
Multi-Omics Characterization of
Tumor Microenvironment
Heterogeneity and Immunotherapy
Resistance Through Cell
States–Based Subtyping in Bladder
Cancer
Rixin Hu1,2†, Tao Tao2,3†, Lu Yu2,3,4, Qiuxia Ding2,3, Guanghui Zhu2,3, Guoyu Peng2,3,
Shiwen Zheng2,3, Leyun Yang2,3 and Song Wu1,2,3,4,5*

1Health Science Center, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China, 2Department of Urology, The
Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China, 3Shenzhen Following Precision Medical
Research Institute, Luohu Hospital Group, Shenzhen, China, 4Teaching Center of Shenzhen Luohu Hospital, Shantou University
Medical College, Shantou, China, 5Department of Urology, South China Hospital, Health Science Center, Shenzhen University,
Shenzhen, China

Due to the strong heterogeneity of bladder cancer (BC), there is often substantial variation
in the prognosis and efficiency of immunotherapy among BC patients. For the precision
treatment and assessment of prognosis, the subtyping of BC plays a critical role. Despite
various subtyping methods proposed previously, most of them are based on a limited
number of molecules, and none of them is developed on the basis of cell states. In this
study, we construct a single-cell atlas by integrating single cell RNA-seq, RNA microarray,
and bulk RNA-seq data to identify the absolute proportion of 22 different cell states in BC,
including immune and nonimmune cell states derived from tumor tissues. To explore the
heterogeneity of BC, BCwas identified into four different subtypes in multiple cohorts using
an improved consensus clustering algorithm based on cell states. Among the four
subtypes, C1 had median prognosis and best overall response rate (ORR), which
characterized an immunosuppressive tumor microenvironment. C2 was enriched in
epithelial-mesenchymal transition/invasion, angiogenesis, immunosuppression, and
immune exhaustion. Surely, C2 performed the worst in prognosis and ORR. C3 with
worse ORR than C2 was enriched in angiogenesis and almost nonimmune exhaustion.
Displaying an immune effective environment, C4 performed the best in prognosis and
ORR. We found that patients with just an immunosuppressive environment are suitable for
immunotherapy, but patients with an immunosuppressive environment accompanied by
immune exhaustion or angiogenesis may resist immunotherapy. Furthermore, we
conducted exploration into the heterogeneity of the transcriptome, mutational profiles,
and somatic copy-number alterations in four subtypes, which could explain the significant
differences related to cell states in prognosis andORR.We also found that PD-1 in immune
and tumor cells could both influence ORR in BC. The level of TGFβ in a cell state can be
opposite to the overall level in the tissues, and the level in a specific cell state could predict
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ORR more accurately. Thus, our work furthers the understanding of heterogeneity and
immunotherapy resistance in BC, which is expected to assist clinical practice and serve as
a supplement to the current subtyping method from a novel perspective of cell states.

Keywords: multi-omics, bladder cancer, tumor microenvironment, cell states, subtype, heterogeneity,
immunotherapy resistance, prognosis

INTRODUCTION

Around the world, there were a total of 5,73,278 new cases and
2,12,536 new deaths linked to bladder cancer (BC) in 2020 (Sung
et al., 2021). In the United States alone, there were 83,730 new
cases and 17,200 new deaths from BC reported, which is
predominant in new cases and new deaths of urologic tumors
(Siegel et al., 2021). Previously, the treatments and drugs available
for BC were quite limited. Some patients even showed intolerance
to the toxicity of platinum-based chemotherapy, thus rendering
the prognosis of BC relatively poor.

However, the emergence of immunotherapy has made
immune checkpoint blockades applicable to BC patients,
especially those with intolerance to platinum-based
chemotherapy. Currently, there have been five immune
checkpoint inhibitors approved for metastatic BC and adopted
as the standard second-line treatment for BC after the failure of
platinum-based chemotherapy. In spite of this, the proportion of
BC patients responding to immunotherapy reaches as low as
about 20%, which is probably attributed to the heterogeneity of
the tumor microenvironment (TME). However, discovering the
relationship between the heterogeneity of TME and
immunotherapy resistance against BC and identifying those
patients fit for immunotherapy remain arduous tasks. To solve
this problem and obtain a deeper understanding of heterogeneity
in BC, there are various subtyping methods proposed. In
histology, BC can be subtyped into NMIBC and MIBC,
depending on the pathological features and molecular
characteristics. Based on DNA, somatic copy-number
alterations (SCNAs), and methylation profiles, subtypes are
classified and some of them associated with prognosis (Hurst
et al., 2012; Aine et al., 2015). TCGA-BLCA defined five subtypes,
including luminal, luminal_infiltrated, luminal_papillary,
basal_squamous, and neuronal; the basal subtype is usually
associated with a bad prognosis, whereas luminal_papillary is
associated with a good prognosis (Robertson et al., 2017).

Despite these previously proposed subtyping methods, most of
them are based on a limited number of molecules, which leads to
the lack of a subtyping method based on cell states. As a part of
TME, peritumor cells are closely related to tumor initiation,
progression, recurrence, and drug response, and cell states are
more comprehensive than molecules. Since then, the subtypes
based on cell states may be more effective in revealing the
relationship between the heterogeneity of TME and
immunotherapy resistance, identifying therapeutic targets, and
assisting in the selection of treatment and assessment of prognosis
in BC. To be specific, single cell RNA-seq makes it possible to
provide detailed information about cell states. Therefore, BC can
be divided into subtypes with distinct heterogeneity based on cell

states through the combination of single cell RNA-seq, RNA
microarray, and bulk RNA-Seq.

