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Abstract

Background and Purpose

Conventional magnetic resonance imaging (MRI) of patients with hemolytic uremic syn-

drome (HUS) and neurological symptoms performed during an epidemic outbreak of

Escherichia coli O104:H4 in Northern Europe has previously shown pathological changes

in only approximately 50% of patients. In contrast, susceptibility-weighted imaging (SWI)

revealed a loss of venous contrast in a large number of patients. We hypothesized that this

observation may be due to an increase in cerebral blood flow (CBF) and aimed to identify a

plausible cause.

Materials and Methods

Baseline 1.5T MRI scans of 36 patients (female, 26; male, 10; mean age, 38.2±19.3 years)

were evaluated. Venous contrast was rated on standard SWI minimum intensity projec-

tions. A prototype four-dimensional (time resolved) magnetic resonance angiography (4D

MRA) assessed cerebral hemodynamics by global time-to-peak (TTP), as a surrogate

marker for CBF. Clinical parameters studied were hemoglobin, hematocrit, creatinine, urea

levels, blood pressure, heart rate, and end-tidal CO2.

Results

SWI venous contrast was abnormally low in 33 of 36 patients. TTP ranged from 3.7 to 10.2

frames (mean, 7.9 ± 1.4). Hemoglobin at the time of MRI (n = 35) was decreased in all
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patients (range, 5.0 to 12.6 g/dL; mean, 8.2 ± 1.4); hematocrit (n = 33) was abnormally low

in all but a single patient (range, 14.3 to 37.2%; mean, 23.7 ± 4.2). Creatinine was abnor-

mally high in 30 of 36 patients (83%) (range, 0.8 to 9.7; mean, 3.7 ± 2.2). SWI venous con-

trast correlated significantly with hemoglobin (r = 0.52, P = 0.0015), hematocrit (r = 0.65, P

< 0.001), and TTP (r = 0.35, P = 0.036). No correlation of SWI with blood pressure, heart

rate, end-tidal CO2, creatinine, and urea level was observed. Findings suggest that the loss

of venous contrast is related to an increase in CBF secondary to severe anemia related to

HUS. SWI contrast of patients with pathological conventional MRI findings was significantly

lower compared to patients with normal MRI (mean SWI score, 1.41 and 2.05, respectively;

P = 0.04). In patients with abnormal conventional MRI, mean TTP (7.45), mean hemoglobin

(7.65), and mean hematocrit (22.0) were lower compared to patients with normal conven-

tional MRI scans (mean TTP = 8.28, mean hemoglobin = 8.63, mean hematocrit = 25.23).

Conclusion

In contrast to conventional MRI, almost all patients showed pathological changes in cere-

bral hemodynamics assessed by SWI and 4D MRA. Loss of venous contrast on SWI is

most likely the result of an increase in CBF and may be related to the acute onset of ane-

mia. Future studies will be needed to assess a possible therapeutic effect of blood transfu-

sions in patients with HUS and neurological symptoms.

Introduction

Hemolytic uremic syndrome (HUS), a severe complication of an infection with enterohemor-
rhagic Escherichia coli (EHEC), is typically observed in children. In contrast, young adults
were mainly affected during an outbreak in 2011 in Northern Europe caused by a highly viru-
lent and resistant strain of Escherichia coli O104:H4 [1–7]. Nearly half of the patients pre-
sented with neurological symptoms including headaches, delirium, cognitive dysfunction,
aphasia, and epileptic seizures [8]. We have previously reported the most common magnetic
resonance imaging (MRI) findings observed in patients infected with Escherichia coli O104:H4
[9]. These included bilateral symmetric signal abnormalities of thalamus, pons, central white
matter, and splenium of corpus callosum on T2-weighted and fluid-attenuated inversion
recovery images. Some lesions were characterized by restricted water diffusion suggestive of
cytotoxic edema [9]. At baseline, approximately 50% of patients with neurological symptoms
had abnormalities by conventional MRI. Findings were reversible in 81% of cases [9] and only
three patients of a multi-center cohort suffered from relevant neurological deficits (cortical
blindness, aphasia, cognitive deficits) eight months after clinical presentation [8].

