
The chemical component of the mixed GF-TTMn
synapse in Drosophila melanogaster uses acetylcholine
as its neurotransmitter

Marcus J. Allen1 and R. K. Murphey2,*
1Department of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
2Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts 01003, USA

Keywords: giant fibre, innexins, neuron, neurotransmitter, tetanus toxin

OnlineOpen: This article is available free online at www.blackwell-synergy.com        

Abstract

The largest central synapse in adult Drosophila is a mixed electro-chemical synapse whose gap junctions require the product of
the shaking-B (shak-B) gene. Shak-B2 mutant flies lack gap junctions at this synapse, which is between the giant fibre (GF) and the
tergotrochanteral motor neuron (TTMn), but it still exhibits a long latency response upon GF stimulation. We have targeted the
expression of the light chain of tetanus toxin to the GF, to block chemical transmission, in shak-B2 flies. The long latency response in
the tergotrochanteral muscle (TTM) was abolished indicating that the chemical component of the synapse mediates this response.
Attenuation of GAL4-mediated labelling by a cha-GAL80 transgene, reveals the GF to be cholinergic. We have used a temperature-
sensitive allele of the choline acetyltransferase gene (chats2) to block cholinergic synapses in adult flies and this also abolished the
long latency response in shak-B2 flies. Taken together the data provide evidence that both components of this mixed synapse are
functional and that the chemical neurotransmitter between the GF and the TTMn is acetylcholine. Our findings show that the two
components of this synapse can be separated to allow further studies into the mechanisms by which mixed synapses are built and
function.

Introduction

Mixed electro-chemical synapses are found in both vertebrate and
invertebrate nervous systems including fish (Lin& Faber, 1988; Korn &
Faber, 2005), crustaceans (Edwards et al., 1999), and insects (Blagburn
et al., 1999).Their bi-partite nature has traditionally made them difficult
to study as the two components are not easily separable. The giant fibre
system (GFS) ofDrosophila melanogaster is a simple neural circuit that
mediates an escape response in adult flies and contains mixed electro-
chemical synapses (reviewed in Allen et al., 2006). The two large giant
fibres (GFs) (Fig. 1) relay information from the brain to the thoracic
ganglia where they make electro-chemical synapses with the tergotro-
chanteral motor neuron (TTMn), which drives the leg extensor muscle
and the peripherally synapsing interneuron (PSI; King &Wyman, 1980;
Blagburn et al., 1999), which drives the dorsal longitudinal motor
neurons (DLMns; King & Wyman, 1980; Gorczyca & Hall, 1984).

The shaking-B2 (shak-B2) mutation was originally generated during
an adult EMS behavioural screen (Homyk et al., 1980) and
independently, Passover alleles at the same locus were isolated in a
mutagenic screen for flies that failed to escape to a light-off stimulus
(Thomas & Wyman, 1984; Baird et al., 1990). The mutants show a

very specific electrophysiological phenotype upon GF stimulation; a
long latency and labile response is seen in tergotrochanteral muscle
(TTM) and no responses are elicited in the dorsal longitudinal muscles
(DLMs; Thomas & Wyman, 1984; Baird et al., 1990). The long
latency response in TTM was originally thought to be due either, to a
separate pathway from the brain to the thorax that was uncovered once
the GF-TTMn synapse was rendered nonfunctional, or to a defect in
the GF-TTMn synapse (Thomas & Wyman, 1984; Baird et al., 1990).
Electrophysiological tests on flies in which neurite outgrowth of the
GF was blocked showed that the only pathway from the brain to
TTMn is via the GF (Allen et al., 2000). This suggested that a defect
in the GF-TTMn synapse was the cause of the long latency seen in
TTM. Moreover, it was shown that shak-B2 encodes a gap junction
protein and the mutant flies have no functional gap junctions between
the GF and TTMn (Phelan et al., 1996; Sun & Wyman, 1996; Phelan
et al., 1998). EM work has revealed the existence of T-bars and
synaptic vesicles, indicative of chemical transmission, in the presy-
naptic bends of the GF and at the GF-PSI contact points (Blagburn
et al., 1999). This body of evidence led to the hypothesis that the
chemical component of the synapse is responsible for the long latency
TTM response in shak-B2 flies.
We have used these shak-B2 mutants, in combination with

