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Abstract
Obesity and its associated medical conditions continue to increase and add
significant burden to patients, as well as health-care systems, worldwide.
Bariatric surgery is the most effective treatment for severe obesity and its
comorbidities, and resolution of diabetes is weight loss-independent in the case
of some operations. Although these weight-independent effects are frequently
described clinically, the mechanisms behind them are not well understood and
remain an intense area of focus in the growing field of metabolic and bariatric
surgery. Perceptions of the mechanisms responsible for the beneficial
metabolic effects of metabolic/bariatric operations have shifted from being
mostly restrictive and malabsorption over the last 10 to 15 years to being more
neuro-hormonal in origin. In this review, we describe recent basic and clinical
findings of the major clinical procedures (adjustable gastric banding, vertical
sleeve gastrectomy, Roux-en-Y gastric bypass, and biliopancreatic diversion)
as well as other experimental procedures (ileal interposition and bile diversion)
that recapitulate many of the metabolic effects of these complex operations in a
simpler fashion. As the role of bile acids and the gut microbiome on metabolism
is becoming increasingly well described, their potential roles in these
improvements following metabolic surgery are becoming better appreciated.
Bile acid and gut microbiome changes, in light of recent developments, are
discussed in the context of these surgical procedures, as well as their
implications for future study.
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Introduction
Obesity is a significant health-care problem with few treatment 
options, many of which are only minimally effective in the long 
term. Medical therapy consisting of intensive lifestyle modifica-
tion (that is, diet, exercise, and behavioral therapy) fails to maintain 
significant long-term weight loss. Although medical intervention 
can lead to modest weight loss in select patients1, 5–10% weight 
loss in a morbidly obese individual still leaves that patient with 
significant cardiometabolic risk2,3.

Metabolic and bariatric surgery (in this review, the phrase “metabolic 
and bariatric surgery” refers to a single entity) is recognized 
as the most effective treatment for obesity and its associated 
comorbidities, such as type 2 diabetes4–7, and its usage continues 
to increase with the increasing prevalence of obesity and metabolic 
disease. Early studies from Pories and colleagues8 and others9,10 in 
gastric bypass patients described diabetes resolving almost imme-
diately after surgery. Even though this effect was described more 
than 30 years ago8,11, its complex underlying mechanisms remain 
an intense research focus. Multiple reviews and meta-analyses have 
confirmed a diabetes resolution rate of approximately 80%12–14 and 
also provide evidence that operating in patients with a body mass 
index of less than 35 kg/m2 may be warranted as well for non-
obese diabetics15–19. Overall, the benefits of bariatric and metabolic 
surgery continue to be better described, particularly the decreases 
in cardiovascular disease and cancer mortality20,21. With the alle-
viation of diabetes and other comorbidities, it is not surprising that 
bariatric surgery also exhibits cost savings compared with chronic 
medical treatment of these diseases20,22–24.

Our aim herein is not to focus on the anatomic differences of the 
particular operations per se but instead to highlight the discover-
ies and new questions each procedure has provided over about 
the last 5 years. The field of metabolic and bariatric surgery has a 
rich history, although our understanding of how these operations 
lead to their beneficial effects has significantly changed over the 
last 10 to 15 years. Operations that were originally intended to 
produce weight loss through combinations of gastric restriction or  
malabsorption (or both) clearly have metabolic benefits that are 
independent from either one of these previously long-held beliefs 
of their mechanism of action. The historical bile diversion and ileal 
interposition operations are scientifically in vogue once again and 
are helping to examine the complex role of bile acids in metabolic 
regulation. We have focused on the insights from the most popular 
procedures clinically and experimentally, including gastric band-
ing, vertical sleeve gastrectomy (VSG), Roux-en-Y gastric bypass 
(RYGB), biliopancreatic diversion (BPD), ileal interposition, and 
bile diversion. Importantly, we have emphasized many of the 
species-specific changes that must be considered when translating 
findings to a clinical context. The role of bile acids and the gut 
microbiome and their potential interaction is discussed. For a com-
prehensive discussion of the rapidly growing field of metabolic and 
bariatric surgery, we direct the reader to this excellent review25.

