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ABSTRACT: Bone tissue engineering (BTE) utilizing biomaterial
scaffolds and humanmesenchymal stem cells (hMSCs) is a promising
approach for the treatment of bone defects. The quality of engineered
tissue is crucially affected by numerous parameters including cell
density and the oxygen supply. In this study, a novel oxygen-imaging
sensor was introduced to monitor the oxygen distribution in three
dimensional (3D) scaffolds in order to analyze a new cell-seeding
strategy. Immortalized hMSCs, pre-cultured in a monolayer for 30–
40% or 70–80% confluence, were used to seed demineralized bone
matrix (DBM) scaffolds. Real-time measurements of oxygen
consumption in vitro were simultaneously performed by the novel
planar sensor and a conventional needle-type sensor over 24 h.
Recorded oxygen maps of the novel planar sensor revealed that
scaffolds, seeded with hMSCs harvested at lower densities (30–40%
confluence), exhibited rapid exponential oxygen consumption profile.
In contrast, harvesting cells at higher densities (70–80% confluence)
resulted in a very slow, almost linear, oxygen decrease due to gradual
achieving the stationary growth phase. In conclusion, it could be
shown that not only the seeding density on a scaffold, but also the cell
density at the time point of harvest is of major importance for BTE.
The new cell seeding strategy of harvested MSCs at low density during
its log phase could be a useful strategy for an early in vivo implantation
of cell-seeded scaffolds after a shorter in vitro culture period.
Furthermore, the novel oxygen imaging sensor enables a continuous,

two-dimensional, quick and convenient to handle oxygen mapping for
the development and optimization of tissue engineered scaffolds.
Biotechnol. Bioeng. 2017;114: 894–902.
� 2016 The Authors. Biotechnology and Bioengineering Published by
Wiley Periodicals Inc.
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Introduction

Optimal treatment of bone fractures and bone diseases is of pivotal
importance in clinical-experimental research (Ceccarelli et al.,
2013). To date, bone replacement grafts are seen as the gold
standard and have an established role in the treatment of various
bone diseases like tumor resections, traumatic bone loss, hereditary
bone diseases, and osteoporotic fractures (Dimitriou et al., 2011;
Elsalanty and Genecov, 2009; Fayaz et al., 2011; Korompilias et al.,
2011; Oryan et al., 2014; Pederson and Person, 2007). The latter are
most alarming since they cause severe clinical problems due to their
high frequency of occurrence (Hernlund et al., 2013). However, the
use of bone replacement grafts is limited due to the availability
of suitable donor material and the high incidence of donor-
site-morbidity (Ahlmann et al., 2002; Dimitriou et al., 2011). A
promising alternative is the in vitro engineering of bone
graft substitutes (Dimitriou et al., 2011). Cells with osteogenic
potential, as for example hMSC, are cultivated in three-dimensional
scaffolds, mimicking a basic bone environment for cell adhesion,
migration, proliferation, and differentiation, prior to their
therapeutic application (Ceccarelli et al., 2013).

However, the clinical application of engineered bone tissue is still
in its early days and rather limited. One of the major concerns
hindering development for wide-spread use, is a missing standard
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for culturing and harvesting hMSC before transplantation
(Colter et al., 2000; Kim et al., 2014; Neuhuber et al., 2008; Polzer
et al., 2014). Different culture conditions, such as varying densities
of cells, can affect the quality of the engineered graft and influence
growth kinetics and furthermore gene expression pattern (Colter
et al., 2000; Neuhuber et al., 2008). Therefore, it is necessary to
investigate and determine the optimal conditions for culturing and
harvesting (Kim et al., 2014). Furthermore, it is well-known that
variation in oxygen levels throughout the 3D scaffold significantly
influences tissue formation (Malladi et al., 2006; Radisic et al., 2006;
Volkmer et al., 2008). Scaffolds, longer than 5mm in size, show
steep oxygen gradients ranging from almost hypoxic centers to
adequate oxygen levels at peripheral regions (Volkmer et al., 2008,
2010, 2012). This in turn results not only in a heterogeneous cell
distribution, oxidative stress, and metabolic reprogramming of the
engineered tissue but furthermore in a reduced or completely
disappeared osteogenic potential at the inner region of the scaffold
(Benjamin et al., 2013; Malladi et al., 2006). To circumvent such a
characteristic outcome, one has to constantly monitor the oxygen
levels and supply oxygen if required (Volkmer et al., 2008; Yeatts
et al., 2013). There are several methods available for oxygen
measuring, which are either based on microsensors or microplates
(Janssen et al., 2010; Volkmer et al., 2008). Microsensors are
invasive and probe the oxygen concentration only locally (e.g.,
needle type sensors), while microplates only probe the oxygen
concentration of the surrounding environment.
To monitor 2D or even 3D of oxygen level variations within a

