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Background and Aims. The aims of this study were to investigate (1) if P2Y12 polymorphisms defining the P2Y12 H2 allele are
associated with any other SNPs that may explain the previously reported association with increased ADP induced platelet
activation and association with peripheral arterial disease and coronary artery disease and (2) if such variants are associated
with acute myocardial infarction (AMI) or classical risk factors for AMI. Methods and Results. The P2Y13 Met-158-Thr
polymorphism was found to be in linkage disequilibrium (LD) with the P2Y12 H2 haplotype (all examined SNPs: D9 = 1.0,
r2 = 0.936–1.0), defining a novel P2Y12 H2/P2Y13 Thr-158 haplotype. Genotyping of an AMI case control population (n = 1244
cases, 2488 controls) revealed no association of the P2Y13 Thr-158 allele with AMI (OR = 0.96, 95% C.I. 0.82–1.12, P = 0.63). Also,
no differences between the genotype frequencies of P2Y13 Met-158-Met and Met-158-Thr/Thr-158-Thr were seen in AMI case-
control subpopulations (early onset AMI OR = 1.06, 95% C.I. 0.85–1.31, P = 0.62); family history of AMI (OR = 0.98, 95% C.I. 0.78–
1.22, P = 0.83) nor in early onset AMIs with family history of AMI (OR = 1.0, 95% C.I. 0.74–1.36, P = 1.0). Genotyping of the P2Y13

Met-158-Thr polymorphism in a population based sample (n = 6055) revealed no association with cardiovascular risk factors. In
addition, the P2Y13 Met-158-Thr polymorphism was genotyped in a diabetes case-control population, and associations were
found neither with DM nor with any examined DM risk factors. Conclusion Genotyping. The P2Y13 Met-158-Thr polymorphism
is in tight LD with the P2Y12 locus but is not associated with AMI or classical cardiovascular risk factors.

Citation: Amisten S, Braun OÖ, Johansson L, Ridderstråle M, Melander O, et al (2008) The P2Y13 Met-158-Thr Polymorphism, Which Is in Linkage
Disequilibrium with the P2Y12 Locus, Is Not Associated with Acute Myocardial Infarction. PLoS ONE 3(1): e1462. doi:10.1371/journal.pone.0001462

INTRODUCTION
Three human adenosine diphosphate (ADP) receptors have been

cloned: P2Y1, P2Y12 and P2Y13 [1–4]. On platelets, P2Y1 and P2Y12

mediate ADP-induced platelet activation and aggregation [5]. In red

blood cells, activation of P2Y13 by the adenosine triphosphate (ATP)

metabolite ADP activates a negative feedback loop that inhibits ATP

release from erythrocytes [6]. Rare mutations in the P2Y12 gene that

disrupt P2Y12 receptor function result in compromised ADP-

induced platelet activation and increased bleeding times [1,7,8].

The clinical importance of the P2Y12 receptor as a mediator of

platelet activation has become evident in several large-scale clinical

studies and inhibition of the P2Y12 receptor with clopidogrel is one

of the cornerstones in treatment and prevention of acute coronary

syndromes [9]. Even greater P2Y12 inhibition by prasugrel was

recently shown to be even more effective in preventing ischemic

events than the standard regimen of clopidogrel [10].

A group of single nucleotide polymorphisms (SNPs) in the P2Y12

gene, forming the so called P2Y12 H2 haplotype [11], have been

associated with increased platelet responsiveness to ADP and

increased risk of peripheral arterial disease (PAD) [11–13]. Recently,

Cavallari et al showed an association of the P2Y12 H2 haplotype with

coronary artery disease (CAD) [14]. It has also been proposed that

this haplotype may account for variations in response to clopidogrel.

However, several studies have failed to confirm any association

between platelet function and the H2 haplotype [15–17].

The group of polymorphisms that make up the P2Y12 H2

haplotype are all synonymous polymorphisms that do not change the

amino acid sequence of the P2Y12 protein, and no mechanistic

explanation to the reported increased platelet reactivity to ADP

associated with this haplotype has been presented [11]. However, a

non-synonymous polymorphism, Met-158-Thr, in the neighboring

P2Y13 gene, located only 8 kb away from P2Y12, could be in linkage

disequilibrium with the P2Y12 H2 haplotype. We hypothesized that

the P2Y13 Met-158-Thr polymorphism of the P2Y13 receptor could

account for the reported effects of the P2Y12 H2 haplotype since the

receptors share the same ligand, ADP. The P2Y13 receptor has been

found on red blood cells and inflammatory cells, both cell types

known to interact with platelets [4,6]. The first objective of this study

was to examine possible linkage disequilibrium (LD) between the

P2Y12 H2 haplotype and the P2Y13 Met-158-Thr polymorphism.

