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Lung adenocarcinoma patients
with malignant pleural effusions
in hot adaptive immunity status
have a longer overall survival

Cheng-Guang Wu1*, Ruben Casanova1,
Fabian Mairinger2 and Alex Soltermann3*

1Institute of Pathology, University Hospital Zurich, Zurich, Switzerland, 2Institute of Pathology,
University Hospital Essen, Essen, Germany, 3Facharzt Foederatio Medicorum Helveticorum (FMH)
Pathologie, Pathologie Länggasse, Ittigen, Switzerland
Malignant pleural effusion (MPE) is a common complication of lung

adenocarcinoma (LADC) which is associated with a dismal prognosis. We

investigated the prognostic role of PD-L1 and other immunomodulators

expression in the immune compartment of MPE immune composition. MPE

cytologic cell blocks of 83 LADC patients were analysed for the mRNA

expression of 770 cancer-immune genes by the NanoString nCounter

platform. The expression of relevant immune cell lineage markers was

validated by immunohistochemistry (IHC) using quantitative pathology.

The mRNA immune profiling identified four MPE patient clusters (C). C1/2

(adaptive+, hot) showed better overall survival (OS) than C3/4 (adaptive-, cold).

Additionally, cold immunity profiles (adaptive-), C4 (innate+) were associated

with worse OS than C3 (innate-). High PD-L1 expression was linked to the

regulation of T cell activation and interferon signalling pathways. Genes of

pattern recognition receptor and type I interferon signalling pathways were

specifically upregulated in the long-survival (≥90 days) patient group.

Moreover, immunomodulators were co-activated and highly expressed in

hot adaptive immunity patient clusters, whereas CD274 (PD-L1), TNFRSF9 (4-

1BB), VEGFA (VEGF-A) and CD276 (B7-H3) were upregulated in the groups

referred as cold. The patient cluster, age and PD-L1 expression were

independent prognosticators for LADC MPE patients (p-value < 0.05). Our

study sheds light on the variances of immune contexture regarding different

PD-L1 expression and survival conditions. It revealed four distinct prognostic

patient clusters with specific immune cell components and immunomodulator

expression profiles, which, collectively, is supportive for future therapeutic and

prognosis for cancer management.

KEYWORDS

malignant pleural effusions, lung cancer, immune microenvironnement, immune
profiling, PD-L1, prognosis
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Introduction

Lung cancer is the leading cause of cancer-related death

worldwide and lung adenocarcinoma (LADC) is its most

frequent subtype with 40%. LADC often spreads to the pleural

cavity, which results in a poor median overall survival of around

3 months after diagnosis (1, 2). Due to lymphatic drainage from

the peripheral lung parenchyma into the pleural cavity or

tumoural pleural effraction, a primary subpleural LADC may

still be rather small per se. Thus, control of the pleural spread

may increase overall survival significantly. However, despite the

advance in chemotherapy regimens, only modest gains have

been made in the long-term survival of LADC patients with

malignant pleural effusion, owing to the aggressive property and

complexity of the MPE microenvironment. Commonly, MPE

exerts an immunosuppressive function but contains high

concentrations of immune cells and cytokines due to liquid

sequestration. This eventually leads to cancer progression but

also offers a possibility for immunotherapy (3, 4). Moreover,

heterogeneity in immune cell composition (5, 6) and cytokine

expression (7–9), in MPE leads to different patients’ survival,

although the mechanisms invoked therein require more

elucidation. Therefore, to better understand the prognostic

mechanism of immune relevant pathways and find

prognosticators as well as new potential therapeutic targets for

MPE LADC patients, a comprehensive investigation of the MPE

immune microenvironment is desired.

We previously presented a combination of computerised

immunohistochemical and transcriptional methods for MPE

sample analysis to investigate the prognostic potential of

immune cell composition alteration and especial ly

immunomodulators (10, 11). We found that MPE patients

with high B cells but low neutrophils to leukocytes ratio in the

effusion liquids had better clinical outcomes. Moreover, MPE

LADC patients were characterized by a significantly higher

frequency of PD-L1 high expression compared to other MPE

cancer types. By using other computational methods, several

recent studies have characterised the immune infiltration

features according to immune gene expression signatures in

many solid tumour types with prognostic values (12–20).