scaffold, a novel, planar oxygen imaging device offers the possibility
to not only visualize oxygen distribution across a whole scaffold but
also monitor oxygen changes over time (Tschiersch et al., 2011,
2012). To date, this novel method is applied in several different
fields, including neurosurgery, plastic surgery, and physiological
research (Hofmann et al., 2013; Meier et al., 2012; Ochs et al., 2014;
Woertgen et al., 2009). In this study, we have adapted and utilized
the novel oxygen imaging method to investigate oxygen distribution
in cell-seeded 3D scaffolds allowing the characterization of
modified cell-seeding strategies for BTE. In this context, we
analyzed the oxygen consumption of DBM scaffold cultures seeded
with cells from different confluences at the point of harvest.

Materials and Methods

Cell Culture

Immortalized human mesenchymal stem cell line hMSC-SCP-1
(Bocker et al., 2008) were cultured in nutrition medium
consisting of alpha minimal essential medium (aMEM;
Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine
serum (FBS; Sigma–Aldrich, St. Louis, MO) and 40 IU/mL
penicillin/streptomycin (PAA Laboratories GmbH, Pasching,
Austria). Cells were incubated in a humidified atmosphere of
95% air and 5% carbon dioxide (CO2) at 37 �C. The medium was
changed twice a week. For the experiments, MSCs were plated in
cell culture flasks (Nunc-Thermo Fisher Scientific, Waltham,
MA) at a density of 6.7� 103 cells/cm2 (equal to 5� 105 cells per
T75 flask) to achieve a final 70–80% confluence and 2.2� 103

cells/cm2 (equal to 5� 105 cells per T225 flask) to get a final

30–40% confluence at the time of harvest. Cells were cultured for
about 2 days until they reached target confluence.

3D Scaffold Culture

Demineralized bone matrix (DBM; Tutogen, Neunkirchen,
Germany) with 5mm height and 9mm diameter was used as 3D
constructs. Before cell seeding, DBM scaffolds were centrifuged at
500g in nutrition medium to remove air bubbles within the
scaffolds. This procedure was repeated several times until the
medium did not change its color indicating a constant pH-value.
The DBM scaffold was seeded statically with hMSC-SCP-1 cells

harvested either at low confluence (30–40%, population L), or at
high confluence (70–80%, population H). Cells were washed twice
with phosphate buffered saline (PBS), trypsinized with 1� Trypsin/
EDTA (PAA Laboratories GmbH), neutralized with nutrition
medium and centrifuged at 500g for 5 min. The pellets were
resuspended with a concentration of either 5� 105 or 1� 106 cells
per 500mL of aMEM and pipetted on the top of the DBM scaffold
situated in a 48-well dish (Nunc-Thermo Scientific). After 10min,
scaffolds were turned three times and twice after 15min of
incubation at 37 �C, and the flow out cell suspensionwas re-pipetted
onto the scaffold at each time. Thereafter, the cell-seeded constructs
were transferred into 24-well plates and cultured with 1mL
nutrition media per well for 24 h at 95% air and 5% CO2 at 37 �C.