After showing that this was the case, we aimed at investigating if the

P2Y13 Met-158-Thr polymorphism is associated with acute

myocardial infarction (AMI) or diabetes mellitus, two diseases

strongly associated with peripheral arterial disease [18,19]. Our

hypothesis that the P2Y12 H2 haplotype and SNPs in LD with the

P2Y12 H2 haplotype would be associated with AMI was strength-

ened further by a report linking the P2Y12 H2 haplotype with

coronary artery disease (CAD) [14], since myocardial infarction is

the major complication of CAD [20]. In order to do so, the Met-158-

Thr polymorphism was genotyped in more than 10,000 individuals

divided in three study populations: two sub-populations of the

Malmö Diet and Cancer study (an AMI case-control population and
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a large population with cardiovascular risk factor data [21,22]) and a

diabetes mellitus case-control population with data on several DM

risk factors [23].

MATERIALS AND METHODS

Malmö diet and cancer population (MDC)
The study population is made up of 28098 randomly selected men

(born 1923–1945) and women (born 1923–1950) living in the

Swedish city of Malmö (population 250 000). Overall participation

rate in the study was 41%.

A baseline examination was performed between 1991–1996,

including assessment of dietary habits, a questionnaire on socio-

economic, demographic and lifestyle factors, heredity, medication

and previous and current diseases. Blood samples were taken and

DNA, lymphocytes, granulocytes, erythrocytes and plasma/serum

were stored in a biological bank [21,22].

AMI Case control population
On 31 December 2000 the study population was matched with the

Swedish National Board of Health and Welfare’s National Patient

Registry and Cause of Death Registry. AMI cases (first AMI) were

identified using the diagnosis criteria defined by the International

Classification of Diseases, 9th and 10th and Revision, Clinical

Modification (ICD 9 and 10); ICD 9 codes 410 in the Swedish

Patient Registry or 410-414 in the Swedish Cause of death

Registry; ICD 10 codes I21 in the Swedish Patient Registry and

I21-I25 in the Swedish Cause of Death Registry.

Two gender- and age (61 year) -matched AMI-free controls

from the MDC population were assigned to each AMI case,

resulting in a case-control material consisting of 1244 AMI cases

and 2488 AMI-free controls. The myocardial infarction group was

then further subdivided into early onset AMIs (EO, n = 622), age at

first AMI event ,62.8 years (median age of all first event AMI

cases) and late onset AMIs (LO, n = 622, age at first AMI event

.62.8 years). Family history AMIs (FH, n = 611) were defined as

AMI cases where at least one blood related first degree family

member had suffered an AMI, and non familial AMIs (n = 633) as

cases without any first degree family history of AMI. 319 cases had

both early onset and family history AMI (table 1). DNA was

available from all cases and controls (n = 3732).

Cardiovascular group population
Of the MDC, 6103 individuals were randomly selected into a

‘‘Cardiovascular cohort’’ (MDC-CV), a sample thus being repre-

sentative of MDC, in whom cardiovascular risk factors were

measured, including systolic blood pressure, smoking status and

anthropometric data and, in the majority (n = 5540), fasting plasma

analyses of glucose, lipids and C-reactive protein (CRP). DNA for

genotyping was obtained from 6055 of the 6101 selected individuals.

Diabetes mellitus case-control population
The diabetes mellitus case control material has been described

elsewhere [23]. Briefly, all study subjects originate from the Botnia

region in Western Finland and the Helsinki area and age- and gender

matched controls were assigned to all type 2 diabetes cases. The case

group is composed of 307 unrelated randomly selected individuals

with type 2 diabetes (146 males and 161 females, mean age 61 (55–67)

years, mean BMI 28.7 (26.0–31.7)). The control group consisted of

307 unrelated individuals with confirmed normal oral glucose

tolerance and without a family history of diabetes (146 males and

161 females, mean age 60 (53–67) years, BMI 26.4 (24.1–29.2)).