In our work, a single-cell atlas consisted of 22 immune and
nonimmune cell states in BC was constructed by means of
reanalyzing single-cell RNA-seq data. Then, the CIBERSORTx
algorithm was adopted to identify the cell states of BC in multiple
cohorts, and BC was divided into four subtypes according to the
levels of 22 cell states. To verify that our subtypes classified by cell
states can be relied on to distinguish the heterogeneity of BC and
guide the treatment, the molecular, genomic, and clinical
characteristics of the four subtypes were evaluated thoroughly.
Besides this, our cell-states subtyping method was compared with
other subtyping methods. According to these results, the cell-
states subtyping method proposed in this study can effectively
identify heterogeneity in BC TME and discover the relationship
between the heterogeneity of TME and immunotherapy
resistance. Our work is expected to assist in the selection of
appropriate therapy for BC patients and contribute a supplement
to the existing subtyping methods.

MATERIALS AND METHODS

Cohort Collection
A total of seven BC cohorts were retrieved from the GEO and
SRA databases, including tumor samples from the TCGA BC
project (TCGA-BLCA). Among these cohorts, a single cell RNA-
seq cohort was used to obtain cell states in BC, three cohorts
(UROMOL, GSE13507, and GSE48276) were utilized for BC cell-
state subtype construction, and three cohorts (TCGA-BLCA,
GSE31684, and IMvigor210) were used for BC classification
with the cell-state subtyping method. Besides this,
immunotherapy response among subtypes was explored in an
immunotherapy cohort (IMvigor210). The single-cell RNA-seq
data of BC was downloaded from SRA1 under the accession code
PRJNA662018. The gene expression profiling, somatic mutation,
SCNAs, and clinical data of TCGA-BLCA tumor tissues were
downloaded from the GDC portal2. Moreover, gene expression
profiles and clinical data of tumor tissues in GSE13507,
GSE48276, and GSE31684 cohorts were downloaded from
GEO3. Gene expression profiles and clinical data of the
UROMOL cohort were downloaded from ArrayExpress4.
Finally, gene expression profiles and clinical data of the
IMvigor210 cohort were obtained from the supplement of

1https://www.ncbi.nlm.nih.gov/sra/.
2https://portal.gdc.cancer.gov/.
3https://www.ncbi.nlm.nih.gov/geo/.
4https://www.ebi.ac.uk/arrayexpress/.
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Turley et al. (Mariathasan et al., 2018). The inclusion criteria for
the samples were as follows. In the TCGA-BLCA cohort, 430
samples were obtained from GDC. Then, 19 normal samples, six
blood or duplicated samples were excluded. Finally, 405 tumor
samples from BC tissues were obtained to identify subtypes. In
the UROMOL cohort, 406 tumor samples were all obtained from
the discovery cohort, and all were used to identify subtypes. In the
IMvigor210 cohort, 348 tumor samples were acquired from
several organs, and 195 tumor samples from BC were included
to identify subtypes. Among 195 samples, 168 tumor samples had
the information of immunotherapy and were used to explore
immunotherapy resistance. In GSE13507, 256 samples were
downloaded from GEO; we then excluded samples from
normal and tumor mucosae and finally obtained 188 samples
from tumor tissue to identify subtypes. In GSE31684, we got 93
BC samples, and all were used to identify subtypes. In GSE48276,
there were 116 BC samples, and all were used to identify subtypes.

Construction of a Single-Cell Atlas in BC
and Identification of Cell States in Multiple
Cohorts
The raw data of eight BC samples were processed and mapped
reads to the transcriptome by using Cell Ranger 6.1. After getting
a raw unique molecular identifier (UMI) count matrix,
SeuratV4.0 (Hao et al., 2021) was employed to quality control
the eight data sets based on the following quality control criteria:
UMI<200, UMI>5000, and mitochondrial gene content >20%
were removed. Then, integration of eight data sets was performed
by the function “IntegrateData,” and batch effects were removed
using the SCTransform algorithm in Seurat. Finally, the
remaining 70,387 cells were applied to SignacX 2.2.4
(Chamberlain et al., 2021), a neural network–based approach
to identify cell states. Next, the cell states were further validated
based on the CellMarker database (Zhang et al., 2019), followed
by subclustering to obtain 22 cell states, which were visualized
with UMAP plots. Markers of 22 cell states were identified by the
function “FindAllMarkers” of Seurat and the top two markers of
each cell state were displayed using Seurat’s “DimPlot.”
Microarray and RNA-seq data were treated with normalization
based on the instruction of CIBERSORTx (Newman et al., 2019),
which were used to deconvolute to acquire the absolute
proportion of 22 cell states in an absolute mode with 100
permutations, and the results with p < .05 were retained for
the next analysis.

