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Abstract Introduction: This meta-analysis aimed to characterize the nature and magnitude of amyloid
(Ap)-related cognitive impairment and decline in cognitively normal (CN) older individuals.
Method: MEDLINE Ovid was searched from 2012 to June 2016 for studies reporting relationships
between cerebrospinal fluid or positron emission tomography (PET) A levels and cognitive impair-
ment (cross-sectional) and decline (longitudinal) in CN older adults. Neuropsychological data were
classified into domains of episodic memory, executive function, working memory, processing speed,
visuospatial function, semantic memory, and global cognition. Type of AP} measure, how A burden
was analyzed, inclusion of control variables, and clinical criteria used to exclude participants, were
considered as moderators. Random-effects models were used for analyses with effect sizes expressed
as Cohen’s d.

Results: A total of 38 studies met inclusion criteria contributing 30 cross-sectional (N = 5005) and
14 longitudinal (NV = 2584) samples. AB-related cognitive impairment was observed for global cogni-
tion (d = 0.32), visuospatial function (d = 0.25), processing speed (d = 0.18), episodic memory, and
executive function (both d’s = 0.15), with decline observed for global cognition (d = 0.30), semantic
memory (d = 0.28), visuospatial function (d = 0.25), and episodic memory (d = 0.24). AB-related
impairment was moderated by age, amyloid measure, type of analysis, and inclusion of control vari-
ables and decline moderated by amyloid measure, type of analysis, inclusion of control variables, and
exclusion criteria used.

Discussion: CN older adults with high AP show a small general cognitive impairment and small to
moderate decline in episodic memory, visuospatial function, semantic memory, and global cognition.
© 2017 Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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(AD) has begun, although it may still be up to 20 years before
these individuals meet clinical criteria for dementia [1-4].
Neuroimaging and fluid biomarkers allow for in vivo
measurement of AP burden in older individuals using
positron emission tomography (PET) and cerebrospinal fluid
(CSF) sampling, respectively [5,6]. Studies using these
techniques have shown that AP burden increases with age,
with approximately 10%—20% of CN older adults aged
60-70 years, 20%-30% of those aged 70-80 years, and
30%—-40% of those aged 80-90 years being classified as
AB+ [4,7.8]. Despite their CN classification, prospective
studies indicate that cognitive decline is faster and
progression to a clinical diagnosis of mild cognitive
impairment (MCI) or AD more rapid, in those who are AR+
compared to matched CN adults with low A levels (AB—)
[2,3]. Characterizing preclinical AD is therefore important
for understanding the pathogenesis of AD.

Although PET A imaging or CSF sampling identifies reli-
ably the presence of AD pathology in individuals with no overt
symptoms, these procedures are expensive, invasive, and must
occur in specialized medical centers. Ideally, sensitive and
cost-effective clinical measures could be used to identify CN
adults who should be referred for these more expensive and
invasive testing procedures. Neuropsychological assessment
may be useful in this regard, where the presence of a subtle
but specific profile of cognitive dysfunction could indicate
that AB+ would be classified on CSF sampling or PET imag-
ing. However, to date, there is no agreement on what constitutes
subtle cognitive decline among individuals with AB+. Evi-
dence in support of a cognitive profile indicative of A+
comes from neuropsychological studies that use two types of
experimental designs. First are studies that define AB+-related
cognitive impairment on the basis of the comparison of perfor-
mance on batteries of neuropsychological tests between AR+
CN older adults and AB— CN older adults at a single assess-
ment. Such studies generally report only small and statistically
nonsignificant differences in neuropsychological test perfor-
mance between AB— and AB+ CN older adults [9-13].
Second are studies that define AB+-related cognitive decline
by evaluating changes in performance on neuropsychological
test batteries over time between AB+ and AB— CN older
adults. Studies using this approach have consistently found
evidence of AP+-related decline on measures of episodic
memory, executive function, processing speed, visuospatial
function, and language (e.g., [9,11,14-21]). However,
although individual studies have identified areas of cognitive
impairment and decline associated with AP+, there is
substantial variation between these studies in terms of the
sample sizes enrolled, the domains of cognitive function
assessed, the specific neuropsychological or cognitive tests
used to measure these domains, and the statistical techniques
used to compare AR+ and AB— groups. Furthermore, in
many studies, conclusions about the effects of AR+ on
cognition have been based only on the presence or absence
of statistical significance. Consequently, small but important
AB+-related effects may have been missed when sample

