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Abstract

Although nonviral gene therapy has great potential for use in the lung, the relative lack of cell-

specific targeting has limited its applications. We have developed a new approach for cell-specific 

targeting based on selective nuclear import of plasmids in non-dividing cells. Using a 

microinjection and in situ hybridization approach, we tested several potential DNA sequences for 

the ability to mediate plasmid nuclear import in alveolar type II epithelial (ATII) cells. Of these, 

only a sequence within the human surfactant protein C (SP-C) promoter was able to mediate 

nuclear localization of plasmid DNA specifically in ATII cells but not in other cell types. We have 

mapped the minimal import sequence to the proximal 318 nucleotides of the promoter, and 

demonstrate that binding sites for NFI, TTF-1, and GATA-6 and the proteins themselves are 

required for import activity. Using intratracheal delivery of DNA followed by electroporation, we 

demonstrate that the SP-C promoter sequence will enhance gene expression specifically in ATII 

cells in mouse lung. This represents a novel activity for the SP-C promoter and thus ATII cell-

specific nuclear import of DNA may prove to be a safe and effective method for targeted and 

enhanced gene expression in ATII cells.

Introduction

The inability to selectively target genes to specific cell types remains a significant limitation 

to most methods of gene transfer to the lung or any tissue. Although a few approaches have 

been developed to restrict expression to desired cell types, the two means that are routinely 

used are the regulation of cell entry by cell surface receptor-ligand interactions to promote 

cell-specific internalization of the DNA into the cytoplasm and the use of cell-specific 

promoters to preferentially drive transcription. In addition, regulation of the site of delivery 

(e.g., luminal vascular delivery of vectors for endothelial cells or airway delivery for the 

pulmonary epithelium) is also used in vivo to limit gene delivery to desired sites. We have 

developed a different approach that exploits the mechanisms by which plasmids are 
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transported into the nucleus of nondividing cells. It has been shown that in the absence of 

mitosis, plasmids are imported into the nucleus in a sequence-specific manner, and we and 

others have identified several DNA sequences that mediate this nuclear import 1-6. The 

common feature to these DNA nuclear targeting sequences (DTSs) is that they contain 

binding sites for transcription factors. Since transcription factors, like all proteins, are 

synthesized in the cytoplasm, they contain nuclear localization signals (NLSs) that interact 

with the nuclear protein import machinery for transport into the nucleus. If a plasmid 

containing the transcription factor binding site within the DTS is present in the cytoplasm, a 

newly synthesized transcription factor may bind to this site before nuclear import. The NLS 

import machinery will then bind to the DNA-bound transcription factors and translocate the 

DNA-protein complex into the nucleus 7,8. One sequence that acts as a DTS is the SV40 

enhancer which is known to bind to over 10 distinct, ubiquitously expressed, transcription 

factors and mediates plasmid nuclear entry in all cell types tested to date 1,3. The other 

identified DTSs act in a cell-specific manner by binding to a unique set of cell-specific 

transcription factors resulting in nuclear import in only those cells in which the transcription 

factors are expressed 9. One such sequence that acts in smooth muscle cells only is the 

smooth muscle gamma actin promoter 4. This promoter is regulated transcriptionally by the 

complement of positive and negative transcriptional regulators present within smooth 

muscle cells including SRF and Nkx factors 10,11, and we have demonstrated that binding of 

these factors to the DNA are needed for DNA nuclear import activity in cultured smooth 

muscle cells 12. Thus, cell-specific gene delivery and expression can be regulated at the level 

of nuclear import of the vector DNA.

In order to identify a DNA nuclear import sequence that is active in alveolar type II 

epithelial (ATII) cells, a cell that makes up roughly 5% of the alveolar surface, mediates 

much of the fluid balance within the lung, and which likely serves as a progenitor cell for 

type I cells, the thin cells that line the remainder of the alveoli and are responsible for gas 

exchange, we screened the transcriptional regulatory elements of several alveolar epithelial 

cell-specific genes. In this study, we show that the 318 bp fragment of the SP-C proximal 

promoter acts as a type II alveolar epithelial cell-specific DNA nuclear targeting sequence 

whose activity is dependent on binding sites for a number of cell-specific transcription 

factors. Additionally, we show that the SP-C promoter when included on a plasmid will 

enhance gene expression specifically in ATII cells in mouse lung.