Oxygen Imaging Sensor

The novel oxygen imaging device (VisiSens; PreSens, Regensburg,
Germany) consists of a compact fluorescence microscope detector
unit (DU 01) and an optical sensor foil (SF-RPSu4). The system is
based on a fluorescence quenching technique. The optical sensor
foil includes a reference dye and an indicator dye, which is sensitive
to oxygen. Interactions of oxygen molecules with the indicator dye
are causing quenching of the fluorescence signal. Consequently, the
fluorescence signal of the indicator dye decreases when oxygen in
the probe increases. The reference dye remains unaffected. For the
oxygen measurement, both dyes were excited by a blue LED light
source. Their emission spectra differ, the indicator dye emits in the
red and the reference dye in the green spectrum. Both signals are
captured within a single RGB image and relevant oxygen
concentrations are computed from the ratio between the red and
green channels (considering a calibration function derived from
exposure of the sensor to a known oxygen concentration). The foils
are flexible and based on a transparent polyester support, thus they
can be cut to any desired size to fit the experimental requirements. A
non-transparent optical isolation layer above prevents cross-talk by
optical interferences, such as sample auto-fluorescence or ambient
light. If optical interferences can be largely excluded, the isolation
layer may be peeled off, resulting in completely functional and
semi-transparent sensor foils. The sensor acts as a simultaneous
interpreter, translating concentrations of oxygen into specific light
signals. Each dye molecule inside the sensor foil reacts
independently and the light signals can be recorded with the
digital camera inside the detector unit. One single image contains
the information of a whole array of single sensor points. This way
the oxygen distribution over a large 2D area can be visualized and
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subsequently analyzed with a high spatial resolution (mm-scale).
The resulting data are transferred via a USB-connection to the
processing unit and oxygen levels can be directly displaced and
analyzed by the software VisiSens AnalytiCal 1 (PreSens). More
technical specifications can be found elsewhere (Tschiersch et al.,
2011, 2012).

Oxygenmeasurementswere carried out hourly over a period of 24 h.

Application of the Oxygen Imaging Sensor for Bone TE

In order to adapt the novel oxygen imaging system for BTE
purposes, the following experimental setup was established in a
48-well culture dish (Fig. 1A and B). The optical sensor foil was
adjusted to the shape of the wells and the isolation layer was
removed over the sensitive layer to avoid air bubbles between the
layers. To prevent microbial infections, the sensor foil was sterilized
in 80% ethanol for 20min, rinsed in sterile PBS and placed at the
bottom of a well. A cell-seeded DBM scaffold was laid on the top of
the foil, covered with fresh medium avoiding the formation of air
bubbles. The culture dish was then transferred into a humidified
CO2 incubator. The detector unit was installed inside the incubator
directly under the monitored well. To achieve a close contact
between the sensor foil and the detector unit, a small window was
prepared into the upper incubator shelf. As a control for the novel
oxygen imaging system, a needle-type sensor was also inserted into
the center of the DBM scaffold for simultaneous oxygen
measurement by a standardized method described previously
(Volkmer et al., 2008, 2012). For the required two-point calibration,
an unseeded DBM scaffold in fresh medium was used as 100%
(equals 21% pO2) oxygen reference point. The 0% oxygen reference
was performed by an unseeded scaffold, moistened with sodium
sulphite (Na2SO3) which consumes oxygen by forming sodium
sulphate (Na2SO4). Calibration values were recorded by evaluating a

region of interest (ROI) as polygon over the lower scaffold surface.
Areas outside the scaffold were not included for calibration. For
valid investigations, newly engaged sensor foils or modification in
the experimental design required a new calibration due to changes
in background signals. The evaluation of oxygen consumption was
performed by the VisiSens software AnalytiCal 1.

The novel sensor enables oxygen mapping by a color-coded
graphical representation (Fig. 1D). In the resulting images, oxygen
saturation is shown with a color spectrum. High oxygen levels are
displayed with bright color, for example 21% oxygen saturation is
shown in yellow. In contrast, low oxygen levels are represented with
dark colors, for example, 0% oxygen saturation corresponds to a
deep blue signal (Fig. 1D). Line-scans were additionally generated
to plot a profile of the oxygen distribution across the equator of the
imaged area (Fig. 1E). The typical oxygen map of a cell-seeded DBM
scaffold after 24 h of culturing exhibits a clear oxygen gradient at the
lower surface. The color transition from yellow–red to blue reveals
decreasing oxygen tension from peripheral to central areas of the
scaffold (Fig. 1D).

Needle-Type Oxygen Sensor

The oxygen measurement by a needle-type sensor (NFSx-PSt1;
PreSens) has been described previously (Volkmer et al., 2008,
2012) and it offers a suitable control to validate the
measurement of the novel oxygen imaging sensor. Briefly,
the optical microsensors were mounted on the 50mm tip of
optical fibers and inserted within a 0.4 mm hollow needle for
protection. Before application, a two-point calibration was
performed: 100% CO2 as 0% oxygen reference and ambient air
as 21% oxygen reference. To record oxygen pressure, the needle
sensor was introduced into the geometric center of the
scaffold.