Purely restrictive operations
Adjustable gastric banding and gastric balloons
The contribution of gastric restriction to the efficacy of bari-
atric surgery is an area that has been well studied clinically and 
experimentally. The adjustable gastric band (Figure 1) and gastric  

Figure 1. Adjustable gastric banding. In this procedure, an external 
ring is placed around the proximal portion of the stomach and has a 
balloon that lines the inside portion of the ring. The inflatable balloon 
is connected to a port in the subcutaneous tissue of the abdomen 
that allows the balloon volume, and therefore the amount of gastric 
restriction, to be adjusted.

balloons are two procedures that purely decrease the capacity of the 
stomach, by either an adjustable external compressive device (that 
is, the adjustable gastric band) or merely taking up space within the 
stomach (that is, the gastric balloon). Over the last decade, adjusta-
ble gastric banding has continued to fall from its peak clinical usage 
in 2008 to currently comprising only 10% of bariatric procedures 
worldwide26. This decline is due to the relative ineffectiveness of 
banding for long-term weight loss and reduced comorbidity com-
pared to other bariatric procedures. Consistent with this trend and 
clinical findings, gastric banding has been modeled in rodents27–29 
and has been shown to be less effective for long-term weight 
loss or improvements in glucose tolerance compared with other  
procedures (for example, RYGB and BPD) that have additional 
hormonal or malabsorptive characteristics or both greater and  
more durable effects. In rodent models, gastric banding is purely 
restrictive and does not confer any additional benefits beyond 
restriction of food intake29–33. Banding exerts a temporary weight 
loss that is compensated for over the course of several weeks27. The 
delayed resolution of diabetes or other metabolic comorbid condi-
tions is greater with, and attributable to, weight loss secondary to 
decreased food intake and not direct neuro-hormonal effects34,35.

Similarly, gastric balloons have recently been approved in the US, 
although they have been used in Europe for over a decade36. The 
science behind the balloon is similar to gastric banding in that the 
balloons are meant to simulate a false sense of gastric distention 
and promote satiety even after consumption of a minuscule amount 
of food. Again, similar to the banding procedure, these devices in  
theory are purely restrictive; however, as they become more 
popularly used in Europe and the US, further investigation into 
the potential changes in hormonal or metabolic effects can be  
studied37,38.
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More than gastric restriction: operations with hormonal 
effects
Without a doubt the most exciting advancements in the field of 
metabolic and bariatric surgery over the last decade have been the 
identification of mechanisms that have challenged the long-held 
beliefs that “bariatric” surgical procedures induce weight loss 
purely through a combination of gastric restriction or nutrient mal-
absorption, or both. Neural, hormonal, and other nutrient signaling 
pathways that have previously been unrecognized may be mediat-
ing many of the metabolic benefits of these surgical procedures. We 
examine three of these operations to help highlight these novel and 
alternative mechanisms in the following section.

Vertical sleeve gastrectomy
The vertical sleeve gastrectomy is a surgical procedure that 
decreases gastric volume by approximately 70% with excision of a 
large portion of stomach along the greater curvature (Figure 2). As 
mentioned above, clinical and experimental evidence has 
demonstrated that gastric restriction alone is not effective as a 
long-term solution for obesity or its comorbidities. When VSG 
was first introduced, it was deemed to be a purely restrictive pro-
cedure; however, this view has been transformed on the basis of 
clinical and experimental observations. With better weight loss 
and metabolic outcomes compared with gastric banding, VSG has 
increased in usage over the last decade and become almost as popu-
lar as RYGB26. However, whether VSG provides similar remission 
to obesity and diabetes long-term has yet to be determined. The 
ongoing STAMPEDE trial (Surgical Therapy And Medications 
Potentially Eradicate Diabetes Efficiently)4, the first prospective 
randomized clinical trial designed to compare both VSG and RYGB 
to intensive lifestyle modification alone, is not designed to make 
direct comparisons between VSG and RYGB. Regardless, the data 
from the STAMPEDE trial should give us rough insight into how 
well VSG compares to intensive lifestyle intervention and medical 
therapy in the long term.