sizes did not provide adequate statistical power to render
such differences statistically significant. Meta-analyses of the
existing literature on Af+-related cognitive impairment, and
decline could therefore provide an effective method for over-
coming the different limitations of individual studies to provide
reliable estimates of AP+-related cognitive impairment and
decline in preclinical AD.

To date, one meta-analysis evaluated this question and
concluded that associations with AP burden were strongest
for episodic memory (e.g., r = —0.12; Hedden et al., 2013
[16]). Additionally, when combining estimates across studies
that measured AP using CSF, PET, plasma, and histopatho-
logic methods, lower performance in executive function
was also related significantly (» = 0.08) to AP burden. Post
hoc analyses indicated that estimates of AB+-related cogni-
tive dysfunction were unaffected by the experimental design
used, the method of determining A levels, or whether demo-
graphic or clinical variables were controlled statistically.
Although this initial meta-analysis provides a good basis for
understanding the effects of AP on cognition in CN older
adults, its conclusions are limited because a large number
of studies investigating relationships between Af+ and neu-
ropsychological test performance have been conducted since
its publication. Second, the number of studies using either
cross-sectional or longitudinal designs is now sufficient to
consider estimates of cognitive impairment and cognitive
decline separately. Third, a broader sample of cognitive do-
mains is now available for inclusion in meta-analyses. Finally,
samples in studies using longitudinal designs have been fol-
lowed for longer periods. As such, an updated meta-
analysis of this literature is needed to understand the relation
between A and cognitive impairment and decline in preclin-
ical AD. The aim of this study was therefore to systematically
review the literature on the nature and magnitude of AB+-
related cognitive impairment and decline in older adults
who do not meet clinical criteria for MCI or dementia.

2. Methods

2.1. Study selection

2.1.1. Inclusion/exclusion criteria

Inclusion criteria for the meta-analyses were that (a) the
study must include a sample of adults with an average age
>60 years who did not meet clinical criteria for MCI or de-
mentia and who had undergone assessment with standard-
ized neuropsychological tests; (b) for each participant, A
levels were determined using PET or CSF sampling; and
(c) studies must have provided sufficient information to
allow for the computation of effect sizes.

Studies were excluded from the meta-analysis if they were
one of a series of publications from the same specific cohort
where, over time, sample sizes or the length of follow-up had
increased. For studies meeting this criterion, data for the
meta-analyses were taken from that study which was the
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most recent and which had the largest sample. If possible, data
for any cognitive domain not reported in the chosen publica-
tion were derived from another publication from the same
cohort with the next largest sample where relevant data
were presented, so as to ensure as many cognitive domains
as possible were represented for each cohort. Second, studies
were excluded if neuropsychological data or clinical data had
been used to classify CN adults “progressors/decliners” or
“stable/nondecliners” independent of AP classification.
Finally, for studies that reported results from both PET and
CSF sampling, we focused on PET results as indicators of
AP levels to maintain consistency across studies.

2.2. Systematic review methods

Supplementary Fig. A summarizes the outcome of the sys-
tematic review process. Initially, all studies included in the
meta-analysis of Hedden et al. (2013) [16] were screened via
title and abstract, to determine relevance to inclusion and
exclusion criteria of the current meta-analysis. Fifteen articles
were excluded at this stage. A systematic electronic database
search was then conducted on Medline Ovid, on the 8th of
June 2016, using the subject terms for amyloid, older adults
and AD, and cognition that were used in the meta-analysis
by Hedden et al. (2013) [16]. The terms are described below:

1. (amyloid) AND (‘“Pittsburgh Compound B” OR PIB
OR florbetapir OR AV-45 OR florbetaben OR fluteme-
tamol OR PET) OR (CSF)