Among all immunomodulators, CTLA-4 and PD-1/PD-L1

are the most actively studied ones for clinical cancer

immunotherapy. Membranous expression of PD-L1 on tumour

cells is a biomarker for identifying suitable NSCLC patients for

PD-1/PD-L1mAb treatment, since high expression level of PD-L1

correlated with better response rates (21, 22). Furthermore, due to

its immunosuppressive function, high PD-L1 expression is also a

poor prognosticator for patients without immunotherapy in many

cancers, including lung and breast carcinoma as well as melanoma

(23–25). Additionally, it was recently found that high PD-L1

expression resulted in worse clinical outcomes for pleural
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mesothelioma patients (26, 27). In contrast to the extensive

pieces of literature about PD-L1 in primary solid lung

carcinomas, little is known regarding its expression and

prognostic role in the immune microenvironment of LADC

effusion liquids (28).

Our study aimed to investigate the prognostic significance of

immune system relevant pathways and immune cell

composition in the malignant pleural effusions of pM1a LADC

patients by performing comprehensive immune profiling of this

microenvironment on formalin-fixed and paraffin-embedded

cytologic cell blocks by IHC and NanoString at the protein

and mRNA levels. Furthermore, the profiling was focused on the

investigation of clinically relevant immunomodulators, in

particular PD-L1.
Materials and methods

Patient cohort

Cytologic cell blocks prepared from the centrifugation

sediments of 83 MPE LADC patients in the period of 2005 to

2013 were enrolled. Only cell blocks having > 20 clusters of

cancer cells per whole section surface were included, and all

cases were classified based on clinical data, morphology, and

immunochemistry with respective markers by pathologists. The

institutional review board of the University Hospital Zurich

approved the study under reference number StV 29-2009-14.
Preparation of cellblocks and cytologic
microarray (TMA)

As described previously (29), the effusion liquids were

centrifuged and the sediments were transferred into a

microtube. Subsequently, thrombin and plasma were added for

clot formation. After formalin fixation, clots were paraffin-

embedded and haematoxylin-eosin (H&E) stained. From the

most representative region of the donor block, two paraffin cores

of 0.6 mm diameter and 3-4 mm height were taken and arrayed

into a new recipient paraffin block using a tissue arrayer

(Beecher Instruments).
RNA isolation and NanoString mRNA
expression analysis

Total RNA was extracted from whole sections of 75 MPE

LADC cell blocks (two sections, each 5 µm thick) using the

Maxwell purification system (Maxwell RSC RNA FFPE Kit,

AS1440, Promega). RNA was eluted in 50 µl RNase-free water
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and stored at -80°C. RNA concentration was measured using a

Qubit 2.0 fluorometer (Life Technologies) appertaining the RNA

broad-range assay. RNA integrity was assessed using a fragment

analyser (Agilent Technologies) appertaining DNF-489 standard

sensitivity RNA analysis kit. 770 genes (including 40

housekeeping genes) from 24 different immune cell types were

analysed with a commercially available nCounter PanCancer

Immune Profiling from NanoString Technologies (Seattle, WA,

USA), as per manufacturer’s instructions. Probes were hybridised

to 50 ng of total RNA for 20 hours at 65°C and applied to the

nCounter preparation station for automated removal of excess

probe and immobilisation of probe-transcript complexes on a

streptavidin-coated cartridge. Data were collected with the

nCounter digital analyser by counting the individual barcodes.

Analysis and normalisation of the raw NanoString data were

conducted with nSolver analysis software v 4.0 (NanoString

Technologies) following the manufacturer’s recommendations.

In detail, the expression values were normalised using positive

controls to eliminate platform-related variation, negative controls

to eliminate background effect, and 20 housekeepers to remove

variation due to sample input. The data were eventually log-

transformed (base 2) and ready for further analysis.
Gene data processing

Cell type scores (13) were performed using nSolver v 4.0.