Aside from its clinical usage, VSG has been described in multiple 
rodent studies and has several interesting physiologic effects that 
cannot be explained by restriction alone. In fact, data have directly 
challenged the notion that VSG involves any intrinsic gastric 
restriction at all. In studies by Grayson and colleagues39, lactating 
female rats that had previously received a VSG or sham operation 
were both able to increase their food intake in response to lactation 
without any evidence of food intake restriction in the VSG rats 
that were lactating—one of the most energy-demanding processes 
physiologically when dams routinely double or even triple their 
food intake40. Initially, VSG was thought to work by excision of the 
ghrelin-producing portion of the stomach41. Indeed, circulat-
ing ghrelin concentrations are significantly decreased up to a 
year after VSG42. Interestingly, even in the absence of intestinal 
rearrangement, VSG is associated with increased secretion of the 
distal intestinal hormones GLP-1 and peptide YY (PYY)43–45. Stud-
ies using rodent models of VSG have examined the contribution 
of these hormonal changes and other mechanisms to VSG effi-
cacy. Mice with genetic deletion of ghrelin or the GLP-1 receptor 
continue to show weight loss following VSG46,47, suggesting that 
isolated changes in these hormones cannot explain the efficacy of 
the procedure. Unlike ghrelin and GLP-1 receptor knockout mice, 
though, mice deficient in the bile acid receptor FXR (farnesoid 
X receptor) have completely abrogated effects of VSG while on 
a high-fat diet48, thus implicating FXR as a major target of VSG.  
Consistent with this bile acid receptor dependency, VSG is associ-
ated with increased plasma bile acid concentrations in the mouse49, 
but whether the same holds true in humans is not year clear50.  
Stefater and colleagues25 examined the effects of VSG compared 
with diet-induced obesity, pair-fed, or chow-fed control rats. In 
that study, total bile acids were increased by VSG or pair-feeding 
by unknown mechanisms, which began to approach the higher  
concentrations of total bile acids reported in the chow-fed controls. 
How FXR signaling is altered by bariatric surgery and what other 
pathways may be affected by VSG remain unclear, although a 
number of other VSG-related effects require further study, includ-
ing changes to taste preference similar to RYGB as well as changes 
in intestinal triglyceride metabolism51–54.

Roux-en-Y gastric bypass and biliopancreatic diversion
The RYGB (Figure 3) and BPD (Figure 4) operations combine  
significant intestinal rearrangement with gastric restriction. Each 
procedure involves creation of a smaller stomach pouch while 
diverting nutrient flow to varying distal segments of the intestine. 
The gastric restrictive component is typically less with BPD but 
diversion of biliopancreatic secretions is more distal, compared 
with RYGB. Both RYGB and BPD were originally thought to cause 
weight loss through a combination of malabsorption and gastric 
restriction. From clinical practice, we know that bariatric surgical 
patients are at higher risk for certain micronutrient deficien-
cies, highly suggestive of an intrinsic malabsorptive component 
leading to weight loss after these procedures55–57. Compared with 
RYGB patients, BPD patients tend to have more nutritional and gas-
trointestinal (GI) side effects58, which may indicate a more severe 
malabsorptive phenotype. Regardless, both operations produce 
improvements in diabetes/insulin resistance59–62. Several studies 
have attempted to determine the magnitude of malabsorption 
following these procedures clinically and experimentally. In terms 
of macronutrient malabsorption, animal studies suggest a higher 