2. (normal OR nondemented OR aging OR older OR
Alzheimer’s OR dementia OR “cognitive impairment”
OR MCI)

3. (cognitive OR cognition OR memory OR executive
OR speed OR visuospatial OR semantic)

At this stage, 501 articles were identified to be screened via
title and abstract. After removal of duplicates and review ar-
ticles, 362 articles were screened via title and abstract, with
335 being excluded at this stage (Supplementary Fig. A). Af-
ter this, full-text screening began of the articles identified
from the Hedden et al. analysis and from those identified in
the electronic search. Reference lists of articles were also
screened for key citations, and newly published articles
were screened for relevance. Fifty studies were excluded at
this stage (see Supplementary Fig. A for details), leaving 69
studies meeting the full criteria. The largest samples from
ongoing observational studies were chosen to represent the
data for cognitive domains from that cohort. This process
was completed separately for studies using cross-sectional
or longitudinal designs. At completion, 38 studies met inclu-
sion/exclusion criteria, consisting of 30 that used cross-
sectional designs and 14 that used longitudinal designs.

2.3. Classification of outcome measures

For each study, performance data from neuropsychological
tests were identified and organized according to the main

cognitive domain measured by that test according to reference
frameworks from previous meta-analyses of cognition
[16,22,23] and standard neuropsychological compendia [24].
The cognitive domains used and the tests classified into each
of those domains are summarized in Supplementary Table A.

2.4. Statistical analysis

Separate analyses were conducted for studies using cross-
sectional and longitudinal designs using Comprehensive
Meta-Analysis, version 3.3 software (Biostat, NJ). All results
are reported using a random-effects model. Effect sizes were
calculated using reported statistics such as means and stan-
dard deviations (Cohen’s d) and results from analyses such
as t tests, correlations, regressions (r), and linear mixed-
effects models. If standard error was reported in a study,
this was converted to standard deviation before the calcula-
tion of effect sizes. For each neuropsychological test or cogni-
tive domain composite score, the sign of effect sizes was
adjusted so that negative effect sizes reflected greater AB+-
related impairment or decline. For studies that used more
than one neuropsychological test to measure the same cogni-
tive domain, effect sizes were averaged. All effects were
weighted using inverse variance weighting based on sample
size. All effect sizes were transformed into Cohen’s d, and
the magnitudes were classified as small, medium, or large ac-
cording to Cohen (1992) [25]. A more lenient criterion was
used to assess statistical significance of heterogeneity
(P < .10) due to the lack of statistical power of these tests
[26]. Where statistically significant heterogeneity was identi-
fied, post hoc subgroup analyses were conducted to seek the
source of this heterogeneity [27]. These analyses investigated
the extent to which heterogeneity in estimated mean effect
sizes arose from variance due to moderators such as: (a) the
type of AB measure (PET or CSF); (b) whether AP burden
was defined as a continuous or categorical measure; (c)
whether the study had controlled statistically the effects of de-
mographic or clinical covariates (e.g., age, education, and so
forth); and (d) the clinical classification criteria used to
exclude participants from CN samples (i.e. the criteria for
prodromal AD or MCI used). Where group mean effect sizes
were based on 10 or more samples and there was no evidence
of heterogeneity, publication bias was assessed by visual in-
spection of funnel plots and the Egger test, with the signifi-
cance level set at P < .10 [28,29]. This was done to assess
whether the effect sizes of individual studies were
distributed symmetrically around the overall mean effect
size for the cognitive domain, or whether study size biased
the results in a particular direction.

3. Results

3.1. Meta-analysis of studies using cross-sectional designs
to measure cognitive impairment

Study characteristics and individual effect sizes for
studies that used cross-sectional designs are presented in
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Supplementary Table B. Estimates of effect sizes from cross-
sectional studies were based on 30 samples providing 5005
participants with study samples ranging between 23 and
564 participants. Of these, 2524 were females (50%), 1304
carried at least one APOE €4 allele (26%), with the average
ages of the individual samples ranging from 60.5 to 79 years.
Nineteen studies contributed data for episodic memory
(n = 2886), 13 for executive function (n = 2281), 10 for
working memory (n = 1598), 13 for processing speed
(n = 2530), nine for visuospatial function (n = 1984), 13
for semantic memory (n = 2585), and eight for global cogni-
tion (n = 1746).