Identification of BC Subtypes by Clustering
Cell States
To identify BC subtypes, the R package CrossICC (Zhao et al.,
2020) was applied to cluster all three cohorts (UROMOL,
GSE13507, and GSE48276) with the following parameters:
skip. mfs = F, max. iter = 100, pItem = 0.95, pFeature = 1,
max. K = 8, cross = “cluster”, fdr. cutoff = 0.1, clusterAlg = "hc”,
distance = "spearman”, cc. seed = 47, ebayes. cutoff = 0.1, and
filter. cutoff = 0.1. Although the cohorts were from multiple
platforms, the cohorts could be processed, and batch effects that

arise from the various cohorts could be filtered out by using
CrossICC, and the optimal number of subtypes can be
determined using a built-in consensus clustering algorithm.
Then, the clustering patterns of the three cohorts were utilized
to classify other three cohorts (TCGA-BLCA, GSE31684, and
IMvigor210) using the function “predictor” of CrossICC, and the
BC subtypes were presented with R package pheatmap. Finally,
the line graph was employed to exhibit the absolute proportion of
cell states among the four subtypes in multiple cohorts.

Characterization of TME, Inflammation, and
Immunotherapy Heterogeneity by Signature
in Four Subtypes
First, counts or FPKM data downloaded from TCGA-BLCA,
UROMOL, and IMvigor210 were transformed to TPM data.
Next, the function “calculate_sig_score” of IOBR (Zeng et al.,
2021) was used to calculate TPM data to obtain signatures of
these three cohorts, the function “ggboxplot” of the ggpbur
package was performed to compare the signature among
subtypes, and the function “stat_compare_means” was utilized
to evaluate the significance of difference among subtypes, with p <
.05 noted as *, p < .01 noted as **, and p < .001 noted as ***. The
line graph was used to present the difference of the mean value of
six checkpoints among four subtypes. Hierarchical bar charts
were finally plotted to exhibit the PD-1 level in tumor cells and
immune cells.

Characterization of Mutation Profiles and
SCNAs in Four Subtypes
The package maftools was used to analyze themutation profiles of
the TCGA-BLCA cohort, and the mutation rate of genes was
presented by the function “oncoplot,” followed by identification
of driver mutations in each subtype using the function
“oncodrive” and exhibition with the function “plotOncodrive.”
The Kaplan–Meier plot was utilized for analyzing some driver
mutations in cBioPortal for Cancer Genomics5. The relationship
between subtypes and clinical features was explored by plotting
hierarchical bar charts in cBioPortal for Cancer Genomics.
GISTIC2.0 (Mermel et al., 2011) was performed to analyze the
copy number files from TCGA-BLCA and plotted recurrent
SCNAs area, G-scores, average SCNAs amplitude, and average
SCNAs frequency. Finally, survival difference caused by gene
expression related to subtype-specific SCNAs was displayed by
the Kaplan–Meier plot in GEPIA26.

Statistical Analysis
The analysis of our study was done under R software version 3.6.3
or 4.03 according to the requirements of the R package. The
ANOVA and Kruskal–Wallis tests were used to compare
normally and nonnormally distributed data for each of the
four subtypes. Contingency tables were analyzed by using the

5http://www.cbioportal.org/.
6http://gepia2.cancer-pku.cn/.
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Fisher’s exact or Chi-square test, and FDR was assessed by using
the Benjamini–Hochberg method for multiple hypothesis testing.

RESULTS

Construction of a Single-Cell Atlas in BC
and Identification of Cell States in Multiple
Cohorts
The single cell RNA-seq data of eight BC samples were
downloaded and reanalyzed with CellRanger, followed by
quality control and removal of batch effects of the single-cell
RNA-seq data with Seurat as described inMaterials andMethods.
After that, a total of 70,387 cells were included in this study.
Signacx, a framework using neural networks, which was said to be
good at identifying cell states, was used to initially identify the
cells into 16 cell states, including immune cells (dendritic cell
(DC), classical monocyte (Mon_Classical), non-classical
monocyte (Mon_NonClassical), macrophage, CD4T_ naive,
CD4T_memory, CD8T_naive, exhausted memory CD8T
(CD8T_exm), central memory CD8T (CD8T_cm), regulatory
T cells (Tregs), B_naive, B_memory, plasma_cell, natural killer
cells (NK)), and nonimmune cells (endothelial and fibroblasts),
and some other nonimmune cells had not been yet identified
(Figure 1A). Subsequently, the macrophage was subclustered

intoM1_macrophage andM2_macrophage; DCwas subclustered
into pDC, cDC1, and cDC2; NK was subclustered into
Natural_killer_CD56bright and Natural_killer_CD56dim; and
fibroblasts were subclustered into myCAF and iCAF based on
the Cellmarker database (Figure 1B). The markers of each cell
state were identified by Seurat (Supplementary Table S1), and
the top two markers of each cell state were displayed by heatmap
(Figure 1C). Finally, TCGA-BLCA, UROMOL, GSE13507,
GSE48276, GSE31684, and IMvigor210 cohorts were
deconvoluted to obtain the absolute proportion of 22 cell
states by using CIBERSORTx (Supplementary Table S2).