In addition to standard anatomical sequences, susceptibility-weighted imaging (SWI) and
four-dimensional (time resolved) magnetic resonance angiography (4D MRA) were performed
at our center. The rationale to include SWI was the detection of hemorrhagic brain lesions
because anecdotal autopsy data suggests that parenchymal hemorrhage (i.e., petechial hemor-
rhage, hemorrhagic infarcts) and subdural hematomas are a common finding in HUS [10]. In
addition to its high sensitivity to hemorrhage and calcification, SWI is a blood oxygen level
dependent (BOLD) technique, which allows an assessment of the venous oxygenation level. In
our cohort, subdural hematomas, large parenchymal lesions or hemorrhagic infarcts were not
present and only two patients showed small petechial hemorrhages [9]. However, SWI maps
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revealed a loss of venous contrast in a large number of neurologically impaired patients.
Because many of these patients with HUS and severe neurological symptoms had normal MRI
findings, we hypothesized that the low venous contrast (i.e., high venous oxygenation level)
may be related to an impaired cerebral oxygen metabolism. However, many variables may
influence the venous contrast on SWI. First, an increase in cerebral blood flow (CBF) causes a
decreased venous contrast on SWI (Fig 1). The higher inflow of oxygenated blood to the brain
results in a lower oxygen extraction fraction (OEF) and consequently lower deoxyhemoglobin
concentrations. As a result, the blood oxygen level dependent signal increases. An increase in
CBF may also be caused by low hematocrit levels [11] or etCO2 levels above 30–35 mmHg dur-
ing general anesthesia with propofol in free breathing patients [12]. Apart from this, narcotic

Fig 1. Schematic depicting factors which may influence the venous contrast on SWI. Note: CMRO2 = cerebral metabolic rate of oxygen,

Hb = hemoglobin, Hk = hematocrit, OEF = oxygen extraction fraction, CBF = cerebral blood flow, TTP = time-to-peak, etCO2 = end-tidal CO2, BOLD = blood

oxygen level dependent, SWI = susceptibility-weighted imaging, n.s. = not significant.

doi:10.1371/journal.pone.0164863.g001
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agents may directly influence the cerebral metabolic rate of oxygen (CMRO2) but also increase
(e.g., barbiturates) or decrease (e.g., halothane, isoflurane) CBF [13]. Therefore, 4D MRA was
included in the imaging protocol to assess cerebral hemodynamics and at the same time avoid
the administration of a gadolinium-based contrast agent in our patients with severe
impairment of renal function.

The purpose of our study was to identify a possible cause for the loss of venous contrast on
SWI in neurologically symptomatic patients with HUS due to an infection with Escherichia
coli O104:H4. We hypothesized that the loss of venous contrast on SWI is caused by an
increased CBF.

Materials and Methods

Patients

During a local outbreak of EHEC O104:H4 in Germany between May and August 2011,
patients with HUS and neurological symptoms received MRI scans of the brain to rule out
infarction and bleeding. The MRI protocol was designed prospectively and was used for all
patients studied. The data collection followed the guidelines of the Hamburg Board of Physi-
cians in compliance with the Declaration of Helsinki and was approved by its Ethics Commit-
tee. All participants provided their written informed consent for participation in the study and
the Ethics Committee of the Hamburg Board of Physicians approved the consent procedure.

The diagnosis of EHEC was established based on the following criteria: bloody diarrhea,
vomiting or bowel cramps, and/or microbiological identification of Shiga-toxin-producing
Escherichia coli. HUS was defined as thrombocytopenia (platelet count< 150 000/cm3), hemo-
lytic anemia, and acute renal dysfunction (increase in serum creatinine level> 50%).