For the majority of studies, AP levels were determined
using PET neuroimaging (87%) with over half (63%) classi-
fying AP levels categorically (e.g., positive vs. negative or
high vs. low). Demographic and clinical variables such as
age, premorbid 1Q, sex, education, and APOE &4 were
controlled statistically in 53% of studies. The two main clin-
ical criteria used to exclude participants with MCl/prodro-
mal AD were the Clinical Dementia Rating (CDR; [30])
scale total score of 0.5 (53%) and the Petersen criteria
[31]. Four studies [32-35] used alternative criteria, such as
the Mattis Dementia Rating Scale ([36]), the Jak and Bondi
method [37,38], and a combination of CDR 0.5 and Petersen
criteria. For 77% of studies, the average age of participants
was under 75 years.

3.2. Mean domain specific effect sizes of cognitive
impairment

Mean effect sizes (Cohen’s d) and associated 95% con-
fidence intervals are listed in Table 1. Fig. 1 shows the for-
est plots for each cognitive domain with individual study
effect sizes and 95% confidence intervals shown as well
as the mean effect size for each domain. Worse perfor-
mance in the presence of AR+ was evident for all cogni-
tive domains, with the magnitude of effects, by
convention, small. AB+-related cognitive impairment was
statistically significant for the domains of global cognition,

Table 1

visuospatial function, processing speed, executive function,
and episodic memory (Table 1). Stratifying the studies by
participants’ mean age showed that effect sizes for episodic
memory and executive function were significant only for
studies using samples aged 75 years and more (P’s = .12
and .07 for the younger groups respectively), whereas vi-
suospatial function was significant in the younger group
only (P = .06 for older group). Statistically significant het-
erogeneity was detected for pooled estimates of effect sizes
for episodic memory. No evidence of publication bias was
found for the remaining domains.

3.3. Moderator effects on studies of cognitive
impairment

Table 2 shows the results of the post hoc analyses for
episodic memory, where significant heterogeneity was de-
tected. Group mean effect sizes remained statistically signif-
icant when these accounted for data from studies that had
used PET to measure A levels, classified A as categorical,
and had controlled statistically for demographic or clinical
variables.

3.4. Meta-analysis of studies using longitudinal designs to
measure cognitive decline

Study characteristics and individual effect sizes from
studies using longitudinal designs included in the analysis
are shown in Supplementary Table C. Estimates of effects
from studies using longitudinal designs were based on 14
samples providing 2584 participants, with total samples
ranging from 38 to 464 CN older adults. The sample
included 1295 females (50%), and 743 APOE €4 carriers
(29%), with the average age at baseline of samples ranging
between 60.5 and 78.2 years. The length of follow-up for
studies ranged between 18 months and 23 years, approxi-
mate average of 5 years. Nine studies contributed data for
episodic memory (n = 1781), five for executive function
(n = 1074), three for working memory (n = 740), six for

Summary of pooled effect sizes and heterogeneity statistics from the meta-analyses

Cross-sectional design

Longitudinal design

Cognitive domain n Cohen’s d (95% CI) n Cohen’s d (95% CI)
Episodic memory 2886 —0.15 (—0.27 to —0.03)* 1781 —0.24 (—0.44 to —0.03)*
Executive function 2281 —0.15 (—0.26 to —0.05)%** 1074 —0.04 (—0.31 to 0.22)
‘Working memory 1598 —0.11 (—0.24 t0 0.01) 740 —0.26 (—0.65 to *0.13);
Processing speed 2530 —0.18 (—=0.29 to —0.07)*** 1568 —0.18 (—0.38 t0 0.02)"
Visuospatial 1984 —0.25 (—0.35 to —0.15)*** 1243 —0.25 (—0.42 to —0.09)**
Semantic memory 2585 —0.06 (—0.18 to 0.06) 1653 —0.28 (—0.42 to —0.15)%**
Global cognition 1746 —0.32 (—0.47 to —0.17)*** 1396 —0.30 (—0.48 to —0.11)%+