Identification of BC Subtypes by Clustering
Cell States
Based on the absolute proportion of 22 cell states, the CrossICC
package was employed to cluster BC in UROMOL, GSE13507,
and GSE48276 cohorts jointly. The cohorts from multiple
platforms were intergrated using CrossICC with an iterative
algorithm, and the collection of three training cohorts could
be clustered into four subtypes, namely, C1, C2, C3, and C4. The
results of clustering by cell states were consistent among three
cohorts, which were validated in TCGA-BLCA, IMvigor210, and
GSE31684 and presented with a heatmap in TCGA-BLCA,
UROMOL cohorts (Figure 2A) and GSE13507
(Supplementary Figure S1); the identified results of BC

FIGURE 1 | Construction of a single-cell atlas in BC. (A) UAMP plot of a single cell atlas of BC in first identification by Signacx. (B) UAMP plot of a single cell atlas of
BC in subclustering. (C) Heatmap plot of the top two markers of cell states in BC.
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subtypes among six cohorts are shown in Supplementary Table
S3. The three heatmaps show that a pattern of four subtypes is
consistent among the three cohorts. Moreover, a line graph was
plotted to show significant differences of cell states in TCGA-
BLCA, UROMOL, IMvigor210, GSE13507, and GSE48276
(Figure 2B). It can be found that C1 and C3 possessed the
highest absolute proportion of Tregs, and the absolute proportion
of endothelial cells in C2 and C3 was the highest, suggesting the
tumor-related angiogenesis (Togashi et al., 2019). Besides this, the
absolute proportion of iCAF, myCAF, M2_ macrophage, and
CD8T_exm was the highest in C2, and that of CD8T_cm was the
lowest in C2. The absolute proportion of CD8T_exm was the
lowest in C3, and the absolute proportion of CD8T_cm was the
highest in C4. These cell states not only showed a broadly
consistent pattern in the training cohorts, but also showed
similar pattern in the validation cohorts (Figure 2B). CAFs
could accelerate tumor invasion by promoting tissue
remodeling and EMT (Gaggioli et al., 2007; Astin et al., 2010)
and release inflammatory factors to shape the
immunosuppressive environment (Kaur et al., 2019).
CD8T_exm highly express PD-1 and other immune inhibitors,
which relate to poor prognosis (Ma et al., 2019), whereas
CD8T_cm, which relates to good prognosis, could lead to

protective immunity (Fraser et al., 2013; Olson et al., 2013).
M2_ macrophage could facilitate abnormal angiogenesis by
secreting pro-angiogenic factors as well as Tregs (Lee et al.,
2020). Thus, four subtypes were characterized as described in
Supplementary Table S4. C1 was defined as an immune
suppressive subtype. C2 was defined as an EMT, angiogenic,
immunosuppressive, and immune exhausted subtype. C3 was
defined as an angiogenesis subtype, and C4 was defined as an
immune effective subtype.

Characterization of Clinical Features in Four
Subtypes
The clinical features among four subtypes were compared to
determine whether our cell-state subtyping method could
distinguish clinical heterogeneity in BC. First, survival analysis
was conducted on the training cohorts, which showed that there
were significant differences in progression-free survival (PFS) of
the UROMOL cohort and in PFS, and disease-specific survival
(DSS) of the GSE13507 cohort (p < .05). Moreover, overall
survival (OS) and relapse-free survival (RFS) in GSE31684 and
OS and PFS in TCGA-BLCA also showed remarkable differences
(p < .05). Strikingly, in all these cohorts, C4 had the best survival

FIGURE 2 | Identification of BC subtypes by clustering cell states. (A)Based on 22 cell states in BC, UROMOL, GSE13507, and GSE48276 cohorts were clustered
into four subtypes, and was validated by TCGA-BLCA cohort et al. We only show two heatmaps of UROMOL and TCGA-BLCA cohorts. (B) The line graph demonstrates
significant level of cell states among four subtypes in multiple cohorts. *p < .05, **p < .01, and ***p < .001. Abundance means the absolute proportion of cell states.
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rate, whereas C2 had the worst survival rate (Figure 3A).
Furthermore, we found that other clinical features were
heterogeneous and associated with the survival in four
subtypes. İn TCGA-BLCA and UROMOL cohorts, the
proportion of high-grade tumors followed the same pattern:
C2 > C1 > C3 > C4. Actually, high-grade tumors are often

accompanied by poor prognosis. In the TCGA-BLCA cohort,
T3 and above stages follow the pattern: C2 (79%) > C1 (69%) >
C3 (62%) > C4 (50%) (Figures 3C,D). Besides this, stage,
grade, and invasion of four subtypes showed the same pattern
in GSE13507 as well as in TCGA-BLCA and UROMOL cohorts
(Figure 3E). The IMvigor210 was a drug-resistance cohort

FIGURE 3 | Characterization of clinical features in four subtypes. (A) Kaplan–Meier curves show four subtypes had survival differences in multiple cohorts, and C4
had the best prognosis while C2 has the worst prognosis. The log-rank test p values are shown. (B) The stratified bar chart shows the immune response rates for four
subtypes; C1 and C4 both had the highest response rate (30%), and C2 had the lowest immune response rate (20%). C3 had the median immune response rate (23%)
(chi-square test, p < .05). (C) In the TCGA-BLCA cohort, the clinical characteristics of C4 were more favorable for survival, whereas C2 was the opposite. C2 had
most advanced tumors and most lymph node metastasis (chi-square test, p < .05). (D) In the GSE13507 cohort, the clinical characteristics of C4 were also more
favorable for survival, whereas C2 was the opposite (chi-square test, p < .05). (E) In the UROMOL cohort, C4 also had better clinical characteristics than C2 (chi-square
test, p < .05). PUNLMP means Papillary Urothelial Neoplasm of Low Malignant Potential.
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after cisplatin treatment and was sequenced before
administration of immunotherapy. We found that the
percentage of ORR was higher in C1 (30%) and C4 (30%)
and lower in C2 (20%) and C3 (23%) (p < .05) (Figure 3B). In

conclusion, the above analysis suggests that C2 tend to be
advanced tumors with the worst prognosis, whereas C4 is on
the contrary. C1 and C4 are likely to respond better to immune
therapy than C2 and C3.