misexpression of a toxin, to test the function of the chemical
component of this mixed synapse. We provide evidence that the GF is
cholinergic by using the expression of GAL80 to block GAL4-
mediated labelling of the neuron and have used a temperature sensitive
allele that affects acetylcholine (ACh) production to demonstrate the
nature of chemical transmission at the synapse.
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Materials and methods

Drosophila stocks

All stocks were cultured at 25 �C on standard medium unless stated
otherwise. The P[GAL4] line c17 expresses in the GF and other
neurons in the brain and optic lobes as well as sensory neurons.
However, it does not express in the TTMn or any other identified
neurons within the GFS (Allen et al., 1999; Trimarchi et al., 1999).
The P[GAL4] line A307 expresses in the GF and weakly in the TTMn
and some DLMns as well as some other neurons in the CNS (Phelan
et al., 1996; Allen et al., 1998). The UAS-IMPTNT and UAS-TNT(G)
lines are described in Sweeney et al. (1995) and Cha3.3kb-GAL80 has
been described previously (Kitamoto, 2002). The shaking-B2 (shak-B2)
mutation is an EMS-induced allele from a behavioural screen
performed by Homyk et al. (1980). It acts as a functional null for
the shak-B (neural) and shak-B (neural +16) gene products (Krishnan
et al., 1993; Krishnan et al., 1995; Zhang et al., 1999). The chats2

allele used is that originally described by Greenspan et al. (1980) and
causes an arginine to histidine change at amino acid 397 in the
resulting protein (Wang et al., 1999). The CyO and MKRS balancer
chromosomes are described in Lindsley & Zimm (1992).

Electrophysiology of flies expressing the tetanus toxin light
chain

Flies were anaesthetized by cooling on ice and waxed onto a small
podium, ventral side down, with the wings held outwards and secured
in the wax. Tungsten electrodes were pushed through the eyes and into
the brain for stimulation and a tungsten ground wire placed into the
abdomen. A pulse of 40–60 V for 0.03 ms from a Grass S48
stimulator (Astro-Medical, West Warwick, USA) via a stimulus
isolation unit was given to activate the GFs in the brain and recordings
were made from the TTM and a contralateral DLM muscle with glass
microelectrodes (resistance 40–60 MW). These were filled with 3M
KCl, or saline and placed into the muscles through the cuticle.
Responses were amplified using Getting 5 A amplifiers (Getting
Instruments, San Diego, USA) and data digitized using an analogue-
digital Digidata 1320 and Axoscope 9.0 software (MDS Inc, Toronto,
Canada). For response latency recordings five single stimuli were
given to each individual tested with a 5-s rest period between each
stimulus. This usually enabled sufficient time for the weak GF-TTMn
synapse of shak-B2 mutant flies to recover. In a few cases, where five
responses were not initially obtained, more stimuli were given. To
obtain data for synaptic following at two frequencies, trains of ten
stimuli, at either 250 Hz or 100 Hz, were given with a 5-s rest period
between each train.
For the thoracic stimulation, to activate the motor neurons directly,

the stimulating electrodes were moved from the brain and carefully
placed through the cuticle at the anterior end of the thorax and down
into the fused thoracic ganglia in the ventral part of the thorax.