Briefly, 60 marker genes for 13 immune cell populations were

selected. These marker genes were specific to a single cell type

and with stable expression within that cell type. Only the

markers with gene expression level above the threshold of the

quality control were used for cell type scores analysis. Cell scores

were calculated as the average log2 normalised expression of

each cell’s marker genes. The total tumour infiltrating

lymphocytes (TILs) score was calculated as the average of all

cell scores whose correlations with PTRPC (CD45) exceeded 0.6.

Based on common highly expressed genes in NK cells, CD8 T

cells and Tgd, the cytotoxic cells group was defined.

Immune cell-type-specific and immunomodulator gene

panels, respectively, were designed according to the literature

(12, 15, 16). The immune cell-type-specific gene panel (74 genes)

was used for unsupervised gene cluster analysis (ward.D). The

immunomodulator gene panel was applied for gene correlation

and expression analysis.

Differential gene expression analysis was performed using

the R package DESeq2 (30). The p-values were adjusted for

multiple comparisons by using the false discovery rate (FDR,

Benjamini-Hochberg method). Genes that had both a 2-fold

change in expression between the compared groups, and an FDR

less than 0.05 were used in downstream analyses.
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Differentially expressed genes were mapped to the Gene

Ontology (GO) term. Analysis and visualisation of GO terms

associated with differentially expressed genes were performed

using ClueGO (http://apps.cytoscape.org/apps/cluego) (31) a

plug-in for Cytoscape (3.7.1). The immune system related

pathways are functionally grouped and interconnected based

on the kappa score. The size of the nodes shows the term

significance after the Benjamini-Hochberg correction. Only

terms with corrected p-value ≤ 0.05 were considered. Homo

Sapiens Immune System Process (GO release 24.06.2018) was

used as a background annotation database to identify pathways

that are overrepresented in a phenotype.
Immunohistochemistry and scoring

For IHC analysis 3 mm thick sections were cut. Laboratory

developed assays were tested on a multi-tissue microarray for

clone E1L3N (Cell Signaling Technology, dilution 1:100). Anti-

PD-L1 antibody clone SP263 (Ventana, prediluted) was used

according to the manufacturer’s recommendation. IHC using

antibodies against CD3 (mature T-cells), CD4 (helper T-cells),

CD8 (cytotoxic T cells, Tc cells), CD20 (B cells), CD45

(leukocytes), CD68 (macrophages), myeloperoxidase (MPO,

neutrophilic granulocytes) were performed as previously

described (10). IHC stainings were performed on a Benchmark

Ultra platform (Ventana) with protocols used for routine

diagnostics. Afterward, the stained slides were scanned by a

high-resolution scanner (Nanozoomer Digital Pathology). All

primary antibodies used for IHC analysis were listed

(Supplementary Table S1).

PD-L1 immunoreactivity was semi-quantitatively scored by

experienced pathologists. The scoring was dichotomised into

low (0 to 49%) and high (≥50%), taking into account only

unequivocal membranous staining of tumour cells. PD-L1

(clone E1L3N) high and low expressing groups were compared

using cancer immune gene expression data (differential

expression analysis, the 730 gene panel).

For the immune cell quantification, the ratios of CD3, CD4,

CD8, CD20, CD68 and MPO-positive immune cells were

calculated using QuPath (32), an open-source software for

quantitative pathology (Queen’s University, Belfast), as follows:

(positive cell count/mm2)/(CD45+ cell count/mm2). Briefly, after

adjusting the RGB values of the TMA image, the positive cell

detection algorithm using optical density sum was applied for the

representative core. Parameters such as sigma, threshold, and

background radius were further adjusted until decent cell

detection was achieved. Eventually, this fixed detection algorithm

was automatedly applied to quantify the tissue area, total cell

number, and positive cell number for the rest of the TMA cores.
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Statistical analysis

All statistical analyses were performed on SPSS software

(version 23, IBM) or environment R (version 3.4.2, R Core

Team). Overall survival (OS) was defined as the period from the

date of first MPE diagnosis to patients’ death and was computed

using the Kaplan-Meier method and log-rank tests. Cox

proportional regression analysis was performed to analyse the

prognostic influences of gene clusters, PD-L1 and other clinico-

pathologic parameters. The Shapiro-Wilks test was applied to test

for the normal distribution of each data set. Based on the results,

for dichotomous variables either the Wilcoxon Mann-Whitney

rank sum test (non-parametric) or the two-sided Student’s t-test

(parametric) was used. For ordinal variables with more than two

groups, either the Kruskal-Wallis test (non-parametric) or

ANOVA (parametric) was used to detect group differences.