Figure 2. Vertical sleeve gastrectomy. A majority of the greater 
curvature is excised in this procedure, creating a tube-like stomach 
with a marked reduction in gastric capacity.
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degree of malabsorption in RYGB/BPD models, which could 
contribute to significant weight loss63,64. However, this degree of 
malabsorption is not consistently observed in practice, and several 
clinical studies show frank macronutrient malabsorption, minimal 
macronutrient malabsorption, or no macronutrient malabsorption 
at all65–68. Both nutrient and macronutrient malabsorption appear  
to be much more easily observed in the BPD models compared 
with RYGB65,69. Collectively, macronutrient malabsorption appears 
to play a much greater role in the case of BPD than RYGB in the 
weight loss observed in these patients clinically. However, the  
complex intestinal rearrangement, altered nutrient absorption, and 
physical separation of biliopancreatic secretions from nutrients in 
these operations may alter the intestinal nutrient milieu to explain 
what drives many of the hormonal and histologic changes70 observed 
in these procedures.

Given the anatomic changes with RYGB and BPD, two oppos-
ing hypotheses—referred to as the “foregut hypothesis” and the  
“hindgut hypothesis”—arose in the field. The foregut hypothesis 
posits that an unknown factor—neural or hormonal or both— 
originates from the bypassed intestinal region in RYGB/BPD 
that promotes insulin resistance. Thus, bypass of that segment is  
associated with metabolic improvements. There is considerable  
evidence in support of this hypothesis, proposed as early as the 
1980s by Scopinaro and colleagues71, although the identity of such 
a factor remains elusive72,73. Two studies examined the foregut 
hypothesis directly in RYGB patients with gastrostomy tubes in 
the gastric remnant74,75. Hansen and colleagues74 found that reintro-
duction of nutrients into the excluded foregut in the first 6 weeks 
after RYGB did not reverse improvement in glucose responses, 
whereas Pournaras and colleagues75 found reversal between  
9 and 24 months after RYGB. Differences between these two  
studies could be related to early-versus-late post-operative effects or 
possible enteral feeding prior to testing in the latter study. Animal 
studies have also had mixed results, showing that duodenal nutrient 
exclusion is associated with villous hyperplasia but that improve-
ments in glucose tolerance, weight loss, or incretins are mixed and 
may depend heavily on strain/genetic background76–79. Conversely, 
the “hindgut hypothesis” posits that the more rapid delivery of 
nutrients to the hindgut stimulates either neural or hormonal factors 
(or both) that lead to the metabolic benefits and weight loss. Within 
the first month after surgery, concomitant increases in postpran-
dial GLP-1 and insulin secretion and an enhanced incretin effect 
are observed and have positioned GLP-1 as the prime mediator of 
improved glucose homeostasis after the procedure. Recent data 
using GLP-1 receptor antagonists have challenged a dominant role 
for GLP-1. Although these data indicate that the increased GLP-1 
contributes to the increased insulin secretion, this does not trans-
late into improved glucose homeostasis80. It is somewhat unfortu-
nate that these opposing theories arose, because the field has come 
to appreciate that there are likely components of each that could 
potentially be at work following RYGB and BPD.

Aside from foregut bypass, a number of anatomic/histologic 
changes are associated with the intestinal rearrangement that can 
be potentially linked to the metabolic changes. Cell proliferation 
and villous surface area are increased in the Roux limb of RYGB in 
humans, as are expression levels of genes suggestive of increased 
energy demands81. A working hypothesis in rats is that Roux limb 

Figure 3. Roux-en-Y gastric bypass. The stomach is divided, 
creating a small gastric pouch that is connected through a gastro-
jejunostomy to a distal segment of jejunum, which forms the Roux 
limb of the procedure. The remainder of the stomach is referred to as 
the “gastric remnant” and drains into the bypassed portion of bowel, 
referred to as the “biliopancreatic limb”. Bowel continuity is restored 
for the biliopancreatic limb by a jejuno-jejunostomy that creates the 
“Y” configuration of the operation. Thus, ingested nutrients proceed 
rapidly through the stomach pouch and move immediately into the 
jejunal Roux limb in the absence of bile and pancreatic secretions. 
Bile and pancreatic secretions drain via the biliopancreatic 
limb and then mix with the chyme/nutrients at the point of the  
jejuno-jejunostomy.