NOTE. Cohen’s d represents the standardized difference in means between the amyloid positive and amyloid negative groups, where greater impairment is

represented by a negative effect.
*P <.05; ¥*P < .01; ***P < .001.
fsignificant heterogeneity P > .03.
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Fig. 1. Forest plots from the meta-analysis of studies with cross-sectional designs. Effect sizes are presented as Cohen’s d with 95% confidence intervals. The
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dots represents study weighting due to sample size.
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Table 2

Pooled effect sizes and 95% confidence intervals adjusted for moderator variables

Cross-sectional

Amyloid measure

Type of amyloid analysis

Cognitive domain CSF PET

Continuous Categorical

Episodic memory —0.07 [—0.34, 0.20]

—0.17 [-0.31, —0.03]*

—0.11[—-0.33,0.12] —0.16 [—0.31, —0.02]*

Control variables

Normal criteria

Yes No

CDR =0 Petersen

—0.21 [—0.39, —0.03]*

—0.10 [—0.25, 0.06]

—0.16 [—0.36, 0.03] —0.15 [—0.34, 0.05]

Longitudinal

Amyloid measure

CSF PET

Type of amyloid analysis

Continuous Categorical

Episodic memory —
Processing speed — —
Global cognition —

—0.27 [-0.50, —0.02]*

—0.31 [—0.51, —0.10]**

—0.04 [—0.24, 0.16]
—0.02 [—0.33, 0.29]
—0.16 [—0.37, 0.05]

—0.37 [-0.55, —0.18]***}
—0.28 [—0.52, —0.03]*
—0.43 [—0.67, —0.19]***

Control variables

Normal criteria

Yes No

CDR =0 Petersen

Episodic memory
Processing speed
Global cognition

—0.29 [-0.53, —0.05]*

—0.31 [—0.51, —0.10]** —

—0.03 [—0.53, 0.48]

—0.28 [—0.59, 0.03]
—0.18 [—0.49, 0.13]
—0.38 [—0.68, —0.08]*

—0.20 [—0.48, —0.07]
—0.20 [—0.51, 0.11]
—0.25[-0.57, 0.07]

NOTE. Effect sizes presented are Cohen’s d, with associated 95% Confidence Intervals. Blank spaces represent only one study available for moderator in the
domain. Control variables included clinical and demographic variables that were included as covariates in the analyses used to calculate effect sizes.

* P<.05 *¥* P<.01 *** P<.001.
Tgroup difference P <.05.

processing speed (n = 1568), five for visuospatial function
(n = 1243), seven for semantic memory (n = 1653), and
seven for global cognition (n = 1396).

AP analysis was conducted via PET neuroimaging in all
but one study, with 57% of studies using a categorical clas-
sification for AB+. Demographic and clinical variables such
as baseline age and test scores, education, sex, IQ, and fam-
ily history were modeled as covariates in 79% of the studies.
Exclusion of participants with prodromal AD or MCI at the
baseline assessment was again split between the CDR (57%)
and Petersen criteria. Approximately 71% of studies used
participants with average ages <75 years.

3.5. Mean domain specific effect sizes of cognitive
decline

Mean effect sizes and associated 95% confidence inter-
vals are shown in Table 1. Fig. 2 shows the forest plots rep-
resenting the individual study effect sizes and 95%
confidence intervals, as well as the mean effect size for
each cognitive domain. Decreased performance in the pres-
ence of AR+ was evident for all cognitive domains with the
magnitude of this decline small to moderate and statistically
significant for episodic memory, visuospatial function, se-
mantic memory, and global cognition. Stratifying the sam-
ples by participants’ mean age did not change these

results. Statistically significant heterogeneity was evident
for the domains of episodic memory, working memory, pro-
cessing speed, and global cognition (Table 1). Publication
bias was unable to be assessed due to the small number of
studies contributing to meta-analysis of studies using longi-
tudinal designs [29].