Figure 1. Experimental set-up of oxygen mapping. Original set-up is shown in (A) and as schematic representation in (B). The chemical sensor foil for oxygen detection was

placed under the scaffold, whereas the portable fluorescence detector was installed directly underneath the well. To compare and validate the novel oxygen sensor, a well-

established needle-type sensor was injected inside the scaffold centre. (C) Fluorescence image of a cell-seeded scaffold. Living cells were stained with calcein AM (green).

(D) Exemplary image of a typical color-coded 2D-oxygen map generated by the oxygen-imaging sensor. (E) Line-scan deduced from the oxygen map (D, dashed line) shows the

oxygen distribution across the center.
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Live-Dead Assay

Cell survival in the scaffold was assessed by the Live/Dead
1

cell
staining kit (Invitrogen), utilizing Calcein AM (green) to stain living
cells and Ethidiumbromid-III (red) to detect dead cells. DBM
scaffolds, cultivated for 24 h, were stained, cut into halves and
living/dead cells were monitored by fluorescent microscopy using
an Axio Observer Z1 microscope (Carl Zeiss Microscopy GmbH,
Jena, Germany). Images were aquired with a Plan Neofluar 1,25�
objective and a AxioCam MRm camera and processed using Zeiss
AxioVision software.

Cell Metabolic and Proliferation Assay

Cell metabolic activity in the scaffold was assessed by the WST-1
1

colorimetric assay (Roche, Mannheim, Germany) measuring the
cellular mitochondrial dehydrogenase activity-dependent cleavage
of tetrazolium salt WST-1 into formazan. After 1, 6, 24, and 48 h of
cultivation, WST-1 assay was performed by adding the cell
proliferating reagent and measuring the optical density (OD) of the
samples at 450 and 620 nm with a microplate photometer
(Multiskan FC Microplate, Thermo Fisher Scientific). The initial
cell proliferation potential of population L and H was measured by
the CyQuant

1

cell proliferation assay (Thermo Fisher Scientific).
1� 105 cells were seeded in microwell plates and the fluorescence
emission of the total DNAwas analyzed at 520 nm with a multiwell
plate reader (Tecan Systems, Inc., San Jose, CA).

Statistical Analysis

Each experiment was repeated at least three times. The
resulting data of the 2D oxygen sensor was analyzed by the
appropriate software VisiSens AnalytiCal 1. Curve fittings and
graphs were realized by Excel (Microsoft, Redmond). Statistical
analysis was performed by Student’s t-test (P<0.05) using
Sigma Plot version 12.0 (Systat Software, Erkrath, Germany).
Data are presented as arithmetic mean and error bars of
standard deviation (� SD).

Results

Comparison of Oxygen Mapping of DBM Scaffolds
Seeded With Cells From Distinct Confluent Populations

The novel oxygen sensor was applied to characterize oxygen
consumption in order to analyze novel cell-seeding strategies in
DBM scaffolds. For this purpose, the scaffolds were seeded with
different numbers of hMSC-SCP-1 cells (1� 106 and 5� 105),
which were previously cultured in monolayer to either 70–80%
(population H) or 30–40 % (population L) confluency (Fig. 2A and
B). The oxygen consumption was recorded every hour over a period
of 24 h. The comparison of the ROI of the oxygen maps revealed a
clear difference in the timely progression of the oxygen
consumption between populations H and L. Both the color
coded images and the line scans demonstrated a faster and
more homogenous oxygen depletion in scaffolds seeded with

population L hMSCs (Fig. 2E, H, and I) compared to scaffolds
seeded with population H cells (Fig. 2C, F, and G).
Using 1� 106 cells of population L, the oxygen saturation curve

showed a fast exponential-like drop already after 9 h (R2¼ 0.97)
and reached 0% (� 0.5 SD) after 10 h (Fig. 2E and 3B blue line). In
contrast, oxygen consumption of population H revealed a
continuously slow, nearly linear decrease until 7.5% (� 4.6 SD,
R2¼ 0.94) without touching the 0% oxygen level even after 24 h
(Fig. 2C and 3A blue line). Student’s t-test resulted in a statistically
significant difference between oxygen consumption of population L
and H from 1 until 24 h of incubation (P< 0.01 at 5–15 h, P< 0.05
for the remaining time).
A similar trend was observed in scaffolds seeded with 5� 105

