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The possible role of methylglyoxal metabolism in cancer
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ABSTRACT
Tumours reprogram their metabolism to acquire an evolutionary advantage over normal cells. However,
not all such metabolic pathways support energy production. An example of these metabolic pathways is
the Methylglyoxal (MG) one. This pathway helps maintain the redox state, and it might act as a phosphate
sensor that monitors the intracellular phosphate levels. In this work, we discuss the biochemical step of
the MG pathway and interrelate it with cancer.
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Introduction

Reactive oxygen species (ROS) are highly reactive chemical species
that target various biomolecules within the cell. ROS examples
include superoxides, peroxides, singlet oxygen, hydroxyl radical,
alpha-oxygen, and alkoxyl radicals1–3. The prevailing unifying sci-
entific theory is that ROS, especially at lower levels, supports
malignant transformation, carcinogenesis, and invasion, which
supports metastatic transformation4–8. However, ROS at a higher
dosage inhibits tumour growth, with some anticancer agents’ pri-
mary mode of action being ROS-induced cell injury8,9. Such a
paradox and biphasic or dual role depending on the dose is
termed “hormesis”10. The intracellular NADPH level is one of the
key determinants that manipulates the ROS hormesis. Besides the
pentose phosphate pathway (PPP), the MG pathway is an add-
itional pathway that contributes to NADPH pooling of the cells.

Many tumour cells rely on anaerobic glycolysis even in pres-
ence of oxygen, an effect which is called “Warburg metabolism”.
The methylglyoxal pathway (MG) is branching from the glycolysis
pathway to manage the redox state of the cell rather than contri-
buting to the production of energy in the form of ATP.

The MG pathway occurs in a series of steps that regulate the
intracellular NADPH content, and it can also act as a phosphate
sensor. MG is metabolised mainly either glutathione-dependent or
glutathione-independent pathway, as follow (See Figure 1).

Branching of glycolysis

Glycolysis is composed of two parts: the first one is the prepara-
tory phase, followed by the second part, called the pay-off
phase11. The pay-off part starts with forming D-glyceraldehyde 3-
phosphate, which it is a crossroad of many biochemical pathways,

including glycolysis11, pentose phosphate pathway12, as well as
methylglyoxal metabolic pathway, as well as photosynthesis13,14.

D-glyceraldehyde 3-phosphate is isomerised to dihydroxyacet-
one phosphate (DHAP) by triosephosphate isomerase11. After that,
DHAP is converted to MG (2-oxoaldehyde) and phosphate by the
methylglyoxal synthase enzyme (MGS) activity.

MGS is also known as glycerone-phosphate phosphate-lyase
(methylglyoxal-forming). Although MGS is a bacterial enzyme,
early data showed that MGS was isolated from the goat liver15.

The optimum pH for MGS activity is 7.5, i.e., alkaline pH16,17.
Phosphate acts as a competitive allosteric inhibitor of MGS.

Some data concludes that the methylglyoxal pathway supports
cells by phosphate and acts as a phosphate sensor18,19. ATP, 3-
phosphoglycerate, and phosphoenolpyruvate inhibit MGS15,16.
Therefore, it can be concluded that the MG pathway does not co-
occur with the pay-off phase of the glycolysis pathway11. Other
MGS inhibitors include: phosphoglycolohydroxamic acid20.

MG can be formed via several biochemical pathways5,6. MG is
involved in many disorders including, cancer, diabetes, CNS disor-
ders, etc.21. MG is a highly toxic compound22–24, and therefore,
the body detoxifies the MG either through glutathione-dependent
or glutathione-independent pathways.

Glutathione-Dependent pathway

Lactoylglutathione:
MG is isomerised to hemithioacetal adducts and then form (R)-S-
lactoylglutathione spontaneously in the presence of glutathione.
The reaction is catalysed by a lactoylglutathione lyase (glyoxa-
lase I)25–28.

The optimum pH for Glyoxalase I (GLO1) is broad, but gener-
ally, the optimum pH is alkaline around 829.
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GLO1 is over-expressed in many cancer types, such as, lung,
colon, prostate, etc.30–32 GLO1 is also involved in their growth and
progression, and resistance to the treatment33–37. GLO1 inhibition
showed promising results as anti-tumour property21, as well as re-
sensitizes the resistant tumours to the treatment38.

GLO1 inhibitors include 4–(7-azaindole)-substituted 6-phenyl-
N-hydroxypyridones, Flavonoids, S-bromobenzylglutathione
cyclopentyl diester (BrBzGCp2), and Curcumin21,39–42. Other GLO1
inhibitors include Ionising radiation,43, and nitric oxide (NO)44.