Materials and Methods

Plasmids

The 5′ flanking sequences and promoters for SP-A, SP-B, SP-C, SP-D, and cytokeratin 8 

were amplified by PCR from human genomic DNA (Promega, Madison, WI; Table 1). The 

SV40 DTS was amplified by PCR from SV40 genomic DNA. Amplified sequences were 

inserted into the pCRII-TOPO plasmid (Invitrogen, San Diego, CA). The 3.7 kb human SP-

C promoter plasmid was a generous gift from Dr. J. Whitsett (Cincinatti Childrens Hospital, 

Cincinnati, OH). The 215bp SP-C promoter truncation was made by digesting pCRII-SPC 

with the restriction enzyme ApaI and religating the digested plasmid upon removal of the 

intervening ApaI fragment. The plasmids used for in vivo delivery were created by 
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removing the multiple cloning site of the pEGFP-N1 vector (Clontech, Mountain View, CA) 

by BgIII and BamHI digestion/religation and subsequent deletion of the SV40 

enhancer/DTS from the vector using PCR mutagenesis to flank the DTS with BglII sites and 

delete it by digestion and religation. The EGFP gene of this plasmid was replaced with the 

EYFPnuc gene of the pEYFPnuc vector (Clontech, Mountain View, CA) by digestion with 

NheI and AfIII, creating pCMV-YFPnuc-ΔDTS. The 365 bp fragment of the human SP-C 

promoter was inserted downstream of YFPnuc into the BgIII site of pCMV-YFPnuc-ΔDTS, 

creating pCMV-YFPnuc-SPC. The PCR-based Quickchange Site-Directed Mutagenesis Kit 

(Stratagene, La Jolla, CA, USA) was used to mutate desired sites within the SP-C promoter. 

Plasmids were purified by Promega Wizard Maxiprep kits (Promega, Madison, WI). All 

plasmids were confirmed by DNA sequencing.

Cell culture and microinjection

A549 (CCL-185), MLE-12 (CRL-2110), HeLa (CCL-13), Beas-2B (CRL-9609), and 

NIH3T3 (CRL-1658) cell lines were obtained from American Type Culture Collection 

(Washington DC). TC7 cells, a subline of African Green Monkey kidney epithelium 1, 

primary cultures of human pulmonary artery smooth muscle cells (PASMC; Cambrex, East 

Rutherford, NJ, USA) and rat alveolar type II epithelial cells (a generous gift from K. Ridge, 

Northwestern University, Chicago, IL), were also used. All cells were grown on etched glass 

coverslips in Dulbecco's Minimal Essential Media (DMEM) containing 10% fetal bovine 

serum and supplemented with antibiotics and antimycotics. All cells were cytoplasmically 

microinjected using an Eppendorf Femtojet system as described previously 13. Purified 

protein-free DNA was suspended in phosphate-buffered saline and injected at a 

concentration of 0.5 mg/ml, which corresponds to approximately 20,000 plasmids injected 

per cell. Rhodamine-labeled bovine serum albumin (BSA; Molecular Probes, Eugene, OR) 

was co-injected at a concentration of 0.5 mg/ml.

In situ hybridization

In situ hybridizations were performed as described using fluorescently labeled probes were 

prepared by nick translation of pCRII-TOPO or pCAT and mounted with DAPI and the anti-

bleaching reagent DABCO 1. Cells were visualized by fluorescence microscopy on a Leica 

DMRXA2 and images were captured on a Hamamatsu Orca-ER 12 bit, cooled CCD camera 

(Hamamatsu, Japan) and OpenLab software (Improvision, Lexington, MA). Confocal 

microscopy on a Zeiss LCM 510-META was used to confirm nuclear localization.

siRNA delivery and knockdown assessment

siRNAs against mouse TTF-1 (Catalog # L-041979-01), NFIA (Catalog # L-044168-01) and 

GATA-6 (Catalog #L-065585-00) were purchased from Dharmacon, Inc. (Lafayette, CO) 

and resuspended to a concentration of 20 μm in 1× siRNA buffer. Cells were counted and 

approximately 25,000-50,000 cells were plated on glass coverslips in a 12 well plate. After 