cells (Fig. 3C and D blue line), although the oxygen consumption
proceeded slower compared with 1� 106 cells. Using population H,
the oxygen consumption curve exhibited a nearly linear decrease of
not more than 5.6% (mean saturation 13.4%� 0.6 SD, R2¼ 0.97)
after 24 h (Fig. 3C blue line). In the case of population L, oxygen
concentration reached 0% (� 0.7 SD) only after 16 h of incubation
by an exponential drop (Fig. 3D blue line, R2¼ 0.99). The
differences between oxygen consumption of population H and L of
5� 105 cells were statistically highly significant from 5 h to 24 h of
cultivation (P< 0.01) and significant between 2 and 5 h (P< 0.05).
In summary, oxygen saturation in scaffolds seeded with

population H linearly dropped from 19% to 20% to 7.5% (� 4.6
SD) using 1� 106 cells and to 13.4% (� 0.6 SD) with 5� 105 cells
after 24 h of incubation. In contrast, oxygen saturation of
population L reached already 0% after 10 h (� 0.5 SD) for
1� 106 and after 16 h (� 0.7 SD) for 5� 105 cells. Oxygen
saturations of population L decreased by a relatively clear
exponential decay.

Comparison of Novel Oxygen Imaging Sensor and
Needle-type Control Sensor in the Application of BTE

To validate the novel, non-invasive oxygen-imaging sensor for
application in BTE, oxygen consumption in the scaffolds was
measured simultaneously with an established needle-type sensor as
control (15, 17). The comparison of these two sensors revealed
similar characteristics of the oxygen consumption curves (Fig. 3).
The measurement of the control sensor started with an oxygen

concentration of about 19–20% (Fig. 3A–D red line). After 24 h, the
needle-type sensor showed a slow decrease of oxygen tension to
10.4% (� 1.9 SD) in scaffolds seeded with 1� 106 cells of
population H (Fig. 3A red line). Oxygen saturation quickly dropped
to 1.5% (� 1.4 SD) when 1� 106 cells were used from population L
(Fig. 3B red line). In scaffolds seeded with 5� 105 cells, oxygen
concentrations approached 16.2% (� 0.8 SD) using population H
(Fig. 3C red line) and 7.2% (� 2.4 SD) using population L
(Fig. 3D red line) after 24 h of incubation time.
Oxygen measurement of four independent cell-seeded scaffolds

per group (four groups in total) showed comparable oxygen graphs
with an overall difference of 3.3% (� 2.6 SD) between values
recorded by the oxygen imaging sensor and the needle-type sensor
(Fig. 3). For each experiment the difference was analyzed at every
time point. The difference between the two sensor types can be
explained by their different measurement principles (point vs. area)
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and their respective locations within the scaffold (inside vs.
outside). Figure 3D shows the largest difference between the two
sensors. The needle sensor measured a lower oxygen consumption
over 24 h, whereas the planar sensor detected a higher oxygen
consumption. A reason for this result is the high growth and
metabolic activity of population L and the much lower number of
cells (1� 105 cells) used in this experiment. During the seeding
procedure more cells attach to the outer surfaces of the scaffold,
resulting in a higher oxygen consumption which is measured by the
planar oxygen sensor. In contrast, the lower number of cells inside
the scaffold leads to a reduced oxygen consumption detected by the
needle sensor.

Cell Metabolic Activity and Initial Proliferation

For an evaluation of cell survival and performance in scaffolds
seeded with 5� 105 and 1� 106 cells of population L and H, a
metabolic activity assay (WST) was applied (Fig. 4A and B). The

WST assay shows increasing metabolic activity over 24 h for
both populations, but decreasing activity between 24 and 48 h for
population L (Fig. 4A and B). In contrast, metabolic activity of
population H rises constantly. The increase of metabolically active
cells differs clearly between the population L and H as well as
between the cell densities of 1� 106 and 5� 105 cells. Most notable
is the large difference between population L and H. Population L
starts with an approximately 30% higher metabolic activity
(1� 106 cells, 0.65 OD� 0.05 SD; 5� 105 cells, 0.37 OD� 0.01 SD)
than population H (1� 106 cells, 0.46 OD� 0.062 SD; 5� 105 cells,
0.26 OD� 0.007 SD), even though both populations started always
with the same cell numbers (1� 106 or 5� 105).

To show the initial difference in the proliferation activity of
populations L and H, we analyzed their DNA content in a planar
micro-well plate seeded with 1� 105 cells. The fluorescence signal
(FL) of the CyQuant assay revealed that population L starts with an
around 50% higher DNA content (4,000 FL� 258 SD) than
population H (2,018 FL� 37 SD) (Fig. 4C).