Electrophysiology of flies containing chats2

All chats2 flies were reared at the permissive temperature of 18 �C to
allow them to develop to adulthood. Flies were collected on the day
they eclosed and either kept at 18 �C for 48 h prior to testing or were
moved to an incubating water bath and kept at 28 �C for 48 h prior to
testing. Following this flies were prepared for electrophysiology as
described above and tested within 10 min of being removed from the
18 �C or 25 �C environment. Each individual was given five stimuli at
1 Hz in the brain and recordings made. At this stimulation rate wild-

type flies will show responses in TTM and DLM to every stimulus and
shak-B2 mutants will show no responses in DLM and intermittent
responses in TTM (Thomas & Wyman, 1984; Baird et al., 1990; this
study). The stimulating electrodes were then moved as described
above and thoracic stimulation of five stimuli at 1 Hz was given to the
same individual.

CNS histochemistry

Adult nervous systems were dissected in 0.1 m PBS plus 0.1% Triton
X-100, fixed briefly in 1% gluteraldehyde and stained for
b-galactosidase activity as previously described (Jacobs et al.,
2000). Images were taken on a Leica DMR microscope and figures
assembled using Adobe Photoshop.

Results

Blocking chemical synaptic transmission with tetanus toxin

Typically, shak-B2 mutant flies show a long latency response in TTM
that is very labile. This may be due to the chemical component of the
GF-TTMn synapse that develops, in the absence of gap junctions. To
test this hypothesis we used the GAL4-UAS system to selectively
block chemical transmission from the GF to the TTMn. We targeted
the expression of either an active form of the light chain of the tetanus
toxin (TNT), or an inactive form of the toxin (IMPTNT), to the GF
using the GF-specific P[GAL4] line c17 and UAS transgenes encoding

Fig. 1. Schematic representing the known synaptic connections of the GFS.
For simplicity only one side of the bilateral circuit is shown. The GF makes
mixed electrochemical synapses with the PSI and with the TTMn in the
thoracic ganglia. The GF-TTMn synapse is circled with a dotted line. The PSI
synapses with the DLMns via cholinergic chemical synapses. The PSI synapses
with five DLMns, but only two are indicated for clarity. PSI and TTMn are also
electrically coupled. Adapted from Allen et al. (2006).
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the two forms of the toxin (Sweeney et al., 1995; Allen et al., 1999;
Trimarchi et al., 1999). Hemizygous shak-B2 males that expressed
TNT in their GFs gave no responses in TTM or DLM upon stimulation
(Table 1; Fig. 2G–I). This suggests that the chemical component of the
GF-TTMn synapse is responsible for the long latency response in
TTM. Interestingly, these flies showed an increase in spontaneous
activity in both TTM and DLM (see following traces, Fig. 2H and I).
Other genotypes served as controls. Control female flies, either
heterozygous for shak-B2 alone or heterozygous for shak-B2 and
expressing IMPTNT, showed wild-type electrophysiological record-
ings upon activation of the GFs (Table 1; Fig. 2A–C). Females,
heterozygous for shak-B2, expressing TNT in their GFs also exhibited
wild-type responses (Table 1); presumably because the gap junctions
between the GF and TTMn are sufficient for normal connectivity.
Finally, shak-B2 hemizygous males, and shak-B2 hemizygous males
expressing IMPTNT, showed the previously characterized mutant
responses of a long latency and poor following to trains of stimuli for
TTM and no responses in the DLMs (Baird et al., 1990; Table 1;
Fig. 2D–F). To confirm that any long latency to TTM was due to a
defective GF-TTMn synapse, the stimulating electrodes were placed
into the thoracic ganglia of two of the shak-B2 hemizygous males, five
of the shak-B2 c17 ⁄ UAS-IMPTNT males and five of the shak-B2
CyO ⁄ UAS-TNT males tested, to activate the motor neurons directly.
This by-passes the GF and always resulted in short latency responses
in both TTM and DLM, even if the fly had given no responses on GF
stimulation (Fig. 3B and data not shown). To ensure that expression of
the active tetanus light chain toxin was not affecting the neuromus-
cular junctions (NMJs) of either TTM or DLM, thoracic ganglia
stimulation was also performed. Of the seven shak-B2 c17 ⁄ UAS-TNT
males, thoracic ganglia stimulation was performed on six and these all
showed responses in both TTM and DLM (Fig. 3C and data not
shown).