24 hours incubation in antibiotic-free media, siRNA was transfected at a concentration of 2 

μM in antibiotic- and serum-free media with the DharmaFect 1 transfection reagent 

(Dharmacon, Lafayette, CO). Media with serum was added after 24 hours if extensive cell 

death was observed. Cells were lysed at 24, 48, and 72 hours post-transfection and protein 
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levels were compared with those seen in cells transfected with a non-targeting siRNA and 

assayed at each time point by Western blot. TTF-1 was detected using the TTF-1 Ab-1 

antibody from Lab Vision/Neomarkers (Catalog #MS-699 Fremont, CA). NFI was detected 

using the NF-1 antibody from Santa Cruz Biotechnology (Catalog #SC-870, Santa Cruz, 

CA). GATA-6 levels were detected using the anti-human GATA-6 goat polyclonal antibody 

from R&D Systems (Catalog #AF1700, Minneapolis, MN). The time point where the 

greatest knockdown was observed was noted and cells were microinjected with the pCRII-

SPC promoter plasmid at this optimum time point. Each siRNA time point optimization was 

repeated three times.

In vivo gene transfer to the lung

Female Balb/c mice (18-22 g) were anesthetized with sodium pentobarbital (50 mg/kg body 

weight, IP) and placed in the supine position. An endotracheal tube (20G angiocath cut at an 

angle 2 inches from the end) was placed through the vocal cords into the trachea using a 

guide wire. A solution of 100 μl of pCMV-YFPnuc-SPC or pCMV-YFPnuc-ΔDTS DNA 

(1.5 mg/ml) in 10 mM Tris, pH 8.0, 1 mM EDTA and 140 mM NaCl was instilled into the 

lungs through the catheter with a Hamilton syringe. Immediately afterwards, an electric field 

was applied across the animal's chest using 8 square wave pulses of 10 msec duration each 

at a field strength of 200 V/cm delivered with a BTX ECM 830 electroporator (BTX, San 

Diego, CA) and pre-gelled pediatric surface electrodes (Medtronic, Minneapolis, MN). After 

electroporation, mice were mechanically ventilated at a tidal volume of 150 μl (15% total 

lung capacity) for approximately 1 minute or until they recovered spontaneous breathing. 

The animals were allowed to recover from anesthesia, returned to the vivarium, and 48 

hours later euthanized by a sodium pentobarbital overdose. Blood was perfused from the 

body by injection of 1 ml of cold PBS into the right atrium of the heart. Lungs were fixed in 

vivo by inflating the lung with 2% paraformaldehyde for 1 hour, then removed, inflated to 

total lung capacity with a 50% mixture of OCT medium and PBS, and snap frozen in liquid 

nitrogen. All experiments were conducted in accordance with institutional guidelines in 

compliance with the recommendations of the Guide for Care and Use of Laboratory 

Animals.

Lung immunofluorescence

Eight micron frozen thin sections were permeabilized with 0.2% triton-X and 

immunostained with goat anti-mouse lamellar body 180 antibody as a marker for ATII cells 

(Chemicon International, Temecula, CA). Antibodies were detected using Alexa 555 anti-

mouse secondary antibodies (Molecular Probes, Eugene, OR). Direct fluorescence of YFP 

or antibodies was visualized using a Zeiss LCM 510-META confocal microscope.

BrdU incorporation

Animals were injected with 0.5ml of 2 mg/ml Bromo-deoxyuridine at 24 and1 hour prior to 

gene delivery and 1, 24, and 45 hours post-delivery. Lungs were harvested at 48 hours and 

processed for frozen thin sections. BrdU incorporation was detected using the BrdU In-Situ 

Detection Kit (BD Biosciences, San Diego, CA).
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Results

Human SP-C promoter mediates plasmid nuclear import in MLE-12 cells

In order to identify a nuclear import sequence that is active in alveolar epithelial type II cells 

(ATII), we screened the transcriptional regulatory elements of several ATII cell-specific 

genes. Based on the literature, we chose the minimal sequence that gave cell-specific 

transcription, with the assumption that these sequences contain binding sites for ATII-

specific transcription factors. These promoter sequences included surfactant protein genes 