Correlation matrices were created with Pearson’s correlation. P-

value was adjusted for multiple comparisons by using the false

discovery rate (FDR, Benjamini-Hochberg method). A p-value ≤

0.05 was considered significant.
Results

Cohort description

In our cohort of 83 MPE LADC patients (median age of 70

years), the estimated median overall survival (medOS) from the

diagnosis of malignant effusion was 107 days (Table 1). 20% of the

tumours were highly expressing PD-L1. Three inconsistently scored

cases were found between antibody clone E1L3N and SP263 (two

cases E1L3N high, one case SP263 high). Representative IHC

staining images are presented (Supplementary Figure S1).
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Immune gene clusters correlate with
patients overall survival

After quality control, mRNA screening was performed for 75

patient MPE samples using a panel of 730 cancer-immunity

relevant genes. For immune cell-type-specific gene analysis,

genes were clustered into two main groups (Figure 1): gene

cluster A contains markers of adaptive and cytotoxic immune

cells, including B cells, T cells including interferon-gamma and

CTLA4-expressing T helper cells 1 (Th1) as well as CD8 T cells,

and natural killer (NK) cells. Gene cluster B denotes innate

immune cells such as macrophages, dendritic cells (DCs) and

neutrophils as well as other subtypes of T cells such as CD38

Th1, Th2, T effector memory (Tem), and T follicular helper

(Tfh) cells). Patients were then separated into hot and cold

groups according to the expression level of gene cluster A. In the

hot expression group, patients were further grouped into patient

cluster 1 (C1, adaptive+, innate+) and 2 (C2, adaptive+, innate-)

according to the expression levels of gene cluster B. Similarly,

patient cluster 3 (C3, adaptive-, innate-) and 4 (C4, adaptive-,

innate+) were sub-clustered from the cold group.

We then addressed the prognostic relevance of these four

immune clusters. Patients with hot MPE (C1 + C2) presented

significantly longer OS compared with the cold group (C3 +

C4) (Figure 2A). The mRNA-based cell type score analysis

revealed that hot MPE contained higher TILs and a higher CD8

+ T cell/TILs ratio, while cold samples had more macrophages

and neutrophils (Figure 2B). These results were corroborated

by corresponding IHC scores using CD45 for TILs, CD68 for

macrophages and MPO for neutrophils (Figure 2C), and the

detailed digitalized image quatification methodology was

descriped in our previous publication (10). Furthermore,

when comparing the survival curves, we found that C4
TABLE 1 Cohort description and PD-L1 immunohistochemistry.

n total = 83 Median (range)

OS (days) 107 (44-170)

Age (years) 70 (29-93)

N (%)

Sex male 45 (54%)

female 38 (46%)

Other metastases with 28 (54%)

without 24 (46%)

Chemo before diagnosis yes 22 (39%)

no 34 (61%)

PD-L1 E1L3N high 17 (21%)

low 65 (79%)

PD-L1 SP263 high 16 (20%)

low 65 (80%)
OS, overall survival; CI, confidence interval.
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patients had the worst OS with a median of only 32 days

(Figure 2D). Compared to C3, C4 MPE had higher TILs and

higher macrophages/TILs but lower CD8/TILs and B cells/TILs

ratios according to mRNA-based cell type scoring as well as

IHC quantification (CD20 for B cells) (Figures 2E, F).
High tumour cell PD-L1 expression is
prognostic and immunogenic

As shown in the differential expression analysis (Figure 3A),

the PD-L1 high group showed increased expression of specific

genes with an FDR < 0.05 and a log2 fold change > 1. In particular,

immune checkpoints CD274 (PD-L1), TIGIT (T cell

immunoreceptor with Ig and ITIM domains, TIGIT) and

ADORA2A (adenosine A2a receptor) and immune co-

stimulatory genes ICOS (CD278, inducible T-cell co-stimulator,

ICOS) and CD27 (CD27, TNFRSF7) were associated with high

expression of the PD-L1 protein. All genes differentially expressed

in MPE containing PD-L1 high expressing LADC tumour cell

clusters were subsequently mapped to Gene Ontology (GO), and

relevant immune system pathways, called terms, were functionally

grouped and interconnected (Figure 3B, Supplementary Figure S2).