This study focused on advanced MRI sequences, specifically SWI and 4D MRA, in patients
with HUS and neurological symptoms. We have previously reported conventional MRI in a
multi-center cohort study which included some of our patients [9]. Neurological symptoms
were defined in the same fashion as reported previously [8]. All patients with neurological
symptom were scanned by MRI at one point during their stay in our hospital. Due to the acute
situation during the outbreak, the time of MR with respect to onset of clinical symptoms varied
(Table 1). MRI was unavailable for neurologically unobtrusive patients suffering from an infec-
tion with EHEC O104:H4 due to capacity limitations in view of the very large number of
infected patients at our site. Of 51 patients who had an MRI performed at our hospital, three
patients (ID 15, 20, 36) were excluded from the study because an infection with EHEC O104:
H4 could not be confirmed later. SWI was not acquired in five patients. An additional 4
patients did not have 4D MRI performed and in another three patients 4D MRA could not be
analyzed quantitatively due to motion artifacts. Consequently, 36 patients (female, 26; male,
10; mean age 38.2±19.3 years) were included in the final analysis (Table 1). Of these 36
patients, 22 patients had an EEG performed.

SWI was added to the study protocol for the purpose of identifying possible cerebral micro-
hemorrhages and 4D MRA was added to the study protocol to assess global cerebral hemody-
namics. Unfortunately, perfusion arterial spin labeling MRI was not available on our scanner at
the time of the local outbreak of EHEC O104:H4 and we refrained from administering a gadoli-
num-based contrast agent because of severe renal dysfunction in our patients.

Anesthesia

MRI was performed under general anesthesia in 15 patients (Table 1, asterisk). General anes-
thesia was initiated on the intensive care unit in all cases and continued by continuous infusion
of sulfentanil and propofol. During MRI, sedation was considered insufficient when increases
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Table 1. Patient demographics, MRI findings and results of SWI and 4D MRA.

ID Sex Age

[years]

Reason for exclusion

from data analysis

First neurological

symptom to MRI [days]

Signal changes on

MRI (0–6)

etCO2

[mmHg]

SWI venous contrast

[a.u.] (see Table 2)

TTP

[frames]

1* m 55.2 8 7 34 1 9.00

2* f 56.4 3 6 31 1 5.17

3* f 67.2 9 6 31 1 3.73

4* m 32.1 4 7 32 1 8.26

5* f 56.2 5 1 28 1 8.22

6* f 39.0 6 6 26 1 9.54

7* f 21.3 0 1 30 4 8.68

8* f 29.8 3 6 39 2 8.07

9* m 75.6 7 0 31 3 10.18

10 m 12.2 2 6 n/a 1 5.39

11 f 10.6 15 0 n/a 3 6.60

12* m 5.3 1 6 n/a 1 7.07

13 f 25.8 2 6 n/a 1 5.31

14* f 20.5 2 6 40 1 6.65

16* f 31.9 7 6 29 1 9.00

17 f 40.9 0 0 n/a 2 8.43

18 m 66.5 2 0 n/a 3 8.94

19* f 36.5 5 6 18 2 9.36

21 f 22.4 18 0 n/a 2 7.92

22 f 41.7 3 6 n/a 2 5.86

27* f 65.3 7 0 33 1 8.64

28 f 31.1 8 7 n/a 2 8.66

31 f 60.9 9 0 n/a 1 9.06

32 f 39.3 9 0 n/a 1 8.80

34* f 5.4 5 0 n/a 1 7.09

37 m 44.2 8 0 n/a 4 8.87

38 m 70.0 0 0 n/a 4 9.64

39 f 40.7 8 0 n/a 2 7.60

41 m 28.5 13 0 n/a 1 7.83

42 m 25.3 8 0 n/a 1 7.56

43 m 26.1 9 0 n/a 1 7.73

45 f 29.8 17 0 n/a 1 8.78

46 m 53.9 9 0 n/a 2 8.42

47 f 27.1 14 0 n/a 2 8.22

48 m 66.0 5 0 n/a 3 8.81

50 f 13.4 22 0 n/a 2 6.76

Patients excluded (below)