A, B, C and D, and a general epithelial cell-specific gene, cytokeratin 8 (Table1). These 

promoter fragments were PCR amplified from human genomic DNA and cloned into the 

pCRII-TOPO plasmid, which does not contain a DNA nuclear targeting sequence or 

eukaryotic promoter 3. To assay for nuclear import, the promoter-containing plasmids were 

microinjected along with rhodamine-labeled bovine serum albumin (Rh-BSA) into the 

cytoplasm of MLE-12 cells, a transformed mouse alveolar type II epithelial cell line that 

expresses high levels of surfactant proteins like primary type II cells 14. Cells were fixed at 

eight hours post-injection and the DNA was visualized using fluorescence in situ 

hybridization. Cells showing any nuclear Rh-BSA were not scored, since the injected 

labeled protein should not have access to the nucleus unless the cells had divided or had 

been accidentally injected in the nucleus. Immediately following injection, all plasmids 

showed diffuse staining throughout the cytoplasm (not shown). By 8 hours, all plasmids 

were still restricted to the cytoplasm except the plasmid carrying the SP-C promoter (Fig. 1). 

When pCR-SPC was injected into the cytoplasm of MLE-12 cells, all of the injected DNA 

(>90%) migrated to the nucleus in 25-30% of the cells showing fluorescent in situ 

hybridization signal. An additional 20% of the cells with fluorescent signal showed > 50% 

of the DNA in the nucleus (not shown). By contrast, none of the cells injected with the other 

promoter-containing plasmids showed any nuclear localization of the plasmids. Similarly, 

the plasmid backbone of these plasmids (pCR) showed very little (≤5%) nuclear localization 

when the DNA was cytoplasmically injected (Fig. 1). As a positive control, the same 

plasmid backbone containing the SV40 DTS in place of the SP-C promoter (pCR-SV40) 

was cytoplasmically injected and visualized at 8 hours, and had nuclear import activity 

nearly identical to that of the SP-C promoter.

Human SP-C promoter does not mediate plasmid nuclear import in non-alveolar epithelial 
type II cells

To determine whether the nuclear import activity of the SP-C promoter was restricted to 

type II cells, the plasmid was microinjected into the cytoplasm of a variety of cell types and 

localized by in situ hybridization. These included TC7 cells (green monkey kidney 

epithelium), HeLa cells (human cervical carcinoma), Beas-2B cells (human bronchial 

epithelium), NIH3T3 cells (fibroblasts), and primary human pulmonary artery smooth 

muscle cells. Additionally, A549 cells, another alveolar type II-like epithelial cell line and 

freshly isolated primary rat ATII cells were also tested. All of these cells were injected with 

pCR-SV40 which showed DNA nuclear localization similar to that seen in MLE-12 cells, 

demonstrating that all of these cell types have the ability to import plasmid DNA into the 

nucleus in a sequence-specific manner (not shown). Further, none of the cells showed 

nuclear localization of the promoter-less plasmid, pCRII-TOPO (not shown). While the 
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pCR-SPC plasmid localized entirely to the nucleus in ∼30% of the MLE-12, A549, and 

primary rat ATII cells (Fig. 2). By contrast, pCR-SPC showed no nuclear localization in the 

absence of cell division in any of the other cell types, suggesting that the SP-C promoter 

mediates nuclear import specifically in alveolar type II epithelial cells, but not in non-type II 

cells.

Specific sequences of the human SP-C promoter are required for alveolar epithelial cell-
specific nuclear import

In order to identify which sequences within the human SP-C promoter were required for 

ATII-specific nuclear import, plasmids containing the large 3.7 Kb fragment of the SP-C 

promoter as well as several truncations were tested for import activity using the 

microinjection and in situ hybridization strategy. It has been shown that the developmental 

expression of the human 3.7 Kb SP-C promoter mimics that of the endogenous SP-C gene, 

indicating that the cis-active regulatory elements for cell-specific and developmental 

expression are located within this region while the 336 bp (-318 to +18) proximal promoter 

shows alveolar type II cell specific expression in cultured cells that is dependent, suggesting 

that even this short segment maintains control elements for appropriate cell-specific 

expression 15,16. Both the full-length and the 336 bp proximal SP-C promoter showed 

similar levels of nuclear import activity in MLE12 cells (Fig. 3). However, truncation of the 

promoter to nucleotide –215 abolished DNA nuclear import activity to that seen with 

plasmids lacking any promoter fragment, suggesting that sequences between –215 and –318 

are required for DNA nuclear import activity.