Figure 2. 2D-oxygen mapping by the novel oxygen-imaging sensor. (A and B) Phase contrast micrographs of population H and L at the time point of harvest. (C and E) Oxygen

maps of scaffolds seeded with 1� 106 cells of population H and L over 24 h. (D) Colour coded oxygen scale in percentage [%]. (F-I) Line scans from oxygen maps taken across the

centre of the scaffold area (dashed line) at time point 2 h and after 24 h (n¼ 3).
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To assess cell vitality across the scaffold, we used a live/dead
fluorescence staining assay. Figure 4D and E shows viable cells
(green) distributed all over the scaffold for the fastest growing
population L with 1� 106 cells. It must be noted that the DBM
scaffold contains dead osteocytes which contribute to an unwanted
background signal when performing the live/dead assay. It is
therefore important to obtain a reference image of a cell-free DBM
scaffold, which can be subtracted from the seeded scaffold.

Discussion

A Planar Oxygen Imaging Sensor for Oxygen Mapping of
BTE Constructs

In this study, we have applied a novel 2D oxygen-imaging sensor to
characterize modified cell-seeding strategies by quantifying the
oxygen concentration in loaded DBM-scaffolds.
In the first step, we have adapted the novel sensor for BTE.

Compared with a conventional needle-type sensor measuring
oxygen in a single spot, the imaging sensor provides 2D-
representation of oxygen concentration over a planar surface
area, at a microscopic resolution (Tschiersch et al., 2012; Volkmer
et al., 2008). This method has the advantages of being non-invasive
and highly sensitive, whereas the injected needle-type sensor may
induce injuries of the tissue or TE construct and generates

unwanted gradients of material quality. The oxygen imaging sensor
system is accompanied by user-friendly visualization and online
analysis tools. Oxygen saturation can be displayed in conventional
or color-coded diagrams and as line-scans (Fig. 2). The application
of the oxygen imaging sensor is a very convenient and economical
solution. The equipment, consisting of a sensor foil and a detector
unit, is reusable, compact, and space-saving. The sensor tolerates a
temperature-range from 5 to 45 �C, enabling a comfortable
installation in a standard cell culture incubator. Details on the
application of the novel sensor for BTE are described above (see
results and Fig. 1).
We have previously reported that a conventional, needle-type

sensor reliably measures oxygen concentration in static and
dynamic 3D culture systems over a period of time (Volkmer et al.,
2008, 2012). In the present study, in order to validate the oxygen
values obtained by the novel planar sensor, the data were compared
to values recorded by the needle system. In four independent
experiments using scaffolds seeded with different number of cells
(1� 106; 5� 105), which were pre-cultured in monolayer at high or
low densities (population H; population L), we have observed a
stable and consistent measurement of oxygen by the two systems
proving the successful application of the planar imaging sensor for
oxygen measurement in cell-seeded BTE scaffolds. Despite the
similar characteristics of the oxygen consumption curves, a visible
decrease in the actual oxygen concentrations was observed using

Figure 3. Graphical representation of average oxygen consumption over 24 h. (A–D) Oxygen consumption of scaffolds seeded with either 1� 106 or 5� 105 cells from

population H and population L. Diagrams illustrate oxygen tension curves recorded by the foil-type imaging sensor (blue line) and the needle-type sensor (red line). A statistical

difference of oxygen consumption (P< 0.01) was detected using the imaging sensor between population H and L from 5 to 15 h (A and B, 1� 106 cells) and from 5 to 24 h (C and D,

5� 105 cells). Regression analyses of the graphs show an almost, or precise, exponential drop in population L (1� 106 cells R2¼ 0.97; 5� 105 cells R2¼ 0.99) and in population H

(1� 106 cells R2¼ 0.94; 5� 105 cells R2¼ 0.97). Values are measured by a region of interest (ROI). The area of the scaffold was outlined and the mean of the colour intensity was