15 f 71.0 no EHEC

20 m 67.2 no EHEC

23 f 26.4 no 4D MRA 3 0 n/a 2 n/a

24 m 38.3 no 4D MRA 1 0 n/a 1 n/a

25 f 26.2 no SWI/4D MRA 0 n/a n/a n/a n/a

26 m 63.0 no SWI/4D MRA 2 0 n/a n/a n/a

29 f 35.0 no SWI/4D MRA 19 7 n/a n/a n/a

30* m 37.5 no 4D MRA 1 6 39 3 n/a

33 m 75.0 4D MRA artifacts 3 0 n/a 2 n/a

(Continued )
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in heart rate or blood pressure were observed, or the patient was fighting the respirator. In such
cases, a bolus of 40 mg propofol was administered and the infusion rate was increased, starting
with sulfentanil at an initial dose of 30 μg/h and propofol at 3mg/kg body weight per hour until
a stable sedation was achieved. Patients were ventilated via endotracheal tubes with a tidal vol-
ume of 6–8 ml/kg body weight and the frequency was adjusted to reach an expiratory CO2 of
35 mm Hg or less. Hemodynamics were stabilized with continuous infusion of norepinephrine
as needed to reach a mean arterial pressure of 70 mmHg.

Clinical chemistry

Hemoglobin levels (normal range, 14–17 g/dL) at the time of MRI were available for 35 of 36
patients and hematocrit (normal range, 36–48%) was available for 34 of 36 patients. Both
parameters were retrospectively collected from patient charts. Special care was taken to select
the closest time point to the MRI scan (3–5 hours for the patients scanned under general anes-
thesia, max. 24 hours for all other patients).

In addition, blood pressure [mm Hg] and heart rate (HR) [bpm] were available for 16
patients. Thirteen of those patients were scanned under general anesthesia. Therefore, etCO2

[mm Hg] was also recorded during MRI.

Imaging parameters

Since all patients presented with renal failure, a gadolinium-based contrast agent was not used.
Traditional arterial spin labeling perfusion measurement techniques were not available on the
specific scanner during the time of the outbreak. Therefore, an available alternative arterial
spin labeling technique, a prototype 4D non-contrast enhanced MRA sequence [14], was
added to the protocol. This method is optimized to assess cerebral hemodynamics.

All MRI scans were performed on a 1.5T scanner (Magnetom Avanto, Siemens Healthcare
GmbH, Erlangen, Germany). The scanner was also equipped with capabilities to monitor

Table 1. (Continued)

ID Sex Age

[years]

Reason for exclusion

from data analysis

First neurological

symptom to MRI [days]

Signal changes on

MRI (0–6)

etCO2

[mmHg]

SWI venous contrast

[a.u.] (see Table 2)

TTP

[frames]

35 f 67.1 no 4D MRA 10 0 n/a 1 n/a

36 m 31.5 no EHEC

40 f 80.0 4D MRA artifacts n/a 7 n/a 2 n/a

44 f 11.8 4D MRA artifacts n/a 0 n/a 1 n/a

49 f 14.3 no SWI/4D MRA n/a 0 n/a n/a n/a

51 f 23.0 no SWI n/a 0 n/a n/a 7.03

Note

* = patients scanned under general anesthesia, m = male, f = female, etCO2 = end-tidal CO2, SWI = susceptibility weighted imaging, a.u. = arbitrary unit,

TTP = time to peak, signal changes on MRI: 0 –none, 1 –thalamus, 2 –pons, 3 –semiovale, 4 –corpus callosum, 6 –combination, 7 –other.

doi:10.1371/journal.pone.0164863.t001

Table 2. Scoring of SWI venous contrast.

Score Visibility of deep venous vasculature Visibility of cortical veins

1 No No

2 No Medium

3 Medium Good

4 Good Good

doi:10.1371/journal.pone.0164863.t002
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patients and to perform general anesthesia. The imaging protocol consisted of standard ana-
tomical sequences, as well as SWI and 4D MRA. SWI was performed using the following
parameters: echo time/repetition time/flip angle = 40 ms/56 ms/20°, matrix 320×260, slice
thickness 2 mm. 4D MRA was performed as follows: echo time/repetition time/flip angle = 1.8
ms/60 ms/25°, slice thickness 1.5 mm, matrix 176×176, 12 frames. The global time-to-peak
(TTP) of the inflowing labeled spins was calculated (see below) to assess the global cerebral
hemodynamics. TTP measures blood flow velocity and is inversely correlated with cerebral
blood flow (CBF).

Hemodynamic analysis of non-contrast enhanced 4D MRA image

sequences

The non-contrast enhanced 4D MRA image sequence [14] was used as basis for an analysis of
the macro-vascular blood flow properties.