Multiple transcription factor binding sites are required for SP-C promoter nuclear import in 
alveolar type II epithelial cell lines

Based on the published literature, we mutated several transcription factor binding sites 

shown to be important for type II cell-specific transcription, including nuclear factor I (NFI), 

GATA-6, and thyroid transcriptional factor 1 (TTF-1) in order to determine which are 

required for SP-C nuclear import activity 15-21. Mutations within the TTF-1 and GATA-6 

sites reduced nuclear import activity to background levels (i.e., similar to the promoter-less 

pCRII-ΔDTS plasmid) as did mutation of the NFI binding site located at nucleotide –200 

(Fig 3). Interestingly, mutations within the two other NFI sites (located at –300 and –82) 

retained ∼75% nuclear import activity when compared to the wild-type promoter sequence. 

In combination with the deletion analysis, these results suggest that the region between –219 

and –82 are required for DNA nuclear import activity and further that NFI, TTF-1, and 

GATA-6, which bind in this region, play a role in the ATII-specific DNA nuclear import.

TTF-1, NFIA, and GATA-6 are required for SP-C nuclear import activity in MLE-12 cells

In order to determine whether NFI, TTF-1, and GATA-6 do indeed play a role in the nuclear 

import of plasmids containing the SP-C promoter, the levels of these factors in MLE-12 

cells were reduced using siRNA and nuclear import of pCR-SPC was evaluated. Since the 

timing and efficacy of siRNA-mediated reduction of proteins varies for each individual 

protein, cells were transfected with siRNAs and the window of greatest protein reduction 

was determined by Western blotting (Figure 4A). Cells treated with TTF-1 siRNA were 
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tested for import activity 48 hours after siRNA transfection, while cells treated with NF1A 

or GATA-6 siRNAs were subsequently microinjected at 72 hours post-transfection. In all 

cases, siRNA treatment resulted in >90% reduction of the various transcription factors (Fig. 

4A). Knock-down of TTF-1, NFIA, or GATA-6 resulted in a substantial inhibition of SP-C 

nuclear import, whereas treatment of cells with a control, non-targeting siRNA did not affect 

the level of nuclear import compared to untreated cells (Fig. 4B). Taken together with the 

DNA mutagenesis studies, these results demonstrate that these three factors are required for 

the nuclear import of SP-C DTS containing plasmids.

Use of the SP-C promoter DNA targeting sequence enhances transgene expression 
specifically in ATII cells in vivo

In order to assay the nuclear import activity of the SP-C promoter in vivo, we constructed 

plasmids that express nuclear-targeted yellow fluorescent protein (YFPnuc) under the control 

of the CMV promoter and which contain or lack the 336 bp SP-C promoter/DTS 

downstream of YFP. The SP-C promoter was placed downstream of the expression cassette 

to minimize the transcriptional effects of the SP-C promoter and to isolate its nuclear import 

activity. Plasmids were delivered via the airways to the lungs of mice using transthoracic 

electroporation, ventilated briefly following electroporation, and sacrificed 48 hours post-

delivery 22. YFPnuc was detected in multiple cell types throughout the airways, alveoli, and 

pleura (Fig. 5A). To determine whether there was any preference for delivery and expression 

in type II cells, they were visualized with an ATII-specific lamellar body protein antibody. 

Indeed, most of the cells in the parenchyma that expressed YFPnuc also were positive for 

lamellar body protein staining. Based on our cell culture results, we were surprised by the 

relative lack of specific targeting to type II cells and the amount of cells in the airways and 

pleura that also expressed gene product. We hypothesized that the unusually high number of 

airway and pleural YFPnuc positive cells could be due to cell division in these cells. Since 