Figure 4. Biliopancreatic diversion. This is a procedure that 
effectively diverts bile and pancreatic secretions to the distal bowel 
for mixing with nutrients/chyme, typically much further distal than a 
Roux-en-Y gastric bypass. This procedure can be performed with or 
without a partial gastrectomy and is also referred to as a duodenal 
switch; the “switch” is the diversion of bile and pancreatic secretions 
from nutrient flow.
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hypertrophy, secondary to energetic demands on the jejunum, 
results in increased nutrient uptake following RYGB, making the 
Roux limb a significant contributor to glucose homeostasis. This is 
evident by increased basolateral glucose uptake of the Roux limb 
in the post-absorptive state with corresponding changes in glucose 
transporters on immunohistologic analysis82. Consistent with this 
intestinal hypertrophy hypothesis, other procedures have also 
shown changes in intestinal histology and increased L-cell popula-
tions with concomitant changes in L-cell hormonal responses (that 
is, GLP-1 and PYY)64,83,84. However, histologic changes also occur 
in the common channel (that is, distal ileum) that could represent 
hypertrophy secondary to undigested luminal nutrients85.

Besides the improvements in insulin sensitivity/glucose homeosta-
sis and weight loss observed with RYGB, nutrient signaling within 
the GI tract to alter taste or other metabolic processes is signifi-
cantly changed by these operations. Several studies have demon-
strated altered taste preference for lipid or glucose solutions in 
humans and animals after RYGB52,86–88. These findings appear to 
reflect changes in central reward pathways, but whether this reflects 
direct central effects or actions of peripheral signals needs to be 
determined88–91. Additionally, similar neural sensing mechanisms 
operating via the vagus nerve have been implicated in luminal 
nutrient sensing, which adds another layer of complexity between 
the neural and hormonal regulation that is changed by RYGB and 
potentially other bariatric operations. Further studies are needed to 
identify these mechanisms, as the role of the vagus nerve in these 
effects remains unclear92–94.

Although most of the focus has been placed on the intestines, con-
siderable evidence indicates that negative energy balance may also 
have beneficial metabolic effects after RYGB. In the immediate 
post-operative period, significant caloric restriction contributes to 
the early improvements in glucose metabolism95–97. Within the first 
month after surgery, improvements in hepatic insulin sensitivity 
are evident98,99, indicating an important contribution of the liver in 
mediating the weight loss-independent effects of RYGB. On the 
other hand, an improvement in peripheral insulin sensitivity, which 
mediates glucose disposal after a meal, occurs later and is related 
to the ensuing weight loss99–101. It has been debated whether an 
increase in energy expenditure is responsible for weight loss post-
operatively in these patients. Recent evidence suggests that resting 
energy expenditure is increased in mice63,102 as well as rats103,104 
following RYGB. Unlike animal data, human studies using appro-
priate methodology (that is, regression modeling105–107) do not 
support any increases in energy expenditure following RYGB108,109. 
In fact, the massive weight loss of RYGB occurs in the setting 
of metabolic adaptation (decreased energy demands greater than 
expected for the degree of weight loss), suggesting the contribu-
tion of hormonal or neuronal factors (or both) in the anorectic 
effect110. The effects of RYGB on energy expenditure appear to 
be contrary to those observed in BPD, which Scopinaro and col-
leagues have reported111. Overall, when examining the metabolic 
and body weight changes observed both acutely and chronically by 
RYGB and comparing those with BPD, researchers are tempted to 
speculate that the BPD operation represents an extreme physiologic 
response. A response of this magnitude tends to make sense given 
the apparent effects of BPD on energy expenditure, malabsorption, 

and long-term body weight, which are more easily observed with 
that procedure compared with RYGB.