Extent of H2 haplotype linkage disequilibrium and

genotyping of case-control and cardiovascular

group populations
Using HapMap and the Human Genome assembly build 36.2,

SNPs in or within 1000 base pairs (bp) upstream of the known

genes located in the 3q24-25 region (P2Y12 locus) were identified.

By means of DNA sequencing using BigDye v. 3.1 (Applied

Biosystems, CA, USA) in 20 individuals, selected SNPs were

probed for linkage disequilibrium with the known P2Y12 H2

haplotype SNPs using one of the P2Y12 H2 SNPs, rs2046934, as a

marker of the P2Y12 H2 haplotype [11]. Single nucleotide

polymorphisms (SNPs) that displayed high degrees of LD with the

P2Y12 H1/H2 haplotype SNPs were selected for genotyping in a

randomly selected sub-population of the DM case-control

population (n = 295) using TaqMan or Sequenom and a haplotype

map was constructed using the Haploview software [24].

Genotyping of the AMI (n = 3732) and DM (n = 614) case

control populations and the cardiovascular group population

(n = 6055) was performed using Sequenom (Sequenom Inc., CA,

USA) or TaqMan ABI 7900 according to the manufacturers’

instructions. Two different persons who were unaware of the

phenotypic status of the study participants read all genotypes. For

genotyping primers and probes, see table 2.

Statistical analysis
In the AMI case control population, conditional logistic regression

was used to calculate odds ratios and p values. The Cardiovascular

Table 1. Baseline characteristics of the AMI case control population and cardiovascular group population used for genotyping of
the P2Y13 Thr-158 polymorphism.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Controls
(n = 2488)

All AMI cases
(n = 1244)

Early onset AMI*
(n = 622)

Family history AMI*
(n = 611)

Early onset and Family
history AMI* (n = 319)

Cardiovascular
group (n = 6055)

Age (years) 62.566.5 62.366.5 59.066.3 62.566.5 58.966.3 57.565.9

Sex (% male) 74 74 79 69 75 42

Systolic blood pressure (mmHg) 147620 150621 145619 150620 145619 141619

Diastolic blood pressure (mmHg) 87.4610 88.5610 87.3610 87.9610 86.8610 87.069.5

Body Mass Index (kg/m2) 26.163.7 26.964.0 26.963.9 27.064.0 26.964.0 25.964.0

Current smokers (%) 27 34 38 32 37 28

The 1244 AMI cases can be subdivided into three AMI subgroups: early onset AMI, defined as AMI occurring earlier than median age for all AMI cases, family history AMI,
where at least one blood related family member also has suffered a myocardial infarction and early onset AMI with family history of AMI. Data of known cardiovascular
risk factors was collected in the cardiovascular group only. * subgroups of all AMI cases.
doi:10.1371/journal.pone.0001462.t001..
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group population was subjected to ANOVA and t-tests for

continuous normally distributed variables, in case of non-normality

Kruskal-Wallis test or Mann-Whitney test was used. Chi-2 test was

used to test for significant differences in dichotomous variables. In

the DM case control population, variables were log transformed for

normal distribution. P-values were calculated using the GLM-

ANCOVA using sex and age as covariates. Adjustment for multiple

testing was not done. Statistical analyses were performed with SPSS.

Power calculations
For myocardial infarction Accepting a significance level of

0.05, 1244 AMI cases and 2488 controls have a power of 95% to

detect a genotype relative risk of 1.20 for the P2Y13 Met-158-Thr

polymorphism. Thus, it is unlikely that our result is a false negative

finding.

For diabetes Accepting a significance level of 0.05, 307

diabetes cases and 307 controls have a power of 35% to detect a

genotype relative risk of 1.20 for the P2Y13 Met-158-Thr

polymorphism. Accepting a significance level of 0.05, 532

diabetes cases and 5522 controls in the cardiovascular group

population have a power of 79% to detect a genotype relative risk

of 1.20 for the P2Y13 Met-158-Thr polymorphism. By analyzing

both these two diabetes materials, it is unlikely that our result that

the P2Y13 Met-158-Thr polymorphism is not associated with

diabetes is a false negative finding. Powercalculations were

performed using the program CaTS [25].

RESULTS

Extent of P2Y12 H2 haplotype linkage disequilibrium
The pilot linkage disequilibrium analysis of SNPs in the P2Y12

locus revealed three SNPs (rs1466684, rs38211667, rs11922647)

that showed signs of LD with the known P2Y12 H2 SNPs.