For data analysis, each 4D MRA image series was first reduced to a 3D temporal maximum
intensity projection by calculating the maximal intensity over time for each voxel. This tempo-
ral projection leads to an advanced representation of the cerebrovascular system since it does
not depend on the bolus arrival time. This is especially beneficial for an automatic segmenta-
tion of the cerebrovascular network, which was performed using a multi-step segmentation
framework described previously [15,16]. The resulting vessel segmentation was used as basis
for the analysis of the signal intensity curves of the non-contrast enhanced 4D MRA image
sequences. For this purpose, 250 signal intensity curves were randomly selected from each
non-contrast enhanced 4D MRA image sequence, whereas only curves of voxels part of the
cerebrovascular segmentation were considered for this purpose. These 250 curves were used
for the generation of a mean reference curve using an adapted version of the reference-based
linear curve fit approach [17]. In contrast to the original approach, an iterative method was
used in this work to calculate an unbiased reference curve. Therefore, a mean linear transfor-
mation, including shifting and scaling of time dimension and signal magnitude dimension, was
calculated by adapting all n-1 curves to each curve using curve fitting principles. A B-spline
interpolation was used to enable an estimation of the signal intensity curves between the dis-
crete sample points. After this, the mean transformation was calculated for each curve by aver-
aging the inverted curve fit parameters. After transforming each curve using the corresponding
calculated mean transformation, a B-Spline approximation was used to extract the final refer-
ence curve based on the point cloud consisting of the transformed discrete sample points. The
reference curve exhibits a smooth shape, which allows the calculation of global TTP for statisti-
cal analysis. Finally, the extracted reference curve can also be used to estimate the TTP for each
voxel included in the cerebrovascular segmentation by fitting the reference curve to each curve
and transforming the TTP according to the transformation parameters. This allows generating
4D blood flow visualizations using the method described previously [18], which allows an intu-
itive and fast rating of the systemic blood flow situation.

Data evaluation

The venous contrast on SWI was scored visually using the minimum intensity projection SWI
and a modified scoring system described previously [12]. Venous contrast scores ranged from
1 to 4; 1 representing very low contrast (no veins visible) and 4 representing high contrast
(good visibility of veins) (Table 2, Fig 2).
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Statistics

SWI venous contrast of all patients was correlated using Pearson correlation coefficient (r) to
TTP, hemoglobin, hematocrit, creatinine and urea. In a subset of patients based on availability
of data, SWI venous contrast was correlated to etCO2, blood pressure and heart rate. Further-
more, TTP was correlated to hemoglobin and hematocrit.

Two-tailed Mann-Whitney U test was used for group comparison of patients scanned with
and without anesthesia with respect to hemoglobin concentration, SWI venous contrast, and
TTP. In addition, TTP was tested for a possible correlation with etCO2 in patients scanned
under anesthesia.

Further, a group comparison was performed for patients with normal and abnormal MRI
by conventional imaging with respect to hemoglobin concentration, SWI venous contrast, and
TTP.

P values below 0.05, two-tailed, were considered statistically significant.

Results

Clinical findings

Patients initially presented with encephalopathy (17 patients), seizures (7 patients), aphasia (5
patients), headaches (3 patients), oculomotor dysfunction and myoclonus (2 patients each).
EEG was abnormal in 18 of 22 patients with available EEG (S1 Table). We did not observe
focal changes in this cohort and only one patient presented with epileptiform discharges. Most
patients (12 of 18 patients with pathological MRI) showed general EEG changes.