One of the supported observations is that GLO-1 is highly asso-
ciated with tumorigenesis and tumour invasion45, where GLO-1 is
GSH dependent and NADPH-dependent methylglyoxal reductase
does not utilise GSH (see below).

D-Lactate
(R)-S-lactoylglutathione in the presence of water produced
reduced glutathione and D-lactate via Hydroxyacylglutathione
hydrolase (glyoxalase II)46.

In cancer, the role of GLO2 might be more complex. Although,
tumour suppressor genes, e.g., p63 and p73, up-regulate GLO2
expression by tumour genes, GLO2 supported pro-survival rate

rather than apoptosis, which is paradoxical. Cytosolic GLO2, not
mitochondrial, prevents the MG induced-apoptosis47. Further
contradiction is coming where GLO2 expression is lower in cancer-
ous tissues than the normal parent tissue that might delve into
other mysteries48. Therefore, it will be wisely to reveal that GLO2
expression is associated with growth arrest. One of the suggested
answers that release this chain sinnet knot is that the correlation
between (i) D-lactate (presence of GLO2 supports D-lactate pro-
duction), (ii) reduced glutathione (absence of GLO2 prevent the
reduced GSH recycle), and (iii) the state of the cell (phases of cell
cycle, whether in growth phase, or proliferation, or even dor-
mancy), in a way that solves the redox paradox31,49–53. At the
same time, the glutathione either supports the cell proliferation
by diminishing the reactive oxygen species that initiate the
programmed cell death or preventing the malignant
transformation12,54,55.

Although the optimum pH for GLO2 is broad from 6.8–7.546, it
yet shifted towards alkalinity. Also, cytoplasmic acidification is
accompanied by a subsequent decrease in its activity56.

S-carbobenzoxyglutathione is one of many GLO2 inhibitors57

(and for further information ref Al-Shar’i et al.58).
D-lactate is a toxic substance associated with many diseases,

including short-bowel syndrome, D-Lactic acidosis, and neurotox-
icity59,60. Potentially, D-Lactate might be metabolised to pyruvate
via the putative human D-lactate dehydrogenase61–63, or excreted
extracellularly63–66, or even recycled back to MG (MG-Shunt)67–72.
Some form of probiotics, e.g., lactobacillus sp. has D-lactate
dehydrogenase activity, which might utilise the D-lactate, and
therefore benefits during D—Lactic acidosis73.

Glutathione-independent pathway

Due to the activity of NADPH dependent Aldose-ketose Reductase
(AKR), MG can be metabolised into:

Lactaldehyde formation
In the presence of NADPH, AKR converts MG to lactaldehyde and
produces NADPþ. The NADPþ might be re-cycled to its reduced
form (NADPH) using the pentose phosphate pathway (PPP)12.
Therefore, the possible crosstalk between the MG and PPP is likely
in the cell’s physiology to manage the cell’s redox state. In other
words, there is a possibility of MG-PPP shunt to restore
the NADPH.

AKR (NADPH) is also called NADPH-dependent methylglyoxal
reductase Gre2, lactaldehyde:NADPþ oxidoreductase, and lactalde-
hyde dehydrogenase (NADPþ).

The optimum pH for AKR (NADPH) is 6.574, and the range is 5
to 7.575, which moves towards the acidic pH. Therefore, it would
be wise to reveal if the AKR (NADPH) is associated with either (i)Figure 1. Summarises the biochemical pathway of methylglyoxal metabolism.

Table 1. Shows the different set of enzymes involved in methylglyoxal metabolic pathway.

Enzyme Optimum pH Possible inhibitor(s)

Methylglyoxal synthase 7.516,17 Phosphoenolpyruvate inhibit MGS15,16, phosphoglycolohydroxamic acid20

Glyoxalase I 829 -(7-azaindole)-substituted 6-phenyl-N-hydroxypyridones, Flavonoids, S-bromobenzylglutathione
cyclopentyl diester (BrBzGCp2), and Curcumin21,39–42

Nitric oxide (NO) also inhibits GLO144.
Glyoxalase II 6.8-7.546 S-carbobenzoxyglutathione57

Methylglyoxal reductase (NADPH) 5 to 7.575 NADPþ, Ca2þ and 2-mercaptoethanol75,84

Aldehyde dehydrogenase 7.488 Dyclonine, N,N-diethylaminobenzaldehyde86,87

Aldo–keto reductase (AKR) ND� Epalrestat inhibits AKR1B194

3-bromo-5-phenylsalicylic acid inhibits AKR1C195

cinnamic acid inhibits AKR1C396,97

ND�: Not Determined.
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cellular arrest neurodegeneration and/or renal impairment in case
of acidic pHi

76–79 or (ii) cellular senescence in case of alkaline pHi,
and so the latter support the possibility of malignant transform-
ation too80–83.