3.6. Moderator effects on studies of cognitive decline

Results of the moderator analysis of studies with
longitudinal designs are listed in Table 2. Owing to the small
number of studies available for the longitudinal
meta-analysis, the moderator comparisons are limited; in
many cases, only one study provided data for a particular
subset (e.g., only one study used CSF [39]) and only three
studies contributed effect sizes toward the working memory
domain [40-42]; hence, post hoc analyses were conducted
only where there were sufficient samples. For episodic
memory, group mean effect sizes remained statistically
significant when these accounted for data from studies that
had classified AP as a categorical measure and had
controlled statistically for the effects of demographic and
clinical characteristics. For processing speed, effect sizes
remained statistically significant when these accounted for
data from studies that had classified AP as a categorical
measure. For global cognition, group mean effect sizes
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remained statistically significant when these accounted for
data from studies that had classified AP levels
categorically, and had used the CDR criteria to exclude
prodromal AD or MCI at baseline.

4. Discussion

The results of this meta-analysis indicate that, in CN
older adults, reliable AP+ related cognitive impairment oc-
curs in the domains of episodic memory, executive function,
processing speed, visuospatial function, and global cogni-
tion. However, for each of these cognitive domains, impair-
ment was by convention [25], small in magnitude with effect
sizes ranging from d = 0.15 for episodic memory to d = 0.25
for visuospatial function. Interestingly, the largest effect size
observed was for measures of global cognition, computed
within studies by combining data across their neuropsycho-
logical tests measuring multiple cognitive domains. Never-
theless, even with data from all tests combined in this way,
the magnitude of AB+-related impairment remained only
small (d = 0.32). No statistically significant evidence of
impairment was observed for the domains of working or se-
mantic memory and in both cases, the magnitude of impair-
ment was smaller than that observed for the other cognitive
domains (d’s < 0.12). As these estimates of cognitive
impairment were based on data from 5005 subjects from
30 studies, we believe these effect sizes provide an accurate
estimation of the nature and magnitude of cognitive impair-
ment in AR+ CN older adults.

AB+-related cognitive decline was evident in the domains
of episodic memory, semantic memory, visuospatial function,
and global cognition, with the magnitude of decline in these
cognitive domains ranging from d = 0.24 for episodic mem-
ory to d = 0.30 for global cognition. Again, the effect size for
decline in global cognitive function was significant and small
in magnitude (d = 0.30). No AB+-related decline was
observed for working memory, processing speed, or executive
function. Given the greater resources needed to conduct pro-
spective studies, these estimates of cognitive decline in AR+
CN older adults were based on fewer data points than those
for cognitive impairment. However, as data were obtained
for 2584 subjects from 14 studies encompassing an average
of approximately five years of follow-up that satisfied inclu-
sion/exclusion criteria, therefore these estimates of cognitive
decline in AB+ CN older adults are reliable. When consid-
ered together, data from both the cross-sectional and longitu-
dinal meta-analyses suggest that in CN older adults, AR+ is
associated with both subtle cognitive impairment and decline.
There was no evidence for a specific profile of cognitive
impairment associated with AB+. In fact, measures of global
cognitive function, which typically combined multiple cogni-
tive domains, provided the largest effect sizes. In contrast, an-
alyses of longitudinal studies indicated that AR+ related
cognitive decline manifests predominantly and moderately

in episodic and semantic memory. While stratifying the sam-
ples by mean age moderated cognitive impairment in episodic
memory and executive function, mean age did not influence
the estimates of cognitive decline for any domain. These
effects will be considered in turn.

4.1. AB+-related cognitive impairment

The results show that AR+ is associated with moderate
but nonspecific levels of cognitive impairment in CN older
adults. The pattern of neuropsychological impairments de-
tected suggests that in CN older adults, AB+ was associated
with small impairments across measures of episodic mem-
ory, executive function, processing speed, and visuospatial
function. It was not associated with impairment in working
memory or semantic fluency. This general decrease in atten-
tion, executive function, and memory, with relative sparing
of verbal fluency is consistent with the observation that the
AR+ related impairment with the greatest magnitude was
for global cognition, a score which in most studies was
computed by combining performance across all the neuro-
psychological tests used in that study. The presence of this
subtle and general cognitive impairment in AB+ CN older
adults indicates that even very early in the course of AD,
increased deposition of A is related to disrupted cognitive
function, although this effect is small.