YFPnuc is under the transcriptional control of the CMV promoter, if the plasmids are able to 

reach the nucleus of any cell type during cell division, YFPnuc will be expressed regardless 

of any DTS activity. To test this hypothesis, two approaches were taken. First, a plasmid 

lacking any DTS sequence (pCMV-YFPnuc-ΔDTS) that has been shown to be 

transcriptionally equivalent to DTS containing plasmids in dividing cells but which has very 

limited expression in non-dividing cells and tissues was delivered to the mice 3,23. Large 

numbers of YFPnuc positive cells were detected in the airways and pleura of mice receiving 

pCMV-YFPnuc-ΔDTS, but fewer cells were found in the alveoli (Fig. 5). This suggests that 

cell division is likely playing a role in gene delivery to the lung. Thus, BrdU incorporation 

was used to visualize cell division in these animals (Fig. 5). BrdU was injected into animals 

at several time points before and after DNA delivery, and the animals were sacrificed and 

prepared as described above. Significant numbers of BrdU positive cells were detected in 

the airways and the pleura but were scarce in the alveoli, suggesting that significant numbers 

of cells in the airway and periphery of the lung are actively dividing, while the cells in the 

alveoli are largely quiescent (Fig. 5).

In order to quantify enhancement of gene expression, we decided to focus on the effect of 

the SP-C promoter on gene expression in the non-dividing alveolar cells. Fifteen slides per 

animal were counted spanning the whole lung and each expressing cell type was classified 
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as ATII (positive staining with antibody marker), ATI, airway, and non-type I/non-type II 

cells (Fig. 6). These latter cells are present in the alveolus but do not have the flat phenotype 

of ATI cells and do not stain positively for ATII, macrophage, or fibroblast markers (data 

not shown). Plasmids containing the SP-C promoter/DTS showed statistically significantly 

more expression in type II cells compared to type I cells (6.80 ± 1.93 cells/section vs 3.13 ± 

0.80 cells/section, p ≤ 0.01). By contrast, equal numbers of type I and type II cells took up 

and expressed the DTS-lacking plasmid (2.33 ± 0.40 cells/section vs 2.20 ± 0.60 cells/

section). Non-type I/non-type II cells also showed equivalent numbers of YFPnuc positive 

cells following delivery of plasmids carrying or lacking the SP-C DTS. Since the ΔDTS 

plasmid expresses only in dividing cells, these results suggest that the expression from SP-C 

promoter/DTS plasmids seen in type I and non-type I/non-type II cells (and ∼ 30% of type 

II cells) is most likely due to cell division. Taken together, these results suggest that the SP-

C promoter/DTS enhances gene delivery and expression preferentially in ATII cells.

Discussion

One of the more important requirements for safe and effective gene therapy is the limitation 

of gene expression to specific cell types. To date, the majority of techniques developed are 

directed at the transcriptional and cell entry levels. We have shown in previous studies that 

specific DNA sequences can be included on plasmids to mediate nuclear import in non-

dividing cells and that this paradigm can be used to promote and/or restrict gene expression 

in desired cells 4,23,24. In this report, we demonstrate that the human SP-C promoter is a 

cell-specific DTS that acts in alveolar type II epithelial cells. The sequences needed for 

nuclear import map to the proximal 318 nucleotides of the SP-C promoter, and mutagenesis 

has revealed that multiple transcription factor binding sites within this region are required 

for nuclear import activity. Moreover, following gene transfer to the non-dividing cell 

populations in the lungs of mice, we have shown that the SP-C promoter enhances gene 

delivery and expression in preferentially in alveolar type II cells.

We have proposed a model for ATII-specific plasmid DNA nuclear import based on 

important transcription factor binding sites (Fig. 7). Based on the requirement of multiple 

transcription factor binding sites for nuclear import activity, our results suggest that a 

multimeric protein complex forms on the promoter to drive transport through the nuclear 

pore complex via importinα and/or importinβ, the NLS receptors 7,25. Whether inclusion of 

multiple copies of the SP-C DTS will increase plasmid nuclear import beyond that seen with 

one copy has not been evaluated, but it would follow that by increasing the number of 

potential transcription factor binding sites, the likelihood of forming productive DNA-

protein complexes would increase as would nuclear localization of the plasmid. This 

remains to be seen. Although the nature of the complex is not known, our data indicates it is 

dependent on a highly specific set of proteins, including NFI, GATA-6, and TTF-1. TTF-1 

has been shown to bind to the SP-C promoter and to be an important regulator of SP-C 

promoter transcription 16. It also has been shown that TTF-1 binding is required for the 

activation of the promoters of surfactant protein A and B 26,27. According to our data, since 

the promoters of surfactant protein A and B do not mediate nuclear import in ATII cells, 

TTF-1 binding alone may not be sufficient to drive plasmid nuclear import.
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According to the mutagenesis studies in MLE-12 cells, it appears that the central three sites 

binding NFI, TTF-1, and GATA-6 are required for SP-C promoter nuclear import activity. 