Briefly, increased gene expression in high PD-L1 MPE LADC
Frontiers in Oncology 05
involved particularly the regulation of alpha-beta T cell activation

(one-third of significant terms) and type I interferon signalling

(another third of significant terms). In addition, immune cell type

analysis by IHC showed that MPE with high PD-L1 LADC had

higher exhausted CD8 T cell expression but lower expression of

innate immune cells such as DCs and macrophages

(Supplementary Figure S3). For survival analysis, high expression

(≥ 50% positive tumours cells) of PD-L1 correlated with

significantly shorter patient’s survival (p-value < 0.01, Figure 3C).
Pathways of cytoplasmic pattern
recognition receptor and type I
interferon signalling are upregulated in
long-surviving patients

To compare the immune profiles between MPE LADC

patients with long and short-survival, respectively, we

performed differential gene expression and functional

annotation enrichment analyses using a median time of 90

days as the survival cut-off. Patients with longer survival

presented a more immunogenic context, while short-survival

patients had only TREM2 (triggering receptors expressed on

myeloid cells 2, TREM2) preferentially expressed (Figure 3D).
frontiersin.or
FIGURE 1

Immune cell type-specific gene expression. Unsupervised hierarchical clustering was performed for 74 genes from 75 LADC patient MPE
samples. High expressed genes are indicated in red, low ones in black. The corresponding immune cell types are shown on the right side.
Genes were further annotated as clusters adaptive + cytotoxic versus innate + T cells. Patients were unsupervised grouped into four clusters (C1
to C4) and annotated with different colours. Th1, T helper cells 1; NK, natural killer cells; Tem, T effector memory; Tfh, T follicular helper cells;
Tgd, T gamma delta; Treg, regulatory T cells; DCs, dendritic cells; iDCs, immature DCs; aDCs, activated DCs; pDCs, plasmacytoid dendritic cells.
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A B

D E

F

C

FIGURE 2

Prognostic and immune cell composition analyses of the four gene clusters. (A) Kaplan-Meier survival analysis of hot (cluster C1 + C2) versus
cold (cluster C3 + C4) MPE LADC patients. (B) Immune cell type score comparison between hot and cold MPE LADC tumours on mRNA level.
(C) Immune cell component comparison between hot and cold MPE LADC tumours according to IHC quantifications. Immune cell markers with
the highest two (macrophages/TILs and neutrophils/TILs) and lowest two (CD8 T cells/TILs and total TILs) immune cell type scores were
selected for IHC validation. (D) Kaplan-Meier survival analysis of all patient clusters (C1 to C4). (E) Immune cell type comparison of gene clusters
C3 versus C4 on mRNA level. (F) Immune cell type comparison of gene clusters C3 versus C4 according to IHC quantifications. Immune cells
markers with the highest two (macrophages/TILs and total TILs) and lowest two (CD8 T cells/TILs and B cells/TILs) scores were selected for IHC
validation. For Kaplan-Meier survival analysis, the p-value (P) of log-rank tests is indicated. medOS, median overall survival; TILs, tumour
infiltrating lymphocytes.
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According to GO analysis, all these long patient survival

associated genes were involved in pathways of cytoplasmic

pattern recognition receptor signalling and/or type I interferon

signalling (Figure 3E, Supplementary Figure S4). In particular,

overexpressed genes IFIH1 (melanoma differentiation-

associated protein 5, MDA-5) and DDX58 (Retinoic acid-

inducible gene I, RIG-I) are the cores of RIG-I-like receptors

(retinoic acid-inducible gene-I-like receptors, RLRs), which

belongs to RNA-sensing pattern recognition receptors (PRRs).

