum onset.” However,
beyond the unique timing of PPD, this disorder involves a
different symptomatology, often characterized by avoidance,
intrusive behaviors or even psychosis toward the baby. If
left unrecognized or untreated, the disorder can have serious
consequences for both the mother and the infant’s well-being
(115). Unfortunately, in spite of the importance of early PPD
identification and treatment, PPD is still often unrecognized
in mothers.

Neuroscience researchers are bringing efforts to identify
the unique neurobiological and pharmacokinetic profiles of
PPD, and numerous authors have reviewed the neuroimaging
literature on the topic (113, 116–118). In humans, functional
MR Imaging is the current preferred choice of study of PPD. A
wide range of task-based functional studies have compared the
neural activations of mothers with PPD diagnosis (or depression
predisposition) and non-depressed mothers upon infant stimuli.
Given its vast implication in depression symptomatology, most
studies chose the amygdala as the seed region of interest (119)
followed by the PFC (119, 120) anterior cingulate cortex (120)
and ventral striatum (119). In contrast, two studies explored
activations at the whole-brain level (121, 122). Studies usually
compare the pattern of brain activation while exposing mothers
to cues of their baby vs. of unrelated babies (121–125), although
some studies have also used as stimuli unrelated infants crying
(120), images of adult faces (119), and emotionally valenced
words (126, 127). These studies also vary in the proportion
of primiparous and unmedicated mothers, diagnosis criteria,
and postpartum time-points assessed. Still, most of the analyses
find differential BOLD activation within the amygdala, anterior
cingulate cortex, prefrontal cortex, insula and ventral (nucleus
accumbens), and dorsal (caudate and putamen) striatum,
and disrupted connectivity between the amygdala and the
insula (123), nucleus accumbens and anterior cingulate regions
(120). Notably, these structures coincide with the changing
regions reported in Table 1. Wonch et al. (123) found that
mothers’ amygdala response and functional connectivity between
the amygdala and insula differed between primiparous and

experienced mothers, stressing the importance of studying
primiparity and multiparity separately. Dudin et al. (124) were
the first to report differences in amygdala responsivity between
mothers with PPD and women with major depression, using
as controls non-depressed mothers and non-depressed women.
This study was pioneer in characterizing the unique neural
profiles of depression during the perinatal period compared to
depression arousals at other times in a woman’s life, which has
been reviewed by Pawluski et al. (128).

Maternal brain researchers have also applied rsfMRI to
capture the basal patterns of disrupted functional connectivity
in mothers with PPD. Given that this MRI modality does not
require the cognitive engagement of the mothers while scanning,
it offers unique insights into the neuroscience behind PPD.
Studies investigating PPD through rsfMRI are diverse in analyses
but have consistently explored connectivity patterns from the
amygdala and cortical DM nodes. Besides, unlike task-based
functional MRI studies, all resting-state studies have excluded
medicated mothers to remove potential pharmacological
interactions with the results. Five studies explored resting-state
functional connectivity patterns in depressed and non-depressed
mothers at the whole-brain level (129) or using seed analyses
from the posterior cingulate cortex (130, 131), the anterior
cingulate cortex, amygdala, hippocampus, and dorsolateral
prefrontal cortex (dlPFC) (132), and the dorsomedial prefrontal
cortex (dmPFC) (133). These studies found information flow
direction changes (129), reduced interhemispheric connectivity
(131), and altered (increased, decreased or opposing) functional
connectivity (132, 133) among the seed regions (132), between
the seed regions and DM cortical nodes (133), thalamus, caudate
(132) and amygdala (130), and among DM cortical nodes
(129–131) and the amygdala (129). Two other studies analyzed
changes in the regional or local resting-state homogeneity in PPD
and non-PPD mothers through Regional Homogeneity (ReHo)
or fractional Amplitude of Low Frequency Fluctuation (fALFF)
methods (134, 135), rendering mixed results of increased and
decreased DM regional homogeneity in PPD mothers compared
to healthy mothers. The depression scores of mothers with PPD
correlated with the regional (135), interhemispheric (131), and
DM connectivity of the dmPFC (131, 133) or the dlPFC (135),
suggesting that functional connectivity in this region is especially
relevant in the severity of PPD.