Statistical analysis of the results (see legend to Table 1) suggests
that the chemical component of the synapse is responsible for the long
latency response seen in TTM and this is blocked by expression of
tetanus toxin. As tetanus toxin blocks chemical transmission generally
the results do not provide any information concerning the transmitter.

Identifying the GF as a cholinergic neuron

The major excitatory neurotransmitter in the Drosophila CNS is ACh
(Lee & O’Dowd, 1999). Previous studies, using antibodies against
choline acetyltransferase (ChAT) or generating a cha-GAL4 line, have
shown extensive expression in the adult CNS but not identified the GF

as cholinergic (Gorczyca & Hall, 1987; Yasuyama et al., 1996;
Salvaterra & Kitamoto, 2001). We examined the CNS from cha-GAL4
flies expressing GFP carefully, but were not able to identify the GF as a
cholinergic neuron unequivocally as the large domains of expression
made such identification problematic (data not shown). To determine
whether the GF is cholinergic we utilized a cha3.3kb-GAL80 line
(Kitamoto, 2002) and reasoned that if the GF was cholinergic,
expression of GAL80 protein in the neuron would inhibit GAL4-
mediated expression of a UAS-reporter. When flies were generated
containing the GAL4 line A307 that expresses in the GFs, a UAS-lacZ
reporter transgene and cha3.3kb-GAL80, the reporter could not be

Fig. 2. Expression of tetanus toxin in the GF abolishes the TTM response in
shak-B2 mutants. Responses in the TTM and a DLM are shown when
individual flies were given a single brain stimulus or ten brain stimuli at either
100 or 250 Hz. (A–C) responses in a shak-B2 ⁄ + c17 ⁄ UAS-IMPTNT control
fly show wild-type latencies and following frequencies at 100 and 250 Hz
including the DLM not following 1 : 1 at 250 Hz (*) due to the failure of the
PSI-DLMns synapses (Tanouye & Wyman, 1980). (D–F) responses in a shak-
B2 ⁄ Y c17 ⁄ UAS-IMPTNT fly showing no output to DLM and a long latency
response and poor following in TTM at both frequencies. (G–I) responses in a
shak-B2 ⁄ Y c17 ⁄ UAS-TNT fly show no responses in either TTM or DLM upon
stimulation but increased spontaneous activity (marked with arrows). Vertical
scale bars, 50 mV for all traces; horizontal, 1 ms for response latencies, 10 ms
for following at 100 Hz, and 4 ms for following at 250 Hz.

Table 1. Synaptic function in shak-B2 mutant flies expressing the tetanus light chain

Genotype n

TTM DLM

Latency (ms)
± SEM

Following at
100 Hz ± SEM

Following at
250 Hz ± SEM

Latency (ms)
± SEM

Following at
100 Hz ± SEM

Following at
250 Hz ± SEM

shak-B2 ⁄ + 6 0.85 ± 0.03 100 ± 0.0% 100 ± 0.0% 1.43 ± 0.07 84 ± 10.7% 27.6 ± 7.2%
shak-B2 ⁄ Y 7a 1.62 ± 0.17** 17.5 ± 5.5% 10.5 ± 0.5% No responses No responses� No responses
shak-B2 ⁄ +; c17 ⁄ IMPTNT 7 0.87 ± 0.02 100 ± 0.0% 88 ± 9.2% 1.44 ± 0.08 82.9 ± 12.1% 33.1 ± 8.2%
shak-B2 ⁄ Y; c17 ⁄ IMPTNT 6b 1.27 ± 0.1* 13.5 ± 1.7% 10.5 ± 0.5% No responses No responses No responses
shak-B2 ⁄ +; c17 ⁄ TNT 12 0.92 ± 0.02 97.7 ± 1.3% 78.7 ± 7.6% 1.49 ± 0.04 92.7 ± 5.0% 43.5 ± 8.6%
shak-B2 ⁄ Y; c17 ⁄ TNT 7 No responses No responses No responses No responses No responses� No responses�

shak-B2 ⁄ +; CyO ⁄ TNT 7 0.86 ± 0.03 100 ± 0.0% 86.3 ± 6.4% 1.38 ± 0.06 91.1 ± 8.9% 40.6 ± 9.4%
shak-B2 ⁄ Y; CyO ⁄ TNT 7c 1.36 ± 0.09** 18 ± 7.3% 12 ± 2.5% No responses No responses No responses

a3 ⁄ 7; b2 ⁄ 6; c2 ⁄ 7 flies gave no responses in both TTM and DLM. TTM averages are from those that did respond. �Occasionally PSPs were recorded but were
spontaneous muscle contractions and not responses to the stimuli. **P < 0.001, *P < 0.005 in a Student’s unpaired t-test compared to shak-B2 ⁄ + females.
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detected in the GFs in any of the preparations (n ¼ 15), even with
excessive staining, but could in other GAL4-expressing neurons
(Fig. 4). This was also the case for a second GF-expressing GAL4 line,
c17 (data not shown). Controls showed 100% of the GFs examined to
stain (n ¼ 9). This indicates that the GF is a cholinergic neuron.

Reducing ACh using the chats2 mutant allele

To test whether chemical synaptic transmission from GF to TTMn is
cholinergic, we took advantage of a temperature sensitive allele of the
Drosophila cha gene, which encodes choline acetyltransferase
(ChAT), a major enzyme in ACh synthesis. We recorded responses
to GF-activating stimuli in flies in which we had used a temperature
sensitive allele of cha to reduce the amount of ACh within the CNS.
The chats2 mutants are viable at 18 �C, but they die at the restrictive
temperature of 30 �C due to severely reduced ChAT activity
(Salvaterra & McCaman, 1985; Takagawa & Salvaterra, 1996). The
protein produced from this allele is thermolabile, but the cha mRNA
levels are also reduced in homozygous mutants after 48 h at 30 �C,
which further reduces ChAT activity (Wang et al., 1999). Twenty-eight
degrees C is considered a semipermissive temperature and adults
shifted from 18 �C to 28 �C become paralysed but will move their
legs if agitated. Females heterozygous for shak-B2 but homozygous

Fig. 4. The GF is a cholinergic neuron. Dissected adult nervous systems
stained for LacZ. (A) UAS-lacZ; A307 control preparation showing distinct
staining in the GFs (*) and a few other cells in the brain and ventral nerve cord
including a cell that lies just ventral to each GF (arrowhead). Inset is a higher
power view of a cervical connective through which the labelled GFs can be
easily identified. (B) UAS-lacZ; A307; cha3.3kb-GAL80 preparation. Note the
lack of staining in the GFs but the presence of staining in the small ventral cell
(arrowhead) that is in the position to be a cell body of a giant commissural
interneuron. Inset higher power view of a cervical connective shows the GFs to
be present but unlabelled. Scale bar, 50 lm; 25 lm for insets.