Hemoglobin, blood pressure, heart rate, creatinine, urea levels, and

etCO2

Hemoglobin levels were decreased in all patients with available data at the time of MRI
(n = 35), ranging from 5.0 to 12.6 g/dL (mean, 8.2±1.4). Also, hematocrit (n = 33) was abnor-
mally low in all but a single patient (range, 14.3 to 37.2%; mean 23.7±4.2). Patient 21 did not
have blood work performed on the day of MRI; therefore, hemoglobin and hematocrit on
admission to hospital are given (S2 Table). Systolic and diastolic blood pressure of 16 anesthe-
tized patients ranged from 98 to 194 mmHg (mean, 138±25), and from 47 to 89 mmHg (mean,
69±12), respectively. Mean heart rate ranged from 61 to 105 bpm (mean, 83±13). Creatinine

Fig 2. Rating scale for SWI venous contrast. 1 –no veins visualized, 2 –medium contrast of cortical veins (arrow), no deep veins, 3 –good

contrast of cortical veins, medium contrast of deep veins (arrows), 4 –relatively preserved venous contrast (arrows).

doi:10.1371/journal.pone.0164863.g002
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was abnormally high in 30 of 36 patients (83%) ranging from 0.8 to 9.7 (mean, 3.7±2.2). Urea
levels were increased in 28 of 36 patients (78%) ranging from 7.0 to 132.0 (mean, 49.3±32.6).
(S2 Table). Based on 13 anesthetized patients, etCO2 during the MRI scans ranged from 18 to
40 mmHg (mean, 30.9±5.5) with only two patients showing increased etCO2 levels above 35
mmHg (Table 1).

MR imaging

Conventional MRI was normal in 19 of 36 patients (53%) with neurological symptoms. Results
of conventional MRI findings are given in Table 1 (for a more detailed evaluation see [9]).

SWI did not reveal hemorrhagic lesions in any of our patients. However, venous contrast on
SWI was low in 33/36 patients (91.7%) with 19 patients (52.8%) showing a complete loss of
venous contrast (Table 1). Cortical veins were visible in 10 patients only (27.8%). Using 4D
MRA, global TTP ranged from 3.7 to 10.2 frames (mean, 7.9±1.4) with a temporal resolution
of 60 ms per frame (Table 1).

Statistics

We identified a significant correlation of SWI venous contrast score (1–4) with hemoglobin
(r = 0.52, P = 0.0015), and TTP (r = 0.35, P = 0.036) (Fig 3). Correlations of SWI venous con-
trast with etCO2, systolic and diastolic blood pressure, heart rate, creatinine, and urea levels
were not statistically significant. Patients with good venous contrast on SWI show longer TTP
values (Fig 4, top row), while patients with complete loss of venous contrast revealed shorter
TTP values (Fig 4, bottom row). In addition, TTP correlated significantly with hemoglobin lev-
els (r = 0.35, P = 0.037) and hematocrit (r = 0.36, P = 0.038) (Fig 3). Correlations of TTP with
etCO2 were not statistically significant.

Mean TTP of patients scanned with anesthesia was 8.04 compared to 7.80 in patients with-
out anesthesia. Similarly, hemoglobin of anesthetized patients was lower with a mean TTP of
7.72 compared to 8.41. However, there was no statistically significant difference between both
groups for TTP, SWI venous contrast, and hemoglobin levels.

SWI contrast of patients with pathological conventional MRI findings was significantly
lower compared to patients with normal MRI (mean SWI score, 1.41 and 2.05, respectively;
P = 0.04). In patients with abnormal conventional MRI, mean TTP (7.45), mean hemoglobin
(7.65), and mean hematocrit (22.0) were lower compared to patients with normal conventional
MRI scans (mean TTP = 8.28, mean hemoglobin = 8.63, mean hematocrit = 25.23). This was
statistically significant for hemoglobin (P = 0.03) and hematocrit (P = 0.02), but not for TTP
(P = 0.09).

Discussion

The evaluation of advanced MRI techniques in patients with HUS and neurological symptoms
due to an infection with Escherichia coli O104:H4 showed low SWI venous contrast in nearly
all patients (91.7%) Conversely, conventional MRI was abnormal in only 53% of patients. At
the time of MRI, hemoglobin levels were decreased in 35 patients and hematocrit was low in 33
of 34 patients due to hemolytic anemia. Venous contrast on SWI correlated significantly with
hemoglobin, hematocrit and TTP. Similarly, TTP showed a significant correlation to hemoglo-
bin and hematocrit. In addition, a comparison of patients with and without brain lesions on
conventional MRI resulted in significantly different values for venous contrast on SWI, hemo-
globin levels and hematocrit, but not for TTP. Generally, venous contrast on SWI, hemoglobin
and hematocrit were lower in patients with pathological findings on conventional MRI com-
pared to patients without brain lesions. It is important to note that venous contrast on SWI did

Cerebral Hemodynamics in Patients with Hemolytic Uremic Syndrome
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Fig 3. Results of statistical analysis. SWI venous contrast correlated significantly with hemoglobin, hematocrit, and TTP. TTP correlated

significantly with hemoglobin and hematocrit.

doi:10.1371/journal.pone.0164863.g003
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not correlate with etCO2 in patients scanned under general anesthesia. Also, etCO2 did not cor-
relate with TTP values in this subgroup.