FIGURE 4 | Characterization of TME, inflammation, and immunotherapy heterogeneity by signature in four subtypes. (A) Boxplot shows TME signature of four
subtypes; C4 had the highest immune effective and the lowest immunosuppressive and immune exhausted signature, whereas C2 was the opposite. C1 had a relatively
high immunosuppressive environment. Kruskal–Wallis (K–W) test was performed among four subtypes. *p < .05, **p < .01, and ***p < .001. (B) Boxplot shows
inflammation signature correlated with chemokine, cytokine, interleukin, and TNF family. C2 had the highest tumor-associated inflammation, whereas C4 had the
lowest. C1 and C3 had the median level. K–W test was performed among four subtypes. *p < .05, **p < .01, ***p < .001. (C) Boxplot showed immunotherapy signature,
immune-resistant related signature and EMT signature were the highest in C4 but the lowest in C2. K–W test was performed among four subtypes. *p < .05, **p < .01,
and ***p < .001. (D) The line graph shows the average gene expression of the six immune checkpoints, C2 had the highest level in all six immune checkpoints. (E)
Hierarchical bar graph showed the PD1 level in immune cells (ICC) and tumor cells (TCC) in the IMvigor210 cohort (chi-square test, p < .05).
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Characterization of TME, Inflammation, and
Immunotherapy Heterogeneity by Signature
in Four Subtypes
To investigate whether the four subtypes are heterogeneous in
TME, immunotherapy, and inflammation, the signature score of
three cohorts (TCGA-BLCA cohort (MIBC), UROMOL cohort
(NMIBC), and IMvigor210 cohort (immunotherapy)) were
calculated by using the IOBR package and displayed in
Supplementary Table S5. Then, the characteristics of the four
subtypes were compared, and significantly different TME
signatures were displayed. İt was found that C2 has the
highest level of T cell accumulation and also has the most
immune exhaustion and immunosuppressive characteristics,
such as CAFs, myeloid-derived suppressor cells (MDSC),
tumor-associated macrophages (TAM), and Tregs, whereas C3
and C4 were almost the opposite. In terms of the level of
immunosuppression, C1 is second only to C2, but C1 had low
immune exhaustion. In addition, the neutrophil signature, which
always means high levels of inflammation (Wu and Zhang, 2020),
followed the same pattern in the three cohorts (Figure 4A). The
results are largely consistent with cell states in four subtypes; this
verified that our cell-state subtyping method could correctly
distinguish the heterogeneity of TME. Next, the signature
correlated with the inflammatory marker in these three
cohorts was calculated to assess the level of inflammation; we
were amazed to find that the level of inflammatory signature,
including chemokines, cytokines, interleukins, and tumor
necrosis factor family members follow the same pattern: C2 >
C1 > C3 > C4 (Figure 4B). Inflammatory markers could mediate
an immunosuppressive environment by inducing MDSC
activation and proliferation (Parker et al., 2014; Bronte et al.,
2016; Veglia et al., 2018), which explained poor prognosis in C2.
Moreover, the highest chemokine-related signature in C2 means
high chemokines, which could promote tumor metastasis
(Romero-Moreno et al., 2019); this is consistent with that C2
was characterized as a high EMT subtype. Overexpression of
inflammatory factors could increase neutrophil infiltration (Zhou
et al., 2012), which may explain the highest percentage of
neutrophil signature in C2 (Figure 4B). Furthermore, the
signature related to heterogeneity of immunotherapy response
among four subtypes was compared. Immune checkpoint
blockade (ICB) resistance was considered to be able to predict
immune resistance in patients (Jiang et al., 2018). It can be seen
that C2 has the highest ICB resistance, whereas C3 and C4 had
lower ICB resistance than C2 (Figure 4C). However, the immune
response rate in C3 was almost as poor as that in C2 as above
stated in the IMvigor210 cohort. A possible explanation was that
C3 had the second highest proportion of endothelial, which
means active angiogenesis. Tumor angiogenesis, which could
result in immunosuppression and affect the response rate of
immunotherapy, is described in a previous study (Rahma and
Hodi, 2019). Then, we noticed that C2 with the lowest ORR
unexpectedly had the highest immune checkpoint signature
(Figure 4C). The mean value of six immune checkpoints,
including PDCD1, PDCD1LG2, CTLA4, TIGIT, LAG3, and
HAVCR2 followed the same pattern (Figure 4D). ORR was

always positively correlated with the expression of immune
checkpoints. To further explore this problem, the PD1 level of
tumor cells and immune cells in the IMvigor210 cohort were
analyzed, which exhibited that C2 had the third highest PD1 level
in immune cells but had the highest PD1 level in tumor cells
(Figure 4E). Actually, PD1 with high expression in tumor cells
indeed exerted inhibitory effects on immunotherapy response
(Zhao et al., 2018). Moreover, C2 had the highest
IFNG_signature, which was said to be able to assess IFN-γ
activity in fibroblasts and negatively correlated with the ORR
of patients (Ayers et al., 2017). We also noticed that the total
TGFβ signature was lowest in C2, whereas the Pan_F_TBRs
signature, which is defined as a signature to quantitatively
determine the level of TGFβ in pan-fibroblasts and positively
correlated with immune tolerance, was the highest. The result
indicates that TGFβ secreted by CAFs could predict
immunotherapy response more accurately. C2 also had the
highest hypoxia signature, but there were only significant
differences of hypoxia signature in TCGA-BLCA cohort. In
addition, the EMT signature related to metastasis was also the
highest in C2. These results explain why C2 had the worst
prognosis and immune response while C4 had the best
prognosis, and why C3 had a poor immune response but the
better prognosis. Of course, these results explain the possible
reason for the high response rate of C1 and C4, which were
considered to be the immunosuppressive-only subtypes.