Fig. 3. NMJ function is unaffected by the shak-B2 mutation or expression of
tetanus toxin using the c17 line. (A) Schematic showing the positions of the
stimulating and recording electrodes for either GF or motorneuron stimulation.
(B) Responses in TTM and DLM to a single stimulus, or ten stimuli at
250 Hz, in the brain (GF stimulation) or the thorax (Mn stimulation) from a
shak-B2 ⁄ Y UAS-TNT ⁄ CyO fly. (C) Responses in TTM and DLM to a single
stimulus, or ten stimuli at 250 Hz, in the brain (GF stimulation) or the thorax
(Mn stimulation) from a shak-B2 ⁄ Y c17 ⁄ UAS-TNT fly. In (B) and (C) Mn
stimulation always resulted in a muscle response to every stimulus.
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for the chats2 allele and shifted to 28 �C exhibited normal responses to
GF stimulation in TTM but no responses in DLM due to failure of the
PSI-DLMns synapses (Table 2, Fig. 5B). This is consistent with the
study of Gorczyca & Hall (1984) in which they used temperature-
sensitive alleles of cha to determine that these peripheral synapses
were cholinergic. chats2 females that were not temperature-shifted
showed normal responses in both TTM and DLM (Table 2). This
shows that there is sufficient ChAT activity in these flies for normal
PSI-DLMns transmission even though protein levels are known to be
somewhat reduced at the permissive temperature (Takagawa &
Salvaterra, 1996). Females heterozygous for shak-B2 and chats2 that
were reared at 18 �C, or shifted to 28 �C for 48 h, all showed normal
responses upon GF stimulation (Table 2, Fig. 5A) indicating that the
shift in temperature did not adversely affect synaptic function.

Hemizygous shak-B2 males that were also homozygous for chats2

and had been shifted to 28 �C gave no responses in DLM upon GF
stimulation, as expected, but also gave no responses in TTM (Table 2,
Fig. 5C). The chemical component of the GF-TTMn synapse is
therefore not functional when ACh is reduced within the CNS. Of the
six males of the same genotype, continually reared at 18 �C, three
gave no responses and three gave characteristic long latency,
intermittent, responses in TTM upon GF stimulation with a total of
eight of 30 stimuli (27%) eliciting responses across the six prepara-
tions (Table 2, Fig. 5D). Function was decreased compared to controls
(Table 2) indicating reduced ChaT activity of chats2 homozygotes at
the permissive temperature. This is consistent with data reported by
Salvaterra & McCaman (1985). Shak-B2; chats2 ⁄ MKRS males also
showed responses in TTM at 18 �C and 28 �C indicating that the
temperature shift alone did not reduce synaptic function.

To confirm that the glutamatergic NMJs were unaffected by any
reduction in ACh or change in temperature, we again used thoracic
ganglia stimulation to activate TTMn and the DLMns directly. This
resulted in responses in DLM and TTM irrespective of temperature or
whether flies were homozygous for shak-B2 or chats2 (Mn stim,
Fig. 5). Thus, the abolition of DLM responses in control flies, or TTM
responses in shak-B2 flies, was due to failure of synapses within the
CNS and not the NMJs.

Discussion

We have used shak-B2 mutant flies to investigate the chemical
component of the mixed GF-TTMn synapse within the CNS of
Drosophila. By blocking chemical transmission in shak-B2 mutant
flies using tetanus toxin we can deduce that the chemical component is

functional in the absence of gap junctions. We have shown elsewhere
that the GF is the only pathway from the brain to the TTMn (Allen
et al., 2000) and yet when we remove the gap junctions a residual,
albeit less reliable, pathway exists. Simultaneous removal of the gap
junctions and blockade of cholinergic synapses in shak-B2; chats2

double-mutants blocks the GF-TTMn synapse at the restrictive
temperature. When GAL80 is expressed under the control of a