calculated. P-values were calculated with Student’s t-test (n¼ 3� SD).
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the imaging system compared to the needle-type control (Fig. 3).
This average 3.3% difference in values, obtained by the two oxygen
measurement systems may have several reasons. In contrast to the
classical needle type sensor, measuring only one spot, the planar
optical sensor measures a 2D area. Each pixel of an oxygen map is
one oxygen value. As previously demonstrated, oxygen gradients
arise around both type of sensors at the bottom as well as in the
center of the in vitro cultured 3D scaffold because of limited
diffusion capacity (Carrier et al., 2002; Volkmer et al., 2008). The
more pronounced oxygen consumption recorded by the oxygen-
imaging sensor is a consequence of the different measuring
locations. Due to the static seeding process, at the outer surfaces of
the DBM-scaffold, where the oxygen imaging sensor measures, cell
density is higher than in the center, where the control sensor is
localized (Wendt et al., 2003). Consequently, the higher cell number
leads to greater cell metabolism resulting in higher oxygen
consumption (Santoro et al., 2011; Yamada et al., 1990). A further
explanation could be the distinct properties of the needle-type
control sensor. This local measuring is prone for errors because it
delivers only randomized and not averaged data over an area.
Furthermore, the penetration with the needle causes damage to the
scaffold material, so that fresh medium can reach the center of the
DBM-scaffold, supplying it potentially with additional oxygen.

Characterization of Cell-Seeding Strategies by
Application of the Planar Oxygen-Imaging Sensor

In the present study, we have utilized the novel oxygen imaging
sensor to evaluate the effect of monolayer plating density of pre-
cultured hMSCs on oxygen consumption of cell-loaded, three-
dimensional bone tissue engineering constructs. Currently, there
are no defined standards for monolayer expansion, harvesting,
and seeding of hMSCs into 3D scaffolds (Colter et al., 2000;
Neuhuber et al., 2008; Polzer et al., 2014). Among the many
factors which can affect the properties of in vitro cultured 3D
constructs, such as cell type, scaffold material, pore size, and
functionalization, the cell density at the time of harvest may have
pivotal role in the modulation of cell proliferation and the final
tissue quality. In monolayer culture, high cell density with
existing cell–cell contacts usually results in cell cycle arrest and
an early termination of cell proliferation due to the down-
regulation of cell proliferation genes (Balint et al., 2015; Ho et al.,
2011; Kim et al., 2014; Shay and Wright, 2000). In contrast, low
cell density leads to an up-regulation of these genes and
increased proliferation rate (Kim et al., 2014).

Oxygen consumption of invitro cultured 2D-3D constructs depends
primarily on cell metabolic activity and proliferation (Guarino et al.,

Figure 4. Cell metabolic and proliferation activities of scaffold-seeded hMSCs harvested from low and high confluent populations. (A) Metabolic activity of population L and H

at 1� 106 over 48 h. (B) Metabolic activity of population L and H at 5� 105 cells. (C) Difference of the DNA content of population L and H one hour after seeding of 1� 105 cells in a

microwell plate. (D and E) Overview fluorescence images of cell seeded DBM-scaffolds. Micrographs of the Live–Dead staining were captured at the sagittal plane after 24 h

(1.25� objective). Living cells were stained by calcein AM (green) and dead cells by ethidiumbromide-III (red). (D) Live–Dead assay of population L at 5� 105 cells and (E) at 1� 106

cells (Bottom side is marked by an asterisk ‘‘� ’’). (n¼ 3� SD; OD¼Optical Density; Scaffold wide¼ 9mm).
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2004; Janssen et al., 2006; Santoro et al., 2011; Yamada et al., 1990). An
increase in the number of cells leads to a decrease of the oxygen
concentration (Santoro et al., 2011; Yamada et al., 1990) and its
continuing decline causes apoptosis or necrosis (Volkmer et al., 2008,
2010). In our study, hMSCswere harvested at low confluence (30–40%,
population L) or high confluence (70–80%, population H) and seeded
at two different densities (0.5 and 1 million cells) into DBM scaffolds,
followed by the measurement of the oxygen consumption for 24 h. Our
results show a highly significant difference in oxygen consumption
between the two populations (Fig. 3). Cells harvested at low confluence
displayed fast exponential decrease of oxygen to 5% within 4 h and
reached 0% after 8–10 h (e.g., 1 million cells, Fig. 3B). In contrast, cells
harvested at higher confluence exhibited very slow and rather linear
than exponential oxygen consumption over the 24 h period without
reaching the zero line (Fig. 3A). To our knowledge this difference of
oxygen consumption of bone grafts seeded with population L and H
has not been shown previously. In population L, the oxygen
concentrationwas three times lower after 4 h and five times lower after
5 h compared with population H (e.g., 1 million cells). Our oxygen
results indicate the well-known fact that MSCs with low confluence of
30–40% at the time of harvest (population L) own a much stronger
growth potential in comparison to cells with higher confluence of
70–80% (population H). Furthermore, our data indicate that not only
the seeding density on a scaffold but also the cell confluence on culture
dishes at the time point of harvest is of major importance for BTE
(Fig. 3). When harvested at low confluency, cells are in a very potent
growth phase. If harvested at high confluency, a lot of cells have already
reached steady state and their metabolic and growth activity is
decreased. This fact is also evident in the oxygen demand (Fig. 3) and
in the metabolic and growth activities (Fig. 4).
The result goes in line with previous studies showing several