As observed, task-based and resting-state studies in
mothers with PPD find functional disruptions in regions
that match with the frontal, temporal, and cingulate cortical
regions and subcortical regions (amygdala, hippocampus,
thalamus and striatum) that are structurally modified in
healthy mothers (Table 1), suggesting that PPD might disrupt
neuroanatomic trajectories during motherhood transition.
Despite this significant overlap, no human study to date has
analyzed the brain structure of mothers with PPD. Instead,
human studies that track brain structural trajectories across
motherhood have focused on delineating the healthy pattern
of brain adaptations. The pre-to-post pregnancy sample of
Hoekzema et al. (2) (N = 25) only included one mom that
developed postpartum depression, and results were similar
after excluding that woman from the analysis. Longitudinal
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studies during the postpartum have excluded those mothers with
ongoing psychiatric conditions (3, 8) or have relied on mothers
with minimal to moderate levels of depression [<13 Beck’s
Depression Inventory score in Kim et al. (6); <10 Edinburgh
Postnatal Depression Scale score in Lisofsky et al. (5)]. Moreover,
in those studies that did include depression questionnaires,
mothers and non-mothers did not differ in depression levels, and
thus the studies did not assess structural changes in relation to
this variable (2, 5). The lack of PPD representation in structural
MRI studies has a plausible reason why: the neuroadaptations
across healthy motherhood are still unresolved, and to unravel
them, studies prioritize minimizing the confounders in their
analyses. We believe that a grounded comprehension of the
typical trajectories of change in healthy mothers will frame
sound hypotheses on which patterns of disruptions are expected
in mothers with postpartum depression. Nonetheless, maternal
brain neuroimaging studies must start including the depression
and anxiety levels of the participants routinely and exploring
the neuroanatomic adaptations in relation to such levels.
Postpartum mental health needs to be explored in relation
to past or present complications during pregnancy. Also,
future studies should explore the implications of different
birth courses. Parturitions vary in terms of the degree of
intervention, medicalization, and the mother’s psychological and
physiological experience, and some of these events can impact
the mother’s mental health (136–139) and their neural response
and bonding toward the infant (140, 141). Finally, uncovering
the risk factors of this disease is paramount to developing
prediction and early intervention strategies. Previous history
of mental illness and stress, life-long vulnerability to hormonal
changes (including premenstrual disorders and response to
hormonal treatments or contraceptives), and perinatal poor
sleep quality are considered risk factors for developing PPD
(113). These variables should be tested as potential predictors for
deviant brain morphometric trajectories during the transition
to motherhood.

CONCLUSIONS

Our understanding of the human maternal brain has grown
considerably during the last 20 years. Before the twentieth
century, scholars established the neuroendocrinology of maternal
behavior in rodents (52), and there were first indications that
pregnancy modified the pituitary gland of human mothers (15–
18). Inspired by these initial works, new-age maternal brain
researchers have proved groundbreaking evidence that gestation
impacts the mother’s brain at a structural and functional level.
Besides, recent brain age prediction studies suggest that parity
also affects the long-term trajectories of brain aging. Here, we
have reviewed and discussed the current evidence about the
trajectories, mediating factors, and neural mechanisms behind

the human maternal brain remodeling and its potential relation
to postpartum mental health. As argued alongside the review,
the answers to these questions are not entirely resolved, and
the function that the brain structural changes observed in
mothers might serve is still under debate. Through longitudinal
neuroimaging designs with first-time parents, our research group
has found preliminary evidence that maternal brain changes are
pronounced (2) and long-lasting (2, 11), that involve a flattening
of the cortex similar to the one occurring during adolescence
(12), that predict mother-to-infant attachment (2), and that can
be mediated by pregnancy-induced factors as well as by the
parental experience with the infant (12, 57). Future investigations
are needed to shed light on this nascent but exciting research area,
especially studies with larger and more diverse samples in terms
of culture and socioeconomic status, as well as those examining
parents at multiple time points of their parental transition.
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