The most proximal and distal NFI sites seem to be least important. Although it is unknown 

why certain sequences act as DNA nuclear targeting sequences while others do not, our 

hypothesis is that certain sequences will bind transcription factors and other proteins in 

distinct orientations where their nuclear localization signals are either exposed and 

accessible to importin-β binding, or masked from this interaction by another protein or the 

DNA itself. For example, based on the structure of the TTF-1 protein 28, the NLS is located 

within the DNA binding site, which likely renders the NLS inaccessible to the importin 

machinery when DNA is bound. However, since it has been shown that other factors such as 

GATA-6, TAZ, and the NFI proteins directly interact with TTF-1 and synergistically 

activate the SP-C promoter 19,21,29, it is possible that the NLSs of these other proteins are 

exposed and thus involved in plasmid nuclear import while TTF-1 acts only as a required 

scaffold protein.

Controlling gene expression at the level of nuclear import provides several advantages over 

other strategies. Limitation of transcription using cell-specific promoters is effective in 

restricting gene expression to specific cell types, yet the levels of expression are limited by 

the endogenous transcriptional control of the given promoter. Using DNA nuclear targeting 

sequences, any promoter can be used to drive expression of the transgene (provided it is 

active in these cells), including strong viral promoters like the cytomegalovirus immediate 

early enhancer/promoter, long-term expressing promoters such as the ubiquitin ligase C 

promoter 30,31, or inducible promoters such as the tet on/off system 32. In this way, it is 

possible to use the most transcriptionally suitable promoter to drive transcription while 

limiting nuclear import via sequence-specific nuclear import of plasmid DNA to desired cell 

types. Although the utility of this strategy is dependent on targeting cells that are not 

undergoing active cell division, considering that the vast majority of cells in vivo are either 

slowly or non-dividing, including those of the pulmonary epithelium, this strategy represents 

a novel strategy for cell-specific targeting of gene expression in vivo.

While we have shown that inclusion of the SP-C promoter on a plasmid will enhance gene 

transfer and expression preferentially in nondividing ATII cells in the lung, several other 

cell types also take up and express transgenes from these plasmids. The fact that the vast 

majority of these other cells are BrdU-positive suggests that they have likely undergone cell 

division between the time the plasmids were delivered by electroporation and assayed for 

gene expression two days later. We and others have shown that in the presence of cell 

division, there is no sequence-specificity to nuclear localization of plasmids 3,33,34, and 

since a ubiquitously active CMV promoter is used to drive the YFPnuc transgene, gene 

expression would be expected in any cell that divides prior to analysis. However, it is also 

possible that some of the gene expression seen in non-type II cells may be due to specific 

nuclear import of the SP-C promoter containing plasmids in these cells. Indeed, bronchial 

and large airway columnar epithelial cells express levels of NF1, GATA-6, and TAZ 

detectable by immunohistochemistry in human lung sections 35 and TTF-1 is expressed in 

bronchial epithelial and goblet cells as well 36. Regardless of the mechanism, this highlights 
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the utility, and limitations, of using nuclear import sequences to restrict gene delivery to 

desired non-dividing cells.
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Figure 1. Plasmids containing the SP-C promoter show nuclear import activity in MLE-12 cells 
in the absence of cell division
MLE-12 cells were cytoplasmically injected with plasmids carrying either the SP-A, SP-B, 

SP-C, SP-D, or keratin 8 promoter, the SV40 enhancer, or no eukaryotic promoter (pCRII-

ΔDTS) . Eight hours later, the location of the injected DNA was detected by in situ 

hybridization. Injected plasmid is shown in green and nuclear DNA is counterstained with 