disadvantages of long expansion and in vitro 3D cultivation time.
Besides the arising hypoxia in 3D-scaffolds, replicative senescence
of hMSC occurs (Kassem et al., 1997), which impairs both
proliferation and differentiation potential (Balint et al., 2015;
Geissler et al., 2012; Stenderup et al., 2003). During in vitro
expansion with a typical confluence of 70–80%, osteogenic
differentiation potential decreases and there is an age-related shift
from osteogenic to adipogenic differentiation (Balint et al., 2015;
Geissler et al., 2012; Kim et al., 2012). Furthermore, the risk of
malignant transformation of cells in long-term cultures due to
chromosomal rearrangement, gene mutation, and epigenetic
changes has been reported (Rosland et al., 2009). Consequently,
a short-run and effective seeding procedure of MSC is advised for
BTE purposes (Balint et al., 2015; Xing et al., 2011).
In addition, cell metabolic activity results (Fig. 4A and B) also

indicated that a short culture time of less than 24 h is favorable,
especially when using the potent population L. It has been shown, that
the time point of harvest plays an important role in cell metabolism
and proliferation potential in scaffold cultures. The metabolic and
proliferation activityof population Lwas always 30–50%higher than in
population H (Fig. 4A–C). Our data shows an increase of metabolic
activity over 24 h. However, metabolic activity of population L
decreased after 24 h, whereas population H still keeps growing. These
observations together with the oxygen data support the suggestion that
culture time of potent mesenchymal stem cells in the early log phase
should be as short as possible in a static, in vitro 3D tissue culture.

It can be concluded, that increased oxygen consumption is one of
the first symptoms of an imminent metabolic crisis in a scaffold
culture. Therefore, measurement of oxygen concentration is an
appropriate warning tool for early detection of hypoxia-induced
oxidative stress, metabolic reprogramming, and imminent cell death.
Taken together, here we introduced a novel way of oxygen

measurement for cell-seeded scaffolds used in BTE by the application
of a foil-type, 2D-oxygen imaging sensor. The application of the
sensor allowed analysis of different cell seeding strategies of scaffolds
by monitoring the oxygen consumption at the critical lower surface.
We noticed that the amount of hMSCs loaded on scaffolds can be
verifiable increased by harvesting at low, 30–40% of cell density
before scaffold seeding. In addition, because of a recognizable and
traceable spurt of growth in the log phase at low confluence at
harvest, an early transplantation of the MSC-scaffold construct after
a seeding time of only 4 until 8 h, for a density of 1� 106 cells, is
feasible. If longer culture time is required, the 2D-sensor could be
combined with a perfusion system to prevent harmful hypoxia.
The oxygen-imaging sensor could be also applied for further

optimizations of BTE constructs. It is conceivable to use the sensor,
for example, to pre-select scaffold materials, to choose the ideal
pore size, for the optimization of cell functionality by scaffold
coatings or for the characterization of co-culture combination.
Additionally, the vascularisation of artificial bone grafts by co-
culturing of endothelial cells should be of great interest in BTE
(Nguyen et al., 2012). The development of in vitro angiogenesis
inside a scaffold could be potentially monitored using the oxygen-
imaging sensor by detecting changes in oxygen tension associated
with vessel-like tube formations.
The new method of oxygen measurement introduced here can be

used fordifferent 3D culture systems, such as hydrogels, solid scaffolds,
tissue-bioreactors, and microfluidic systems. The sensor foil can be
easily adapted to the culture system, for example at critical feeding
areas, such as the interface between scaffold and culture vessel. The
sensor is non-invasive, flexible, and reusable and enables online
monitoring and mapping of oxygen. In combination with a feedback
system it can be used to control the nutrient supply in BTE systems.

The authors are grateful to Professor J€urgen Plitzko from the MPI of
Biochemistry for helpful comments. This project was partly funded by the
Bayerische Forschungsstiftung.
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