Experimental metabolic operations without gastric 
restriction
Ileal interposition
The ileal interposition (Figure 5), also previously referred to as 
“ileal transposition”, has been an insightful procedure used to 
examine the mechanisms underlying altered nutrient flow after 
RYGB or BPD. The procedure involves taking a neurovascular 
intact segment of near-terminal ileum and interposing it just dis-
tal to the ligament of Treitz, effectively producing a model simu-
lating rapid hindgut delivery like RYGB or BPD, but without any 
gastric restriction. Koopmans and colleagues112 first identified that 
ileal interposition surprisingly led to decreased food intake in 
obese rats, which the authors attributed to an “over-stimulated 
ileum”. In most cases, however, these changes in food intake or 
body weight are either negligible or modest and this may explain 
why they are not uniformly detectable—indicating potential 
importance of genetic background (that is, animal strain) or 
feeding/housing methods in rodent studies113–116. Moreover, these 
changes appear to be heavily dependent on the length of the ileal 
segment interposed; longer interposed segments have more robust 
metabolic effects that could account for variability of findings117. 
Consistent with this over-stimulated ileal hypothesis, the ileal inter-
position has profound effects on glucose homeostasis as well as 
GI hormone secretion and bile acid metabolism similar to RYGB,  
BPD, and VSG. Weight-independent improvements in glucose 
homeostasis in rats are secondary to improved skeletal muscle 
glucose uptake and insulin signaling via Akt113. These benefits per-
sist in monogenic and polygenic rat models of obesity or diabetes, 
or both113,114. The interposition procedure is also associated with 

Figure 5. Ileal interposition. A neurovascular intact segment of 
distal or near-terminal ileum is interposed in the proximal jejunum 
near the ligament of Treitz. The distal jejunum is then re-anastomosed 
to the small segment of ileum proximal to the ileocecal valve to 
re-establish bowel continuity.
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increased expression and secretion of ileal hormones (that is, GLP-1 
and GIP)113,115,116 that correspond to increased enteroendocrine cell 
numbers118.

Aside from ileal hormones, ileal interposition causes marked 
elevations in circulating bile acids113,116, the mechanism of which 
remains unclear. However, both basal and nutrient-stimulated bile 
acid concentrations are a common finding after bariatric operations. 
In this regard, bile acids are recognized players in the regulation of  
glucose and lipid metabolism through the FXR and TGR5  
receptors, respectively. It is tempting to speculate that activation 
of those receptors could improve glucose tolerance and enhance 
insulin sensitivity.

The mechanisms responsible for the observed elevations in plasma 
bile acid concentrations following ileal interposition remain 
unclear. Strader and colleagues119 suggested that the beneficial 
effects of ileal interposition come from nutrient or bile exposure 
of the interposed ileal segment at much higher concentrations, thus 
overwhelming the transposed segment and subsequently causing 
compensatory changes to the “neo-ileum”. In rats, following ileal 
interposition the apical sodium bile acid transporter is decreased 
(~95%) in the interposed ileal segment, although the cytosolic trans-
porter is increased. In those same animals, however, the most distal 
segments of intestine (that is, the remaining or neo-ileum and/or 
colon) had robust increases in expression of these transporters119.

Bile diversion
Bile diversion (Figure 6) was an experimental surgical technique 
developed in the 1960s120,121 for surgical management of hyperc-
holesterolemia. The proposed mechanism of the procedure was 

to prevent bile salts from mixing with intestinal contents prior to 
reaching the colon, and thus cholesterol (and other lipid) absorption 
would be significantly less. The bile diversion procedure paralleled 
the development of the jejunal-ileal and ileal bypasses pioneered 
by Buchwald and Gebhard122 at the University of Minnesota and 
Scott and colleagues123 at Vanderbilt University, and this culminated 
in the Program of Surgical Control of Hyperlipidemias (POSCH) 
trial124. From these studies, as one would expect, there were 
tremendous improvements in total cholesterol levels that were 
attributed to the lack of bile-nutrient mixing and thus retarded lipid 
absorption.