In addition, the IRF7 molecule (interferon regulatory factor 7,

IRF7) is downstream of type I interferon signalling playing a

pivotal role in initiating multiple anti-cancer immune responses.

Correlation of immunomodulators with
patient clusters

We then extracted 68 immunomodulator genes, including

most immune checkpoints and immune co-stimulator molecules
Frontiers in Oncology 07
from the 730-gene panel. These modulators play key roles in

either anti- or pro-tumoural immune system actions, and most

of them are targetable by agonists or antagonists being evaluated

in clinical oncology (33). Even though immune checkpoints and

immune co-stimulators may exert opposite functions, their gene

expression levels were found to be positively correlated as shown

in Figure 4A. For instance, immune checkpoints LAG-3

(Lymphocyte-activation gene 3, LAG-3), PDCD1 (PD-1),

BTLA (B- and T-lymphocyte attenuator, BTLA), CTLA-4 and

TIGIT were strongly correlated with co-stimulatory molecules

CD28, CD27, ICOS and CD40LG (CD40 ligand). Moreover,

CD274 (PD-L1) clustered closely with the co-stimulatory

marker TNFRSF9 (4-1BB). In contrast, in this set of 68 genes,

only CD276 (B7-H3) and VEGFA were negatively correlated

with the other genes.

The mean gene expression levels of immunomodulators and

long patient’s survival relevant pathway genes (RLRs and type I

interferon pathways) were compared (Figure 4B). Most of
frontiersin.or
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FIGURE 3

Immune gene expression analysis according to MPE LADC PD-L1 expression (tumour cells) and patient survival. (A) Differential 730 genes
expression analysis. Genes with twice fold expression change and FDR less than 0.05 were marked in red. (B) Chart showing the most important
cell biological pathways upregulated in the PD-L1 high group from Gene Ontology (GO) analysis. (C) Kaplan-Meier survival analysis for patients
with PD-L1 high versus low expressing tumours, using clones E1L3N and SP263. The P-value (P) of the log-rank test is indicated. (D) Differential
gene expression (730 genes) analysis of patients with long and short-survival (cut-off = median OS, 90 days), respectively. Genes with 2 times
fold expression change and FDR < 0.05 were marked in red. (E) Chart showing the most significant terms in the long-survival group (GO
analysis). Only terms with corrected p-value < 0.05 were shown.
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theimmunomodulator genes and all long-survival relevant

pathway genes (Figure 3D) were highly expressed in hot

clusters C1 and C2. However, even defined as the cold

immune microenvironment, genes such as CD274 (PD-L1),

TNFRSF9 (4-1BB), VEGFA, CD276 (B7-H3) and KIR2DL3

(Killer cell immunoglobulin-like receptor 2DL3, KIR2DL3)

were particularly highly expressed in C3 and/or C4.
Prognostic MPE LADC patients

Finally, the above-studied markers were submitted to

univariable and multivariable Cox regression analyses together

with relevant clinico-pathologic parameters. Age above 70 years,
Frontiers in Oncology 08
gene clusters and high expression of PD-L1 were associated with