NADPþ inhibits NADPH-dependent MG-reductase; therefore it’s
a negative feedback mechanism75,84. Calcium ion and 2-mercap-
toethanol are examples of NADPH reductase inhibitors75,84.

Formation of lactic acid. In the presence of NADþ, Lactaldehyde is
converted to L-lactate by aldehyde dehydrogenase (ALDH) to pro-
duce – Lactate and NADH.

Aldehyde dehydrogenase is overexpressed in cancer85 and
associated with resistance to chemotherapy and radiotherapy,
as well86.

Dyclonine, N,N-diethylaminobenzaldehyde is an example of an
ALDH inhibitor86,87. The optimum pH is around 7.488.

Acetol formation. MG is converted to hydroxyacetone (acetol) via
Aldo–keto reductase (AKR)89. AKR summarizes a broad family of
oxidoreductase enzymes with varying capacities for the detoxifica-
tion of MG36.

The AKR metabolises the MG, and the product is 95% acetol
and 5% D-lactaldehyde90. Acetol is further metabolised to L-1,2-
propanediol90 by the same enzyme90.

The optimum pH for AKR depends on the organism, tissue
within the organism, etc. that might reflect enzymatic resilience in
its activity to confers the organismal adaptability (evolutionary
advantageous), e.g., the optimum pH of AKR in Helicobacter is in a
range from 4–9, the optimum one is 5.591, however, in more com-
plex organisms the optimum is more basic in the small intestine92.
Therefore, it will be challenging to detect or estimate the exact
pH of AKR in cancer cells as these are characterised by their
heterogeneity93.

AKR is overexpressed in many types of cancer, such as lung,
uterine, colorectal, etc.92.

For AKR inhibitors, the Pharmacodiagnostics approach should
be implemented for the rational use of selection for example, for

� AKR1B1 is inhibited by epalrestat94

� AKR1C1 is inhibited by 3-bromo-5-phenylsalicylic acid95.
� AKR1C3 is inhibited by cinnamic acid96,97.

Notes on the MG metabolic pathway

Based on the reaction-diffusion kinetics, tumour neoplasm could
be seen as multiple habitats. Tumour neoplasms show at least
cline evolution from the macro-blood vessel (tumour cord).
Therefore, tumour cells reprogram their metabolic machineries
due to glucose, oxygen diffusion, and the lack of efficient removal
of the metabolites (adaptive evolution)93,98,99. Therefore, it will not
be surprising if the multi-regional biopsy to diagnose the tumours
will not find the expression of the enzymes that are involved in
MG metabolic pathways to the same degree (see Table 1), which
is entirely predictable in the MG metabolic pathway as MG has a
negative effect on the vasculature100.

Also, due to the reaction-diffusion kinetics, the hypoxic, nec-
rotic regions within the tumour due to accumulation of lactate,
and decreasing oxygen supply -at farther area from the blood ves-
sel- the production of ROS increases101–103, and this might result
in increasing the activity of NADPH oxidase (primary cellular
source of ROS production)104–107. Therefore, the stimulation of oxi-
dative stress-reducing agents is initiating the NADPH oxidase –

MG metabolic pathway cross-talk, which has risen to come in a
way that might confer the cancer cell survival12,108–112.

Concluding remarks and future perspectives

MG is an intermediate product of many cross-roads’ biochemical
pathways. The methylglyoxal products are toxic and must be
detoxified consequently into many pathways based on various
factors, e.g., the level of NADPþ, GSH, pH, etc. many of the future
perspectives in this issue include:

� Detailed studying the interactions between the Pentose
Phosphate Pathway (PPP) – as a primary source of NADPH –
and MG Pathway, and their possible interrelation
with cancer12.

� The scientific community should focus in determining the cel-
lular level of MG as a critical determinant of many cellular bio-
chemical pathways (causation) and a powerful tool that tracks
the cellular dynamics trajectory (consequences).

� Also, these pathways shed the light on importance of the
stereochemistry of the cellular metabolites and their impact on
carcinogenesis, besides the stereochemistry of the drugs

These biochemical pathways are involved in carcinogenesis,
cancer resistance, and treatment regimes. Therefore, implementing
the methylglyoxal pathway in tumour biology represents a prom-
ising strategy in the therapeutic approaches against cancer, which
can add useful anticancer candidates to the community. These
suggested candidates might not be the target of Achilles heels of
cancer, but it contributes to rationale of the cancer management.
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