Our data suggest that the presence of anemia in our patients was associated with a compen-
satory increase in CBF to achieve an increase in oxygen supply to the brain [19]. In situations
when this mechanism is able to compensate for low hemoglobin levels in the blood, both,
CMRO2 and OEF, should remain stable. Since hemoglobin supplied to the brain was low and
an increased CBF likely results in a faster transportation of deoxyhemoglobin away from the
brain, deoxyhemoglobin concentration is likely decreased. This scenario could explain the low
venous contrast on SWI observed in our patient cohort. It also shows that the loss of venous
contrast on SWI is not a specific marker of an OEF change, unless hemoglobin levels are nor-
mal. Fig 1 shows that hemoglobin levels and CBF both influence the OEF. Based on our data, it
is difficult to establish the impact of each parameter because OEF and CMRO2 were not mea-
sured. However, it is known that compensatory mechanisms to maintain CMRO2 may be
exhausted at very low hemoglobin levels. To some extent this is related to the fact that a reduc-
tion in blood transit time limits the oxygen extraction of the brain because the surface area of
capillaries cannot be increased any more. This relationship is termed the Buxton–Frank diffu-
sion-limited model of oxygen delivery [13]. We have tried to explore this further by comparing
patients with normal and abnormal conventional MRI scans and found that venous contrast
on SWI, hemoglobin levels and hematocrit were significantly lower in patients with abnormal
conventional MRI. In contrast, TTP was not significantly different, although TTP was slightly

Fig 4. Patient examples. (A) SWI minimum intensity projection image, (B) 4D visualization of local inflow time-to-peak (TTP) and (C) global

inflow curve depicting the global TTP. The first patient (top row) with good SWI venous contrast is a 21-year-old female (P07; SWI score, 4; etCO2

= 30 mmHg) showing shorter TTP by 4D MRA. Patient 2 (bottom row), a 20-year-old female (P14; SWI score, 1; etCO2 = 40 mmHg), shows

decreased venous contrast on SWI and prolonged TTP. Note: a.u. = arbitrary units.

doi:10.1371/journal.pone.0164863.g004
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lower in patients with abnormal MRI. It can therefore be hypothesized that in patients with
pathological findings on conventional MRI, the increase in cerebral blood flow was not enough
to compensate for the low oxygen delivery to the brain causing neurological symptoms. Further
studies will be needed for confirmation.

Our conclusion that anemia triggered a compensatory CBF increase is supported by the
finding that etCO2 did not correlate with TTP values, which makes it unlikely that the loss of
venous contrast on SWI was solely related to hypercapnia in patients scanned under general
anesthesia. Hypercapnia with etCO2 levels above 30 to 35 mmHg [20] may cause loss of venous
contrast on SWI in free breathing patients under sedation with propofol via an increase in CBF
[12]. In our patients, etCO2 levels were below 35 mmHg in all but two patients.