decreased overall survival (Table 2) and remained independent

in the following multivariate analysis.
Discussion

The immune microenvironment contributes to tumour

development, migration, and progression, eventually resulting

in different survival outcomes for individual cancer patients. In

this study, we performed comprehensive immune profiling of

LADC MPE samples using digitalised transcriptional and

immunohistochemical approaches on formalin-fixed paraffin-

embedded (FFPE) cytologic cell blocks. To the best of our
A B

FIGURE 4

Correlation and expression analyses of immunomodulator genes. (A) Pearson correlation matrix showing the clustering and correlations of 68
immunomodulator genes. The correlation matrix was subjected to unsupervised hierarchical clustering using Euclidean distance measurement.
Blue dots illustrate positive correlations, white ones no correlation (FDR ≥ 0.01), and red negative correlations. Bigger dot size indicates a
smaller p-value of the correlation. Red squares indicate the individual clusters. Different gene modulatory functions were annotated in coloured
squares on the left. Black indicates the inhibitory function, green stimulatory and grey modulatory function not known (N/A). (B) heatmap
indicating the average mRNA expression of 68 immunomodulator genes together with five genes from long-survival relevant pathways such as
RIG-1-like receptors (RLRs) and type 1 interferon pathways, among the four patient clusters C1-C4. mRNA expression data were normalised and
unsupervised clustered using Euclidean distance measurement. For the gene expression level, relatively high level expressions are in red, low
level in blue. On the right side of the figure, inhibitory gene names were marked in light blue, stimulatory ones were in pink, unknown
modulatory function genes in grey and RLRs and type I interferon pathway relevant genes in orange.
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knowledge, this is the first MPE LADC study with a detailed

description of its immune landscape.

Using a comprehensive immune system gene expression

panel, we identified four distinctive gene clusters corresponding

to specific immune cell compositions in the MPE LADC liquids

with associated respective immunomodulator expressions. These

profiles correlated with different patient’s prognosis, suggesting

the possibility of individualised management and therapeutic

strategy. Furthermore, high expression of the therapeutic and

prognostic molecule PD-L1 was proved to have a strong

correlation of the increased expression of genes belongs to the T

cell activation regulation pathways, together with the co-

stimulation of many other immunomodulators (mRNA level).

Of note, genes in pattern recognition receptor (IFIH1, DDX58,

and IRF7) and type I interferon signalling pathways (ISG15,

ISG20, IRF7, etc.) were highly expressed in long-survival

patients, which might be further exploited for potential novel

MPE therapeutic targets.

Immunotherapy is a novel and potent anti-tumour

treatment method; thus, the characterisation of tumour

immune microenvironment biology is of high clinical

relevance for patient ’s prognostic stratification and

individualised therapies (34, 35). Because of the sequestered

character of effusion liquids confined in body cavities, a high

concentration of immune cells and immunosuppressive

cytokines can be expected. Comprehensive characterisation of

MPE’s liquid immune microenvironment might help stratify

patients who could benefit from immunotherapy (3). In this

study, we adapted an immune cell type-specific gene panel based

on recently published data. Genes were selected when exclusively

expressed in a single immune cell type under the condition of

presenting a stable expression within that cell type (12, 13, 15–

17, 19).

This allowed identifying gene sets by unsupervised clustering

annotated as adaptive plus cytotoxic cells versus innate plus T

cells. Together with the cell type score and IHC quantification

results, we expanded the concept of hot and cold tumours by not

only considering the T cells infiltration but also including other

adaptive and cytotoxic immune cells. The corresponding hot

tumour patients were found to have a better prognosis compared
Frontiers in Oncology 09
to the cold ones, which might be relevant for MPE LADC patient

management. Additionally, cold tumour patients were further

stratified according to the innate immune cells infiltration,

namely C3 (innate-) and C4 (innate+). Surprisingly, patients

in the innate+, adaptive- cluster (C4) presented the worst

survival among all patient clusters but not the extremely cold

cluster C3 (adaptive-, innate-). This result might be explained by

immunosuppressive and inflammatory pro-tumour effects of

tumour-associated macrophages and neutrophils (36, 37),

however single gene or gene signature analysis was not

suitable to accurately identify macrophages (M1/M2),

neutrophils (N1/N2) and DC subtypes. Our previous study

also demonstrated the negative prognostic influence of

neutrophils in MPE patients (10).