Characterization of Genomic Driver
Mechanisms by Mutation Profiles in Four
Subtypes
Somatic mutations are reported to play an extremely important
role in the development of cancer, which may be related to
immunophenotypes (Porta-Pardo and Godzik, 2016), and BC
is one of the cancers with the highest mutational burdens. The
mutation profiles among four subtypes were compared. As
expected, the mutation landscape of four subtypes was
significantly different (Figure 5A). We noticed that C4 had
the lowest mutation rate, whereas C2 had the highest
mutation rate in TP53. TP53 could support the differentiation
of breast epithelial cells into a basal-like subtype in previous study
(Munne et al., 2014). This is consistent with the result that C2
does have the most basal-squamous subtype in the following
subtype comparison. Next, the oncodriveclust algorithm was
utilized to analyze the driver mutations of the four subtypes
(Tamborero et al., 2013); the detailed driver mutations are shown
in Supplementary Table S6. We found that C2 had the most
driver mutations (Figure 5B). KRAS driver mutations in C2
could shape the immunosuppressive environment by
upregulating PD-L1 and inducing apoptosis in CD3-positive
T cells (Chen et al., 2017). It is also associated with the
downregulation of major histocompatibility class I (MHCI)
molecules (Atkins et al., 2004; Koelzer et al., 2015), which
means that antigen presentation is impaired, and not easy to
be detected by the immune system in C2. As expected, C2 did
have MHCI deletion in 6q12 (Figure 6A). C2 driver mutation
CTNNB1 could also lead to immune escape (Korpal et al., 2019).
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FIGURE 5 | Characterization of genomic driver mechanisms by mutation profiles in four subtypes. (A) The vast majority of BC were mutated, and waterfall plots
demonstrate significant differences in the mutation rates of the top 20mutated genes in the overall cohort across the four subtypes as well as significant differences in the
mutation rates of top 10mutated genes in each subtype. (B)Bubble plot shows driver mutations of four subtypes, and C2 hadmost of the driver mutations, whichmostly
cause immunosuppression. (C) KRAS, RB1, and EP300 mutations, which are mostly mutated in C2 correlated with worse OS or DFS in TCGA-BLCA cohort. The
log-rank test p values are shown. (D) RB1 mutation correlated with bad histologic subtype (chi-squared test, p = .0133), high grade (chi-squared test, p = .0180), high
metastasis stage (chi-squared test, p = .0207), and more smoking (chi-squared test, p = .0369).
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FIGURE 6 | Characterization of genomic driver mechanisms by SCNAs in four subtypes. (A) The four subtypes had significantly different recurrent SCNA regions.
Ordinates represent chromosomal regions. (B) The four subtypes had significantly different GISTIC score, mutation frequency, and average amplitude (Kruskal–Wallis
test, p < .05). C4 had the highest SCNA level; C2 had the lowest SCNA level though it had the highest mutation frequency and the lowest mutation amplitude. (C) In the
C2 subtype, the expression of highly amplified genes tended to correlate with poor prognosis. Cutoff value of high and low expression groups were 75% and 25%.
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In C3 driver mutations, AHR mutations could activate the pro-
angiogenesis of macrophages in TME (Kubli et al., 2019), which
explained the poor ORR despite the high level of PD1 in C3. It
was also found that C4 had a higher mutation rate than C1 and C2
in PI3KCA. Accumulating evidence validates that tumors with
PI3KCA mutations can benefit from immunotherapy (Nusrat
et al., 2019; Qi et al., 2020). The driver mutation RhoB in C4 could
promote tumor formation but also limit tumor invasion (Meyer
et al., 2014), which was consistent with that C4 has the lowest
EMT signature score. We also found the mutations, including
KRAS, RB1, and EP300 in C2, were directly correlated with poor
survival (Figure 5C). Moreover, the RB1 mutation was associated
with adverse clinical features, such as histological subtype, high
grade, high metastasis, and more smoking (Figure 5D). These
mutations of C2 could be biomarkers for predicting poor
prognosis and immunotherapy response in BC. These findings
indicate genomic heterogeneity in four subtypes and could
explain the genomic driver mechanisms leading to
heterogeneity of prognosis and immunotherapy resistance.