Genotyping in a larger population (n = 295) confirmed complete

LD of the three SNPs with the P2Y12 H2 haplotype SNPs

(D9 = 1.0, r2 = 0.936–1.0, figure 1) [11]. Two of the three SNPs

were located in or in close proximity to the P2Y12 gene:

rs38211667 in the non-coding region of P2Y12 exon 2 and

rs11922647 within 1000 bp of transcription start of transcript

variant 2 of the P2Y12 gene. The third SNP (rs1466684) was found

to be a non-synonymous SNP of the P2Y13 gene, causing a Met-

Thr amino acid substitution at position 158 of the P2Y13 receptor.

The complete LD of the P2Y12 H2 haplotype with the P2Y13 Thr-

158 variant thus defines a novel P2Y12 H2/P2Y13 Thr-158

haplotype. The P2Y13 Met-158-Thr polymorphism was selected as

reference SNP for the P2Y12 H2/P2Y13 Thr-158 haplotype in

subsequent genotyping.

Genotyping of the P2Y12 H2/P2Y13 Thr-158

haplotype in the AMI and DM case control

populations
In the AMI case control population, containing 3273 individuals,

92.8% of those eligible for the case–control study were genotyped

successfully (table 3), representing 1134 pairs in total (n = 1134

cases and one to two control subjects matching every case

(n = 2139). Genotype frequencies were in accordance with Hardy–

Weinberg Equilibrium.

No association of the P2Y13 Met-158-Thr polymorphism (Thr-

158-Met and Thr-158-Thr vs. Met-158-Met) was found with AMI

(OR = 0.96, 95% C.I. 0.82–1.12, P = 0.63). Also, no differences

were seen in the AMI case subpopulations (EO OR = 1.06, 95%

C.I. 0.85–1.31, P = 0.62; FH OR = 0.98, 95% C.I. 0.78–1.22,

P = 0.83; EO+FH OR = 1.0, 95% C.I. 0.74–1.36, P = 1.0).

In the diabetes mellitus (DM) case control study 576 individuals

(93.8%) were genotyped successfully. No associations of the P2Y13

polymorphism (Thr-158-Met and Thr-158-Thr vs. Met-158-Met)

were found with diabetes mellitus or any examined DM risk factor

(table 4).

Figure 1. Linkage disequilibrium map of the P2Y12 H2/P2Y13 Thr-158
haplotype. All examined SNPs displayed a very high degree of linkage
disequilibrium (D9 = 1.0; r2 = 0.936–1.0 (see figure for each individual r2

value).
doi:10.1371/journal.pone.0001462.g001

Table 2. Primers and probes used for genotyping of high linkage disequilibrium polymorphisms in P2Y12 and one in P2Y13.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SNP_ID SNP location Forward Reverse Mass Extension/Probes

rs1466684 P2Y13 Met-158-Thr *59-ACGTTGGATGGTGTTGCTTCCTTGTTGCTC-39 *59-ACGTTGGATGCGGTCTCAATCTTCATCTGG-39 *59-CATCTCCCTGCCAAATA-39

rs1466684 P2Y13 Met-158-Thr #59-CGGTCTCAATCTTCATCTGGTTCTT-39 #59-CGATGGTGTTGCTTCCTTGTTG-39 #59-CTCAAGATCATATTTGG-39

#59-CTCAAGATCGTATTTGG-39

rs11922647 P2Y12 intron 1 *59-ACGTTGGATGTTAAGGCATCCTTGTATCAC-39 *59-ACGTTGGATGCCCCTAACATATTTTTTGCCC-
39

*59-CCTTCTGGTTTCAAAGTTAAA-39

rs3821667 P2Y12 untranslated *59-ACGTTGGATGTGTTGATTCTGGAGGGTTTG-39 *59-ACGTTGGATGAGGAAAATACCAGATGCCAC *59-AGATGCCACTCTGCAGG-39

rs2046934 P2Y12 intron 2 #59-GCTATATGGCATCTACATCTTGGGAAT-39 #59-TGATTATTAAGAATATTTTATATAGAATCAA-
TTTCACTTATCTCTGGTG-39

#59-TTGAAATGACATTTGTAATCT-39

#59-AAATGACGTTTGTAATCT-39

Some SNPs were genotyped with both Sequenom and TaqMan in different populations. *Sequenom, # TaqMan.
doi:10.1371/journal.pone.0001462.t002..
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Table 3. Genotyping of Met-158-Thr in AMI cases and corresponding controls.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Met-158-Met Met-158-Thr Thr-158-Thr
Met-158-Thr+Thr-158-
Thr Total