From the therapeutic perspective, combinational

immunotherapy is a reasonable option due to the fact that

most of these targetable immunomodulatory molecules were

co-activated (Figure 4A), which was also reported by other

studies (38–40). A similar co-activation trend of PD-L1 with

other immunomodulators (TIGIT, ADORA2A and ICOS) was

seen from the differential expression analysis grouped according

to the PD-L1 IHC scoring result (Figure 3A). Likewise, current

clinical research pays more attention to bi-specific and tri-

specific antibodies development as well as combination

therapy, e.g. using anti-PD-L1 together with anti-TIGIT

antibodies for lung cancer patients (NCT04294810) in order to

obtain, on the one hand, better efficacy, on the other hand, to

solve treatment resistance problems (41, 42). Inconsistent with

most other positively correlated genes, CD276 (B7-H3) and

VEGFA were negatively associated with other genes. As a poor

prognosticator for many malignancies , B7-H3 was

overexpressed in tumour cells and might exert a suppressive

function for both adaptive and innate immune responses

according to our findings and other studies (43). Moreover,

B7-H3 was overexpressed in the blood vessels of human tumours

(44) and promoted angiogenesis through the enhancement of

VEGF secretion (45). Intriguingly, together with CD274 (PD-

L1), CD276 (B7-H3) and VEGFA were both highly expressed in

the cold tumours, which could be further investigated as novel

immunotherapy targets for such patients.
TABLE 2 Univariable and multivariable Cox regression analysis of prognostic parameters.

p-value Univariale HR (95% CI) p-value Multivariale HR (95% CI)

Age (> 70 years vs. ≤ 70 years) 0.012 1.810 (1.142 - 2.870) 0.001 2.513 (1.457 - 4.334)

Sex (male vs. female) 0.292 0.784 (0.499 - 1.232)

Other metastasis (with vs. without) 0.415 1.266 (0.718 - 2.233)

Chemo before diagnosis (yes vs. no) 0.293 1.356 (0.769 - 2.392)

Patient cluster (C4 vs. C3 vs. C1+C2) 0.001 1.699 (1.234 - 2.339) 0.003 1.648 (1.180 - 2.301)

PD-L1 (high vs. low) 0.006 2.214 (1.254 - 3.912) 0.001 3.316 (1.661 - 6.617)
HR, hazard ratio.
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In addition to the immunomodulators, our finding

emphasised the prognostic significance of a pathway belonging

to the primitive immune system, named pattern recognition

receptors (PRRs). The activation of PRRs by virus RNA or

cancer cells (46, 47) results in upregulation of the type I

interferon pathway (mainly from the host DCs) which

consequently initiates an antigen-specific adaptive immune

response via activation of DCs (especially conventional DCs

(48)) and CD8 + T cells. It also enhances NK cells cytotoxicity

and mediates tumour elimination (49). Additionally, PRRs

together with the type I interferon pathway were reported as

intrinsic tumour suppressors, which facilitated cancer cell lysis

and apoptosis (46, 47, 50). More importantly, in our cohort,

genes belonging to RIG-I like receptor in PRRs and type I

interferon signalling pathways (IFIH1, DDX58, ISG15, ISG20

and IRF7) were exclusively overexpressed in the long-survival

patient group and highly expressed in hot tumours, offering a

promising approach for MPE cancer therapy by triggering these

natural antiviral responses. Of note, high expression of type I

interferon pathway genes represented better immune

stimulation and activation, even though high PD-L1

expression also activated interferon pathways. Among patients

showing high PD-L1 expression, the activation of the type I

interferon pathway may not be the dominant factor for patient

clinical outcomes, and further study needs to be done to

elucidate this hypothesis. In the short-survival patient group,

only the gene TREM2 was differentially expressed. As a negative

immune regulator, the expression level of the triggering receptor

expressed on myeloid cells-2 (TREM2) was found inversely

correlated with patient prognosis in gastric cancer (51, 52).

There are some limitations of our study. Our retrospective

cohort did not include the clinical information such as patient

performance status and mutation status due to the historical

data incompletion for the survival analysis which may add values

to our conclusion. Further functional verification for our

proposed therapeutic targets and M1/M2 macrophages, N1/N2

neutrophils and DCs subpopulation validation in terms of their

prognostic potential are essential for the better understanding

and interpretation of MPE onco-immunity, which will be

investigated in further studies.
Conclusions

In summary, our investigation of the MPE LADC immune

landscape demonstrates the clinically relevant immunogenic

potential of PD-L1, and the significance of cytoplasmic pattern

recognition receptor and type I interferon signalling pathways in

the tumour suppressive process. Moreover, our study identified

four gene clusters with different prognostic values for patient’s

overall survival, specific immune components and diverse

immunomodulator expression profiles, which provides
Frontiers in Oncology 10
practical information for predicting disease outcomes and

investigating new therapeutic strategies for MPE LADC patients.
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