DAPI (blue). Between 100 and 200 cells were injected for each construct and the 

experiments were repeated three times for all DNAs; representative cells are shown.
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Figure 2. SP-C promoter plasmids localize to the nuclei of alveolar type II epithelial cell lines but 
not of other cell types
Different cell lines were cytoplasmically injected with equal numbers of plasmids carrying 

the human SP-C promoter and the location of the DNA was detected by in situ hybridization 

eight hours later. A. Representative cells displaying pCR-SPC nuclear or cytoplasmic 

localization. B. The percentage of cells showing greater than 90% nuclear signal was 

quantified for each cell type. The pCRII-ΔDTS plasmid is included as a negative control for 

background nuclear import. Data are plotted as mean ± st. dev. from three or more 

independent experiments. Approximately 100 cells per experiment were imaged for each 

cell type.
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Figure 3. Sequence requirements for SP-C promoter nuclear import
Plasmids containing the wild type 365 bp SP-C promoter, full-length 3.7 Kb human SP-C 

promoter, 0.23 Kb truncation, and the SP-C promoter containing the designated mutations 

were microinjected into the cytoplasm of MLE-12 cells and the localization of the DNA was 

detected by in situ hybridization after eight hours. Plasmids containing no promoter (pCRII-

ΔDTS) were injected as a negative control, Nuclear import activity is shown relative to that 

of the wild type promoter (mean ± st. dev.), which showed complete nuclear localization in 

28% of injected cells. Between 100 and 200 cells were injected and visualized for each 

construct in both cell types and the experiments were repeated three times.
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Figure 4. Nuclear import of the SP-C plasmid in MLE-12 cells is abrogated following siRNA 
knockdown of TTF-1, NFIA, or GATA-6
MLE-12 cells were treated with siRNAs against the transcription factors TTF-1, NFIA, and 

GATA-6, or a non-targeted siRNA as a negative control. A. Western blots were performed 

on cell extracts at the indicated times following siRNA transfection. B. Forty-eight (TTF-1) 

or 72 (NF1 and GATA-6) hours post-transfection, pCR-SPC was microinjected into the 

cytoplasm of the cells and its cellular localization was determined 8 hours later by situ 

hybridization. The pCRII-ΔDTS plasmid is included as a negative control for background 

nuclear import. Data are plotted as mean ± st. dev. from three or more independent 

experiments. (*) indicates p<0.05 when compared to the non-targeting control.
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Figure 5. Identification of lung cells expressing YFPnuc and BrdU incorporation
Plasmids (50 μg) expressing YFPnuc from the CMViep and carrying the SP-C DTS 

downstream of YFPnuc were delivered to the lungs of Balb/c mice (n=3) by transthoracic 

electroporation (8 pulses of 10 msec duration at 200 V/cm). The mice were also injected 

with BrdU (1 mg) 24 and 1 hour prior to gene delivery and 1, 24, and 45 hours after gene 

delivery. Two days after gene delivery, lungs were harvested and embedded in OCT for 

frozen sections. Cryosections containing YFPnuc positive cells (green) following BrdU 

injections, intratracheal delivery and electroporation were counterstained with an ATII-

specific antibody, LB180 (red). Separate sections were also reacted with an anti-BrdU 

antibody and counterstained with hematoxylin. Representative images of specified lung 

areas are shown.
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Figure 6. Classification and quantification of lung cells expressing YFPnuc
Cryosections (15 per animal; spanning the whole lung) containing YFPnuc positive cells 

following intratracheal delivery and electroporation were counterstained with an ATII-

specific antibody. Each cell expressing YFPnuc was defined as an ATII, ATI, airway, or 

unclassified cell. ATII cells were identified by positive antibody marker staining. ATI cells 

were identified by location in the lung and a flat nuclear morphology. Airway cells were 

identified by location in the lung. Cells expressing YFPnuc in the periphery were not scored. 

(*) indicates statistical differences with p<.05 by a paired one-tail t-test. Data are plotted as 

mean ± st. dev. from three or more animals.
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Figure 7. Model of alveolar epithelial cell-specific nuclear import
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Table 1
Promoters used in this study

Promoter Promoter Fragment1 Reference

SP-A −1000 to +38 37

SP-B −730 to +39 38

SP-C −318 to +18 17

SP-D −1675 to +864 39

Keratin 8 −1762 to +18 40

1
Nucleotide numbers are relative to the transcriptional start site at +1
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