Control count n (%) 1437 (67.2) 638 (29.8) 64 (3) 702 (33) 2139 (100)

AMI count n (%) 772 (68.1) 332 (29.3) 30 (2.6) 362 (32) 1134 (100)

Early onset AMI

EO Control count n (%) 715 (66) 323 (29.8) 31 (2.9) 354 (33.1) 1069 (100)

EO AMI count n (%) 368 (64.7) 176 (35.3) 16 (3.2) 192 (34.3) 560 (100)

Late onset of AMI

LO Control count n (%) 722 (67.5) 315 (29.4) 33 (3.1) 348 (33) 1070 (100)

LO AMI count n (%) 404 (70.4) 156 (27.2) 14 (2.4) 170 (30) 574 (100)

Family history of AMI

FH Control count n(%) 723 (68.3) 301 (28.4) 35 (3.3) 336 (32) 1059 (100)

FH AMI count n (%) 387 (69) 157 (28) 17 (3) 174 (31) 561 (100)

No family history of AMI

NFH Control count n(%) 714 (66.1) 337 (31.2) 29 (2.7) 366 (34) 1080 (100)

NFH AMI count n (%) 385 (67.2) 175 (30.5) 13 (2.3) 188 (33) 573 (100)

Early onset and family history of AMI

EO+FH Control count n (%) 373 (67.6) 159 (28.8) 20 (3.6) 179 (32) 552 (100)

EO+FH AMI count n (%) 197 (67.9) 87 (30) 6 (2.1) 93 (32) 290 (100)

The AMI case group (n = 1244) contains the early onset (EO), late onset (LO), family history (FH) and no family history (NFH) as well as early onset with family history
(EO+FH) subgroups. *Both heterozygous and homozygous P2RY13 Thr-158 carriers.
doi:10.1371/journal.pone.0001462.t003..
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Table 4. Genotyping of the P2Y12 H2/P2Y13 Thr-158 haplotype in a diabetes mellitus (DM) case control population (307 DM cases,
307 controls).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Controls (n = 289)1 Met-158 [n]# Thr-158* [n]# p-value

BMI (kg/m2) 26.4(24.1–29.2) [213] 26.6(24.2–29.3) [70] 0.49

WH 0.88(0.82–0.95) [211] 0.88(0.82–0.96)[70] 0.64

fP-Glu (mmol/L) 5.42(5.09–5.80) [214] 5.50(5.06–5.93) [73] 0.56

P-Glu [120 min] (mmol/L) 5.65(4.97–6.70) [191] 5.82(5.02–6.75) [64] 0.90

fP-INS (mU/L) 7.66(4.95–10.22) [210] 6.55(4.66–9.47) [68] 0.10

Triglycerids (mmol/L) 1.17(0.92–1.67) [198] 1.32(0.81–1.69) [65] 0.86

HDL-cholesterol (mmol/L) 1.36(1.16–1.66) [199] 1.37(1.18–1.73) [64] 0.91

HOMA 1.76(1.18–2.53) [207] 1.68(1.05–2.49) [68] 0.13

Diabetes mellitus (n = 287)1 Met-158 [n]# Thr-158* [n]# p-value

Age at onset (years) 53(46–59) [201] 53(48–60) [74] 0.67

BMI (kg/m2) 28.7(25.9–31.7) [206] 28.2(25.7–31.2) [78] 0.53

WH 0.93(0.87–0.99) [202] 0.94(0.90–1.00) [77] 0.76

fP-Glu (mmol/L) 9.49(7.90–11.75) [207] 8.87(7.12–11.35) [78] 0.28

P-Glu [120 min] (mmol/L) 15.43(11.67–20.18) [108] 14.24(12.37–16.84) [37] 0.16

fP-INS (mU/L) 11.95(6.99–21.15) [198] 11.54(7.87–19.09) [77] 0.60

Triglycerids (mmol/L) 1.57(1.15–2.21) [197] 1.66(1.21–2.39) [75] 0.17

HDL-cholesterol (mmol/L) 1.19(1.02–1.45) [191] 1.15(1.01–1.36) [71] 0.31

HOMA 4.98(3.00–9.20) [197] 4.70(3.00–9.88) [77] 0.30

Variables were log-transformed for normal distribution. P-values were calculated using the GLM-ANCOVA using sex and age as covariates. No associations were found
with neither DM nor any known DM risk factor. *Both heterozygous and homozygous P2Y12 H2/P2Y13 Thr-158 carriers. 1Genotyping failed in 20 cases and 18 controls.
#median with interquartile range (25th–75th percentile), [number of observations].
doi:10.1371/journal.pone.0001462.t004..
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Genotyping of P2Y13 Met-158-Thr in the

cardiovascular group population
5846 individuals (96.5%) of 6055 in the cardiovascular group