At the time bile diversion was developed, bile acids had not 
yet been recognized as the metabolic hormones that we know 
today125,126. Thus, more recent studies have revitalized the poten-
tial uses for bile diversion as a model to dissect the mechanisms at 
work following bariatric surgery because of its similarities to other 
bariatric procedures. Bile diversion, similar to RYGB or BPD, 
limits bile-nutrient mixing until a more distal point in the intes-
tine. Unlike the RYGB or BPD, though, there is no biliopancreatic 
limb for these secretions to flow; they are completely diverted by 
cannula or anastomosis directly to the intestinal segment of inter-
est maintaining unaltered alimentary flow. Coincidentally, it was 
noted that glucose tolerance was improved even in the absence 
of weight loss in dogs after bile diversion127. Manfredini and  
colleagues128 replicated these observations and described improve-
ments in oral and intravenous glucose tolerance in the absence 
of any changes in insulin secretion. However, a recent report 
of bile diversion in lean rats has shown conflicting results on 
whether insulin secretion is altered, and this requires further 
study128,129.

Regardless of whether insulin secretion is altered, there is improved 
insulin responsiveness and decreased fasting glucose after bile 
diversion suggestive of a change in insulin sensitivity in lean rats129. 
Similarly, in a high fat-fed model, Kohli and colleagues130 have 
shown that bile diversion to the jejunum produces weight loss 
compared with sham/control rats. These beneficial changes are 
recapitulated with oral bile acid administration and appear to be 
mediated by alleviating endoplasmic reticulum stress. Moreover, 
bile diversion in rats was associated with increased number and 
length of villi, similar to procedures like RYGB, BPD, and ileal 
interposition130,131. Each of the bile diversion models is associated 
with increased circulating bile acid concentrations, which appear 
to be necessary for the metabolic effects since administration of 
bile acid sequestrants (for example, cholestyramine) normalizes 
plasma bile acid concentrations and abolishes the metabolic 
improvements. These findings are consistent with our recent studies 
using a gallbladder to ileum anastomosis in the mouse, which com-
pared it alongside RYGB in a mouse model of diet-induced obesity. 
Similar to the findings in rats, bile diversion in mice is associated 
with striking improvements in glucose tolerance, insulin sensitivity, 
normalization of blood lipids, and complete resolution of hepatic 
steatosis63. These changes are secondary to a degree of malabsorp-
tion of dietary lipid in the mice; however, they are also observed 
with marked increases in total circulating bile acids—specific bile 
acids that are implicated in metabolic signaling through bile acids 
receptors (that is, TGR5 and FXR)125,132.

Figure 6. Bile diversion. In the absence of any gastric restriction, 
the common bile duct is ligated proximal to the pancreatic duct 
and an anastomosis is created between a portion of ileum and the 
gallbladder. Pancreatic secretions follow their normal course and 
drain into the duodenum, but biliary secretions are diverted to the 
portion of ileum connected directly to the gallbladder.
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Role of bile acids and the gut microbiome
The contributions of bile acids in the metabolic effects follow-
ing bariatric surgery are at the forefront of current investigation. 
There is considerable evidence that bile acid concentrations are 
increased following bariatric surgical procedures—both clini-
cal and experimental—and the most robust clinical changes are 
observed in RYGB and BPD133–138. Whether the changes in circulat-
ing bile acid concentrations lead to changes in known downstream 
metabolic effectors like fibroblast growth factor 19 (FGF19, FGF15 
in rodents) is still under investigation139. The changes in bile acid 
metabolism and circulating concentrations appear to be dynamic 
following RYGB133 and this may explain why some investigators 
observe increases in the metabolically beneficial hormone FGF19 
and some do not133,138,140–142. From a mechanistic perspective, the 
fact that the ileal interposition and bile diversion procedures reca-
pitulate these bile acid elevations is quite intriguing and implies that 
either absence of bile in the proximal intestine or overabundance in 
the distal intestine may contribute the metabolic effects observed. 
The changes in bile acids appear to be mediated in part by increases 
in bile acid synthesis through increased expression of CYP7A1, the 
rate-limiting enzyme in bile acid synthesis. However, there are also 
concurrent changes in bile acid transporter proteins in the liver and 
the ileum63 that would also be expected to increase the circulating 
total bile acid pool. Paradoxically, bile acid synthesis is elevated 
in the face of increased SHP and decreased FXR expression in the 
livers of these animals. These changes in SHP and FXR expres-
sion are inconsistent with our current understanding of hepatic bile 
acid synthesis143. Regardless of how bile acid concentrations are 
increased following the ileal interposition and bile diversion proce-
dures, the molecular mechanisms of how the increased abundance 
of bile acids may alter glucose homeostasis is currently unknown. 
Evidence suggests that these effects are mediated via FXR or TGR5 
signaling (or both) in the beta-cell or in the enterocytes themselves 
(or in both)125,144,145, but further studies need to focus on clarifying 
these mechanisms and their physiologic importance. These bile 
acid-mediated effects on glucose and lipid metabolism have thera-
peutic implications on diabetes irrespectively of changes on body 
weight and are a focus of current investigation.