Characterization of Genomic Driver
Mechanisms by SCNAs in Four Subtypes
Recently, Zhou et al. revealed the presence of SCNAs in immune
cells, fibroblasts, and endothelial cells in human colorectal cancer
(Zhou et al., 2020), indicating that SCNAs are associated with cell
states in TME. The SCNAs of four subtypes in the TCGA-BLCA
cohort were analyzed and compared, and the result showed that
the four subtypes had different SCNAs (Figure 6A). The 13q12.3
amplification in C1 contained HMGB1, which could promote the
development of MDSC and the metastasis of cancer cells
(Gorgulho et al., 2019; Ren et al., 2021). FSCN1 amplification
at 7p22.1, Gab2 amplification at 11q14.1, and CD44 amplification
at 11p13 were also associated with promoting tumor invasion (Ke
et al., 2007; Li et al., 2018; Rohani et al., 2019) and inducing tumor
resistance to radiotherapy (Li et al., 2021), suggesting that
patients with C1 had high immune suppression, active EMT,
and may not be suitable for radiation therapy. The 19q13.42
amplification of C2 contained NLRP3, which could upregulate
the expression of PD-L1 to form immunosuppression (Lu et al.,
2021). The 11q22.2 amplification leads to high expression of
MMP9 in C2, which can promote tumor cell migration and
invasion (Li et al., 2020). Upregulation of VEGFA at 6p21.1 in C2
could increase the malignancy of tumor cells and was often
accompanied by hypoxia, angiogenesis, and
immunosuppressive TME, suggesting tolerance to
immunotherapy (Wang et al., 2020). 9p21 deletion (CDKN2A/
B) in C2 also conferred primary resistance to immune checkpoint
therapy (Han et al., 2021). LAMC2 amplification at 1q25.3 could
result in gemcitabine resistance via EMT (Okada et al., 2021). It
can be demonstrated that C2 had high EMT, immunosuppressive
and angiogenesis from genomic SCNAs, and PD-1/PD-L1
blockade therapy should be combined with anti-angiogenesis
therapy in C2. Moreover, four subtypes had significantly
different GISTIC score, mutation frequency, and average
mutation amplitude (Kruskal–Wallis test, p < .05). C4 had the
highest SCNAs level, and C2 had the lowest SCNAs level;

although the mutation frequency of C2 was the highest, its
mutation amplitude was the lowest (Figure 6B). The result
was consistent with that tumors containing activated KRAS
mutation showed less SCNAs in C2 but was inconsistent with
that tumors with less SCNAs showed poor survival (Davoli et al.,
2017). As described in a previous study, SCNAs often play a
regulatory role in gene expression independently (Sun et al.,
2018). It was found that gene expression of highly amplified
genes in C2 was correlated with poor prognosis (Figure 6C).

Characterization of Associations Between
the Cell-State subtyping and Other
Subtyping Methods in BC
Our cell-state subtyping method was compared with previous
subtyping methods, including mRNA, miRNA, lncRNA, and
RPPA subtyping methods in TCGA-BLCA (Robertson et al.,
2017), which showed that C2 was dominated by basal subtype
(52%), whereas C1 was dominated by both basal (46%) and
papillary subtype (chi-square test, p < .05). Patients with basal
subtype always had basal and squamous differentiation markers,
and prognosis was poor (Robertson et al., 2017), C2 had the worst
prognosis indeed. In addition, the mutation rate of TP53 in the
basal subtype was the highest (Robertson et al., 2017), which was
consistent with the result that the mutation rate of TP53 in C2
was the highest among the four subtypes. C4 had the most
luminal papillary subtype (70%), C1 and C3 have about 40%
luminal papillary subtype, whereas no luminal papillary subtype
was found in C2. Luminal papillary subtype may develop from
NMIBC with lower stage and higher purity, which is related to
good prognosis (Robertson et al., 2017). Moreover, the miRNA
and lncRNA S3 of C2 was the least, followed by C1 (chi-square
test, p < .001). Both miRNA and lncRNA S3 subtypes were
positively correlated with the good prognosis and low EMT. In
contrast, C1 and C2 were mainly included in S4 subtype, whereas
the S4 subtype was associated with relatively high EMT with the
worst prognosis, which was consistent with the characterization
of C1 and C2. Compared with the RPPA subtyping method, C4
were enriched with the most S1 subtype and the least S4 subtypes
(chi-square test, p < .05), which suggests good prognosis, whereas
C2 was exactly the opposite (Figure 7). These results were also
consistent with the features of four subtypes as described above
and suggest that our cell-state subtyping method could be a
supplement to previous subtyping methods.

DISCUSSION

Recently immune checkpoint blockade drugs such as
atezolizumab and nivolumab are increasingly being used for
immunotherapy of BC. However, due to the heterogeneity of
TME, immune checkpoint blockade therapy is only effective in a
few patients (20%–30%). To further understand the heterogeneity
of BC TME and the relationship between immunotherapy
resistance and TME and find suitable patients for immune
checkpoint blockade, a subtyping method based on cell states
in BC is proposed for the first time in this study.
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In the present study, BC was classified into four subtypes
based on 22 cell states in multiple cohorts. C1 was
characterized by high Tregs and M2_macrophage,
indicating that C1 had a suppressive environment. C1
responded to immune checkpoint blockade well and had a
relatively better prognosis than C2. C2 was characterized by
high CAFs, endothelial, M2_macrophage, Tregs, CD8T_exm,
and low CD8T_cm, which suggests that C2 was enriched in
EMT, angiogenesis, immune suppressive, and immune
exhausted. C2 had the lowest immune response rate and
the worst prognosis. C3 was characterized by the highest
endothelial cells and lower CD8T_exm, suggesting that C3
was an angiogenesis-enriched subtype. The prognosis of C3
was better than that of C2, but the immune response rate was
as low as that of C2. C4 was characterized by high CD8T_cm
and moderate immunosuppression, which means that C4 was

an immune effective subtype with the best prognosis and
highest immune response rate.