(CVG) were genotyped successfully. No association was found for

the P2Y13 Met-158-Thr polymorphism (Thr-158-Met and Thr-

158-Thr vs. Met-158-Met) regarding any of the examined

cardiovascular risk factors, including systolic blood pressure,

diastolic blood pressure, BMI, waist circ., diabetes, total

cholesterol, triglycerides, HDL, LDL, CRP, smoking or alcohol

intake (table 5). Furthermore, no stronger association with the

above mentioned risk factors was seen in the homozygous P2Y13

Thr-158 group compared to the heterozygous Met-158-Thr

carriers (data not shown).

DISCUSSION
In this study we show that the P2Y12 H2 haplotype [11] is in

complete linkage disequilibrium with the non-synonymous Met-

158-Thr polymorphism in the P2Y13 gene, defining a P2Y12 H2/

P2Y13 Thr-158 haplotype. Based on the observed LD between the

studied P2Y12 and P2Y13 polymorphisms, we assume that all

disease and risk factor associations made with the P2Y13 Met-158-

Thr polymorphisms are also valid for the P2Y12 H1/H2

haplotypes. We hypothesized that this finding could provide a

potential mechanistic explanation to the previously observed

clinical associations of the P2Y12 H2 haplotype with CAD, PAD or

platelet function [11,12,14], since the receptors share the same

ligand. However, no associations of the P2Y13 Met-158-Thr

polymorphism with AMI or DM were found in our large material.

Indeed, no associations with any of the investigated cardiovascular

or diabetes mellitus risk factors were observed. This was

unexpected, since strong associations have been reported between

CAD, PAD, AMI and diabetes [18–20]. All studies involving the

P2Y12 H2 haplotype are listed in table 6.

The concentration of extracellular nucleotides in the blood is

tightly regulated by ectonucleotidases on leukocyte and endothelial

cells to prevent excessive ADP accumulation and subsequent

platelet activation [26]. Red blood cells contain millimolar amounts

of ATP and are therefore a major source of nucleotides in the blood

[6,27]. This ATP pool could potentially be an important

contributor to the regulation of platelet activation. Recently, it

was shown that extracellular ADP activates P2Y13 expressed on red

blood cells, resulting in a subsequent decreased release of

nucleotides from the red blood cells in a classic negative feedback

manner [6]. It is possible that this negative feedback loop might be

important in the regulation of nucleotide-induced platelet activa-

tion in vivo. Thus, a non-synonymous polymorphism leading to a

structurally and functionally altered P2Y13 could potentially alter

the nucleotide concentrations in the blood stream, thereby affecting

platelet activation in vivo. Indeed, in silico analysis using the

polymorphism phenotyping prediction software PolyPhen [28]

indicated that the P2Y13 Met-158-Thr amino acid substitution

could possible affect the function of the P2Y13 receptor.

In 2002 Fontana et al reported the P2Y12 H2 haplotype to be

associated with a gain of function in terms of ADP induced platelet

aggregation. The polymorphisms in the H2 haplotype are either

Table 5. Association of known cardiovascular risk factors with
the P2Y12 H2/P2Y13 Thr-158 genotype in the cardiovascular
group (CVG).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cardiovascular risk factors
Met-158-Thr
genotype¤ Mean6st dev

P value
(two-tailed)