Perhaps one of the most intriguing observations of this century thus 
far has been that fecal transfer of gut microbiota from obese donors 
causes weight gain in lean recipients146. Similarly, the opposite effect 
can be demonstrated in obese mice with stool from RYGB mouse 
donors, which demonstrates the transferability of at least some of 
the metabolic benefits of gastric bypass147. There has been signifi-
cant evidence that the gut microbiota is altered following bariatric 
surgery, although the mechanisms of these changes and the potential 
contribution they make in the metabolic benefits post-operatively 
are unknown. Changes in the microbiota have been examined in 
mouse models of sleeve gastrectomy48 as well as biliary diversion63, 
and these procedures show what appear to be beneficial changes. 
Interestingly, le Roux and colleagues148 have recently shown that 
the gut microbiota alter the pattern of adipose tissue deposition. The 
interaction between the gut microbiota and bile acid metabolism is 
complex, and particular bile acids are antibacterial and likely affect 
the gut microbiota. In contrast, the gut microbiota are the major 

source of bile acid diversity, chemically transforming endogenously 
produced bile acids to a number of different chemical species that 
likely have varying potencies at bile acid receptors. At this time, 
it is not clear whether these changes in microbiota are a cause or 
an effect of the metabolic improvements and weight loss observed 
following bariatric surgery, but the potential for altering the 
microbiome as a treatment for obesity or diabetes (or both) contin-
ues to emerge149.

Summary and future directions
From a clinical perspective, prospective clinical trials are needed 
to directly compare not only durability of weight loss but also 
resolution of other obesity comorbidities (for example, diabetes, 
insulin resistance, and hyperlipidemias) after VSG and RYGB150. 
Scientifically, while much progress has been made regarding the 
weight loss-independent metabolic effects of bariatric surgery, the 
complexity of the system continues to provide challenges. The field 
is progressing from a “GLP-1-centric view” of bariatric surgery 
to encompass the importance of early benefits of caloric restric-
tion and non-traditional regulators of metabolism. The changes 
in bile acid metabolism with bariatric surgery will continue to 
drive the study of these procedures and the mechanisms in animal 
models—especially as the bile acid field continues to advance our 
understanding of these potent metabolic regulators. Lastly, the 
interaction of the bile acid milieu and the gut microbiome cannot 
be ignored. The gut microbiome field continues to grow and 
become more intervention-driven, as opposed to descriptive, and 
will continue to help identify the changes underlying the metabolic 
benefits of bariatric and metabolic surgery. These continue to be 
exciting times for metabolic and bariatric surgical research, and 
future studies examining the contributions of bile acids and micro-
biota both clinically and experimentally may lead to more effective 
treatments, and perhaps new interventional procedures for obesity 
and diabetes.
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