Table 2. Responses of shak-B2 and chats2 flies at 18 �C and 28 �C

Genotype n Temperature

TTM ± SEM DLM ± SEM

GF stimulation Mn stimulation GF stimulation Mn stimulation

shak-B2 ⁄ +; chats2 ⁄ MKRS 6 28 �C 100 ± 0.0% 100 ± 0.0% 100 ± 0.0% 100 ± 0.0%
shak-B2 ⁄ +; chats2 ⁄ MKRS 6 18 �C 100 ± 0.0% 100 ± 0.0% 100 ± 0.0% 100 ± 0.0%
shak-B2 ⁄ +; chats2 ⁄ chats2 6 28 �C 100 ± 0.0% 100 ± 0.0% No responses 100 ± 0.0%
shak-B2 ⁄ +; chats2 ⁄ chats2 6 18 �C 100 ± 0.0% 100 ± 0.0% 100 ± 0.0% 100 ± 0.0%
shak-B2 ⁄ Y; chats2 ⁄ chats2 6 28 �C No responses 100 ± 0.0% No responses 100 ± 0.0%
shak-B2 ⁄ Y; chats2 ⁄ chats2 6a 18 �C 27 ± 13.2% 100 ± 0.0% No responses 100 ± 0.0%
shak-B2 ⁄ Y; chats2 ⁄ MKRS 6b 28 �C 67 ± 16.0% 100 ± 0.0% No responses 100 ± 0.0%
shak-B2 ⁄ Y; chats2 ⁄ MKRS 6c 18 �C 77 ± 16.7% 100 ± 0.0% No responses 100 ± 0.0%

a3 ⁄ 6; b1 ⁄ 6; c1 ⁄ 6 flies gave no responses in both TTM and DLM. The percentage responses are calculated from all (6 · 5) stimuli given. At 28 �C, shak-B2 ⁄ Y;
chats2 ⁄ chats2 flies gave significantly fewer responses than all other genotypes (Kruskal–Wallis anova, H ¼ 14.94, d.f. ¼ 3, P < 0.01). At 18 �C, shak-B2 ⁄ Y;
chats2 ⁄ chats2 flies gave some responses but significantly fewer than all other genotypes (Kruskal–Wallis anova, H ¼ 11.68, d.f. ¼ 3, P < 0.01).

Fig. 5. The response in the TTM is blocked in shak-B2; chats2 double-mutants
at the restrictive temperature. Traces from the TTM and DLM of individual flies
given five stimuli (1–5) at 1 Hz. (A) shak-B2 ⁄ + chats2 ⁄ MKRS control female
showing WT responses upon GF stimulation (GF stim) at 28 �C. (B) shak-
B2 ⁄ + chats2 ⁄ chats2 female showing a normal response in TTM and a loss of
the DLM response at 28 �C. (C) shak-B2 ⁄ Y; chats2 ⁄ chats2 male showing no
responses in DLM and a loss of responses in TTM at 28 �C. (D) shak-
B2 ⁄ Y; chats2 ⁄ chats2 male showing no responses in DLM but responses in
TTM at 18 �C. In all cases, individuals showed responses in both muscles upon
thoracic stimulation (Mn stim.).Vertical scale bar, 50 mV; horizontal scale bar,
2 ms.
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fragment from the cha promoter it blocks GAL4-mediated expression
of a reporter in GFs. These results indicate that the chemical
component of the GF-TTMn synapse uses ACh as its neurotransmitter.
Although the GFS is the most studied adult neural circuit in

Drosophila, there are several elements of this escape pathway’s
outputs that are poorly understood. For example, the GF also activates
the tibial levator (TLM; Trimarchi & Schneiderman, 1993), the dorsal
ventral flight muscles (DVMs; Tanouye & Wyman, 1980), and
possibly wing elevators (Tanouye & King, 1983; Hammond &
O’Shea, 2007) but the neurons involved in this are unknown. As our
analysis involves stimulating the GF and recording outputs to TTM
and a DLM, the formal possibility still exists that there is a second
parallel, unidentified, polysynaptic pathway from the GF to the TTMn
that is uncovered when gap junctions are removed from the GF in
shak-B2 flies. This is unlikely, however, as several studies in which the
GF-TTMn presynaptic terminal has been perturbed exhibit a range of
longer response latencies, corresponding with the morphological
abnormalities seen (Allen et al., 1999; Allen et al., 2000; God-
enschwege et al., 2002a; Godenschwege et al., 2002b; Godenschwege
et al., 2006). This is consistent with a monosynaptic connection being
weakened rather than ‘switching’ to a polysynaptic pathway. In
addition, shak-B2 flies sometimes give no responses in TTM upon GF
stimulation. If a second pathway existed, it would have to also have to
have elements sensitive to loss of gap junctions formed by Shak-B.
Our interpretation therefore explains the data best. Confirmation of
GF-TTMn being monosynaptic only will require intracellular record-
ings from TTMn.
Several neural circuits have been identified in Drosophila that use