Systolic blood pressure (mm Hg) Met 141.6619.1 0.60

Thr¤ 141.3619.1

Diastolic blood pressure (mm Hg) Met 87.369.5 0.15

Thr¤ 86.969.4

Body-Mass Index (weight/kg6kg) Met 26.064.0 0.16

Thr¤ 25.864.0

Waist (cm) Met 84.7612.9 0.09

Thr¤ 84.1613.0

Diabetes mellitus (%)* Met 8.8 0.94

Thr¤ 8.9

Cholesterol (mmol/l)* Met 6.261.0 0.93

Thr¤ 6.261.1

Triglycerides (mmol/l)* Met 1.460.9 0.38

Thr¤ 1.460.8

HDL (mmol/l)* Met 1.460.4 0.78

Thr¤ 1.460.4

LDL (mmol/l)* Met 4.261.0 0.96

Thr¤ 4.261.0

LDL/HDL ratio* Met 3.261.1 0.91

Thr¤ 3.261.2

CRP (mg/L)*# Met 11.4 (0.7–2.8) 0.83

Thr¤ 11.4 (0.7–2.9)

Gaussian distribution was observed for all above risk factors except CRP that
showed a natural logarithmic distribution. n = 6055. * n = 5540. 1 = median,
interquartile range. ¤Thr = Both heterozygous and homozygous P2RY13 Thr-158
carriers.
doi:10.1371/journal.pone.0001462.t005..
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Table 6. Published studies on the P2Y12 H2 haplotype and platelet ADP response and cardiovascular disease.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Study author Study population (n) Reported outcome

Fontana [11] 98 P2Y12 H2 haplotype is associated with increased ADP-induced platelet aggregation

Fontana [11] 514 P2Y12 H2 haplotype is associated with peripheral arterial disease

Cavallari [14] 1378 The P2Y12 H2 haplotype is associated with coronary artery disease

Angiolillo [30] 119 The P2Y12 H2 haplotype does not influence platelet response to clopidogrel

Hetherington [31] 200 No association of P2Y12 H2 haplotype with ADP-induced platelet aggregation

von Beckerath [17] 416 P2Y12 gene H2 haplotype is not associated with increased adenosine diphosphate-induced platelet
aggregation after initiation of clopidogrel therapy with a high loading dose

Schettert [16] 540 No asociation of P2Y12 H2 haplotype and an increased risk of cardiovascular events in a population with CAD

Amisten et al 10401 The P2Y12 H2/P2Y13 Thr-158 haplotype is not associated with AMI, cardiovascular risk factors or diabetes

doi:10.1371/journal.pone.0001462.t006..
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located in intronic regions of the gene or were silent, i.e. causing

no alterations of the P2Y12 receptor protein. The possibility

remained that the polymorphisms could potentially be coupled to

mRNA processing or translation events, thereby altering P2Y12

receptor protein expression. However, no such data has been

presented.

In a subsequent study, Fontana et al also reported an association

between the P2Y12 H2 haplotype and PAD [12]. PAD causes an

increased atherosclerotic burden throughout the whole cardiovascu-

lature and patients with PAD have a marked increase in coronary

artery disease [29]. The progression of chronic atherosclerotic lesions

is mainly driven by an inflammatory reaction, with recruitment of

inflammatory cells and subsequent reactive changes in the vessel wall

[21]. In acute thrombotic complications of atherosclerosis, such as

myocardial infarction, platelets constitute the major role. A gain of

function polymorphism leading to increased platelet reactivity would

likely be more prominent when studied in a setting were platelet

activation is a main pathogenic factor, such as AMI. However, to our

surprise, genotyping in several thousand individuals revealed no

association with AMI.

The early onset or family history AMI case-control subpopu-

lations are believed to contain a stronger genetic component of

AMI. The lack of association also in these populations emphasizes

further that the P2Y12 H2/P2Y13 Thr-158 haplotype is not

associated with cardiovascular disease.

It has been proposed that the P2Y12 H2 haplotype might be

involved in the variation in response to clopidogrel treatment.

However, subsequent studies have not been able to confirm that

variations in response after a high loading dose of clopidogrel are

associated with the haplotype. The failure to confirm this

hypothesis agrees well with our study and supports the lack of

association of the P2Y12 H2/P2Y13 Thr-158 haplotype with

cardiovascular disease.

In conclusion, we found that the P2Y13 Met-158-Thr

polymorphism was in complete LD with the P2Y12 H2 haplotype,

defining a novel P2Y12 H2/P2Y13 Thr-158 haplotype. Genotyp-

ing of more than 10 000 individuals in three separate study

populations revealed no associations with AMI, DM or related risk

factors. Therefore, it seems very unlikely that the examined

polymorphisms of the P2Y12 and P2Y13 genes contribute to the

pathogenesis of cardiovascular disease or diabetes mellitus.
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