Also, we did not identify a significant difference between patients scanned with and without
anesthesia for SWI venous contrast and TTP. Therefore, a loss of venous contrast solely due to
the application of narcotics (e.g., barbiturates, halothane, isoflurane [13]) and a consequent
reduction of CMRO2 is unlikely. EEG changes can be the result of decreased brain activity, as
previously reported in an experimental setting of anemia in rabbits [21]. The authors of the
article measured increased CBF and oxygen extraction with increasing hemodilution/anemia,
which supports the conclusion that the CBF increase observed in our patients is related to the
underlying anemia. The authors further discuss that the increase in CBF only partially com-
pensates the low arterial oxygen content because they observed a decrease in CMRO2 and
abnormal findings in EEG at very high levels of hemodilution. Unfortunately, based on our
data, we cannot conclude that EEG abnormalities or decreased levels of consciousness in our
patients are a direct result of anemia and HUS because CMRO2 was not directly measured.
However, a study of patients with subarachnoid hemorrhage and anemia who were treated
with red blood cell transfusions observed improved oxygen delivery to the brain without signif-
icantly decreasing CBF [22]. Many of our patients did not have any co-morbidity, especially
cardiovascular diseases or risk profile. Consequently, a restrictive transfusion regime was
applied, and packed red blood cells were only given when physiological transfusion triggers
were observed. Our data are not sufficient enough to conclude that neurological symptoms
related to HUS may be considered as transfusion trigger in patients with severe anemia. This
would be an interesting hypothesis for future studies. However, it has to be considered that a
direct toxic effect of Shiga-toxin and a toxicity due to uremia may be present as well. More
recently, disease severity and neurological involvement in patients with HUS due to an infec-
tion with EHEC has been linked to pathological levels of several cytokines, such as soluble TNF
receptor 1, tissue inhibitor of metalloproteinase-1, angiopoietin 1 and 2 [23–25]. More specifi-
cally, angiopoietin 2 was reported to be significantly increased in patients with encephalopathy
related to HUS but not in patients without encephalopathy [26]. Angiopoietin 2 is able to
induce blood brain barrier breakdown. One study reported a correlation between levels of
serum tau protein and MRI findings [27], suggesting that serum tau protein can assess disease
severity in this patient cohort. Further studies will be needed to clarify the influence of cyto-
kines, hemoglobin and hematocrit on encephalopathy and MRI findings in patients with HUS.

Also, it needs to be asserted that the finding of loss of venous contrast on SWI is not specific
to an infection with enterohemorrhagic Escherichia coli O104:H4 but has also been described
in patients with sickle cell disease [28] and multiple sclerosis [29].

Some limitations of the study need to be addressed. Although the study imaging protocols
were designed in a prospective fashion, inclusion of patients into the study was related to clini-
cal demands and availably of the scanner during the outbreak. This did not allow for scanning
of HUS patients without neurological symptoms. Unfortunately, perfusion sensitive arterial
spin labeling and quantitative susceptibility mapping MRI methods were not available at our

Cerebral Hemodynamics in Patients with Hemolytic Uremic Syndrome

PLOS ONE | DOI:10.1371/journal.pone.0164863 November 1, 2016 12 / 15



hospital at the time of data collection. However, both methods are necessary for a quantitative
MRI based calculation of CMRO2 [30–32].

Conclusion

In contrast to conventional MRI which was abnormal in only about half of the patients with
HUS and neurological symptoms, almost all patients showed changes in cerebral hemodynam-
ics assessed by SWI and 4D MRA. Loss of venous contrast on SWI is most likely the result of
an increase in CBF due to acute onset of anemia. The fact that hemoglobin was lower in
patients with brain lesions compared to patients with normal conventional MRI suggests a
relationship of clinical findings to the severity of anemia. Future studies will be needed to assess
a possible therapeutic effect of blood transfusions in patients with HUS and neurological
symptoms.

Supporting Information

S1 Table. Neurological characterizationof patients included and excluded from the study.
Note: n/a = not available; Initial neurological symptom: 0 –none, 1 –seizure, 2 –encephalopa-
thy, 3 –aphasia, 4 –headaches, 5 –oculomotor symptoms, 6 –myoclonus; EEG changes: 0 –
none, 1 –general changes, 2 –epileptiform discharges, 3 –focal changes, 4 –combination of
changes; Encephalopathy, aphasia, paresis, cranial nerve deficits and apraxia: 0 –none, 1 –dis-
crete, 2 –severe; Headache, seizures, myoclonus, and other symptoms: 0 –abscent, 1 –present.
(XLS)

S2 Table. Clinical parameters including reference values.Note: f = female, m = male, n/
a = not available, � = parameters obtained at the time of MRI were not available; values at pre-
sentation to the hospital are given (not included in the statistical analysis).
(XLS)
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