mixed electro-chemical synapses including the GFS (Blagburn et al.,
1999), sensory afferents from the halteres to flight motorneurons
(Trimarchi & Murphey, 1997) and auditory pathways in the
Johnston’s organ (Sivan-Loukianova & Eberl, 2005). The results
for the haltere afferents-to-B1 nicely parallel our results for the
GF-TTMn. Both the haltere afferents onto the B1 motorneuron
(Trimarchi & Murphey, 1997) and the GF-TTMn synapse (this
study) are reduced in efficacy in shak-B2 mutant animals and the
residual response is blocked by cholinergic blockers. Thus both
mixed synapses use ACh as the transmitter and both contain gap
junctions that require Shak-B. Given the range of behavioural
phenotypes altered in shak-B2 mutants, it is unlikely that these will
be the only synapses in the CNS that have these properties.
Electron microscopy and cell biological approaches have shown

that the GF-PSI synapse is also a mixed electro-chemical synapse.
Unlike GF-TTMn, it appears that the chemical component of this
synapse is unable to function on its own as no responses are seen in
shak-B2 mutants (Thomas & Wyman, 1984; Baird et al., 1990; this
study). Although not demonstrated here, the chemical component of
the GF-PSI mixed synapse is likely cholinergic. A recent study has
determined that the Dalpha7 subunit of the nicotinic acetylcholine
receptor (nAChR) is needed for transmission from the PSI to the
DLMns and inputs to the GFs (Fayyazuddin et al., 2006). From the
expression data of Fayyazuddin et al. this subunit seems not to be
present at the GF-PSI or GF-TTMn synapses, however, this is yet to
be determined.
It appears that by changing the properties of the GF during

development the connectivity diagram was altered. We observed
increased spontaneous activity in both TTM and DLM in shak-B2

mutant flies that were expressing TNT in the GFs throughout
development. In contrast, we saw no spontaneous activity in shak-
B2 chats2 males in which the GF-TTMn was blocked acutely in adults.
Blocking chemical and electrical components of the GF may alter the
homeostasis of TTMn and PSI early in development so that they

receive greater input from other (thoracic) inputs. Blocking either of
the components individually, or reduction of either component, has no
noticeable effect. This suggests that chemical transmission from the
GF to TTMn has a role during normal synaptic development. This
dual role for the chemical and electrical components is not unprece-
dented as transient gap junction communication is needed for the
correct development of chemical synapses in the optic lamina (Curtin
et al., 2002). Indeed, activity is now seen as a vital aspect of neural
cell development (Spitzer, 2006).
One developmental question that remains unanswered is whether

the chemical component of the GF-TTMn synapse is stronger in shak-
B2 flies than it is in wild type. It may make a stronger chemical
synapse during development because there are no gap junctions
present. The study of Blagburn et al. (1999) is inconclusive as to
whether there are a greater number of chemical synaptic zones in shak-
B2 flies compared to wild type. This hypothesis could be tested
physiologically by recording from the motor neurons as performed by
Fayyazuddin et al. (2006), or, genetically requiring either dominant
negative expression or temperature sensitive mutations of shak-B to
acutely block gap junctions.
Now that we have a better understanding of this mixed synapse

and can dissect the two components genetically, we can analyse
further the development and plasticity of the synapse. Studies of the
role of activity can take advantage of these data to determine
whether neural activity affects the development of the synapse. And
studies of plasticity of the synapse can be combined with blockade
of activity to assess the normal development of this synapse. Such
analyses should shed light on the development and function of all
mixed synapses.
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