In general, patients with high PD1 expression had a strong
response to immune checkpoint blockade therapy, whereas C2
with high expression in all six immune checkpoints unexpectedly
had the lowest immune response rate. A prior study reported that
tumor cells can express PD-1 and bind to their own PD-L1,
contributing to failure of immune checkpoint blockade therapy
(Zhao et al., 2018). We found that C2 immune cells secreted
relatively high levels of PD-1, and C2 tumor cells expressed the
highest level of PD-1, which further supports this conclusion. It
can be concluded that the PD-1 level of both immune and tumor
cells can affect the effect of immune checkpoint blockade. The
IMvigor210 cohort concluded that only the PD-1 level of immune
cells affects the effect of immune checkpoint blockade, which
requires further studies to resolve this issue. İt is also interesting

FIGURE 7 | Characterization of associations between the cell-state subtyping and other subtyping methods in BC. Compared with mRNA subtype,
basal_squamous was enriched with C1 and C2, and luminal_papillary was enriched with C3 and C4. Compared with miRNA and lncRNA subtypes, C2 had the least
miRNA S3 subtype and lncRNA S3 subtype, C1 was the second least, whereas S3 subtype had the best prognosis and low EMT. Conversely C1 and C2 had the most
S4 subtype, and the S4 subtype correlated with relatively high EMT and always accompanied the worst prognosis. In comparison with RPPA subtype, C4 was
dominated by S1 subtype, which indicated good prognosis and had the least C2, and conversely C4 had the least S4 subtype, which was correlated with the worst
prognosis. ND meant that subtype was not determined or unknown.
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to note that C2 displayed low levels of overall TGFβ but high
levels of Pan_F_TBRs, whereas C4 was the opposite. Although the
level of overall TGFβ in C4 was high, CAFs did not express TGFβ
highly in C4, whereas it expressed TGFβ highly in C2. This result
suggests CAF-specific TGFβ could predict immunotherapy
resistance more accurately and the heterogeneity of
biomarkers in tissue distribution. Therefore, the indication of
immunotherapy should consider not only the overall expression
of immune checkpoints, but also the level of immune checkpoints
in specific cell states. By comparing C1 and C3, we believe that the
main reason for the poor response in C3 is abundant abnormal
angiogenesis, suggesting that the level of angiogenesis needs to be
checked before using immune checkpoint inhibitors.
Transcriptomic and genomic alterations in four subtypes were
consistent with the features of cell states, which indicates that the
cell-state subtyping method can distinguish transcriptomic and
genomic heterogeneity. In addition, Bacillus Calmette-Guérin
(BCG) have no impact on our cell-state subtyping in the
UROMOL discovery cohort as presented (Figure 2A;
Supplementary Table S7). None of the patients received any
other treatment besides BCG, and the patients only received BCG
prior to collection of the analyzed samples in the UROMOL
cohort. This is consistent with the finding of the UROMOL study
that no significant difference in the BCG treatment and response
to BCG were observed between UROMOL classes
(Supplementary Table S8, S9). The possible reasons to
explain this are that patients of the UROMOL cohort were
included from several hospitals and had different clinical risk
among the hospitals. More cohorts and experiments related with
BCG are needed to be reasonably designed and studied to explore
this problem.

Previous studies identify many subtypes of BC, such as
subtypes identified by mRNA, miRNA, lncRNA, and RPPA in
TCGA-BLCA. Compared with these subtyping methods, our cell-
state subtyping method offers some advantages. First, previous
TME subtyping methods were mostly based on a specific marker
panel (Bagaev et al., 2021). These markers are almost nontissue-
specific molecules with a limited number, and the overall level of
these markers was usually used in subtyping. Our cell-state
subtyping method combined with single cell RNA-seq, RNA
microarray data and bulk RNA-seq to obtain cell states that
reflect the integration of thousands of markers. Evidently, our
method is more comprehensive than previous studies. Besides
this, our method also has higher tissue specificity for the usage of
single cell RNA-seq in BC. Furthermore, previous studies mostly
focus on immune cells, and we focus not only on immune cells,
but also on nonimmune cells, including endothelials and
fibroblasts. Moreover, our subtyping approach can distinguish
the heterogeneity of many clinical features, including ORR, and
which suggests that our subtypes can well guide the use of
immunotherapy. Finally, previous BC subtyping methods
mostly include only one cohort. For example, TCGA used
multi-omics data but from a single cohort. However, about
seven cohorts were used in our subtyping method, including
NMIBC and MIBC. In all of these cohorts, our subtypes can
distinguish their molecular and clinical characteristics well,
indicating the robustness of our cell-state subtyping method.

CONCLUSION

In summary, from a novel perspective of cell states, single cell
RNA-seq combined with RNA microarray and bulk RNA-seq
was conducted to classify BC into four subtypes, which could
distinguish the heterogeneity of transcriptome, genome, clinical
characteristics, and TME in BC. Our subtyping method explored
the relationship between TME and immunotherapy resistance
and indicated that cell states could be biomarkers to predict
prognosis and immunotherapy response, which is helpful to
develop flow cytometry for aiding diagnosis and further guide
treatment using postoperative cancer tissues. Our work is
expected to attract more attention to study cancer from
comprehensive cell states, not just molecules, because TME is
composed not only of molecules, but also of cells.
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