Estimates of AB+ cognitive impairment from this meta-
analysis suggest that the neuropsychological tests used to
date in studies of preclinical AD are unlikely to be useful
for identifying those CN older adults who would have
abnormal AP levels if they underwent PET or CSF assess-
ment. For example, with a Cohen’s d of 0.30 (as observed
for global cognition), 88% of the scores for AB+ and AB—
individuals would overlap [43]. Thus, there would be a
42% chance of picking an AP+ individual at random
that would have a higher score on the task than a similarly
chosen AB— individual. Clearly, the sensitivity of the neu-
ropsychological tests analyzed here is insufficient to war-
rant their use in distinguishing AB+ CN older adults
from AB— CN older adults. Zakzanis (2001) [44] sug-
gested that the criteria for a useful clinical marker in neu-
ropsychological disorders would be a Cohen’s d of 3 or
above. This corresponds to an overlap of just 13% and
<2% chance of selecting at random an AB+ individual
that would score higher on the task than a similarly chosen
APB— individual. Therefore, while the results from our
meta-analysis confirm that AB+ does manifest as cognitive
impairment early in AD, the magnitude of this impairment
is subtle and nonspecific and would therefore be unlikely to
be useful clinically.

The analyses indicated heterogeneity between studies
that provided estimates of episodic impairment in AB+
CN older adults. Post hoc analyses of this heterogeneity
suggested it was due to methodological variation between
studies. Indeed, the estimates of impairment in this
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Fig. 2. Forest plots from the meta-analysis of studies with longitudinal designs. Effect sizes are presented as Cohen’s d with 95% confidence intervals.
The dotted lines represent no effect of amyloid on cognition. Negative values represent greater decline in performance in the presence of high AB. The
domain of working memory is not included as only one study contributed data for this domain. The size of the dots represents study weighting due to

sample size.

domain increased when looking at subsets of studies based
on moderator variables. The finding that studies using
PET had greater memory impairment than those using
CSF to measure AP might be because CSF AB42 reaches
abnormal levels earlier than PiB-PET [45], and therefore,
AP+ determined from PET occurs in those with more
advanced disease. Similarly, the increased impairment in
the subset of studies using CDR criteria could reflect
the inclusion of individuals who would have otherwise
been classified as MCI. Finally, the reduction of variance,
or noise, through controlling for extraneous variables

or using categorical classifications of AP could be why
an increase in impairment was seen in these subsets of
studies.

4.2. AB+-related cognitive decline

The results show that AB was associated with significant
decline in the domains of episodic memory, semantic mem-
ory, visuospatial function, and global cognition. Although
the magnitude of decline for each domain was small, the
effect of AP extended beyond the domain of episodic
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memory, and this is important for understanding the nature
of cognitive change in early AD. Unexpectedly, effect sizes
for AB+-related decline in episodic memory were smaller
than those in visuospatial function and semantic memory.
Research from our group and others has continually identi-
fied decline in episodic memory as being central to clinical
progression in early AD [18,46,47]. Furthermore,
dysfunction in episodic memory has been associated with
loss of hippocampal volume, in accord with models of
the structural brain changes that occur early in AD
[2,48-50] and with brain-behavior models of episodic
memory [51,52]. The reliable decline observed here for
semantic memory and visuospatial function is also
consistent with the involvement of medial temporal lobe
structures [53].

Consistent with the specificity of AB+-related cognitive
decline to higher cognitive functions dependent on medial
temporal lobe structures was the absence of any decline in
processing speed. Neuropsychological models suggest that
processing speed reflects lower order or more basic cognitive
functions that subserve higher processes such as working
memory, executive function, and episodic memory [54].
However, this raises an issue of why A+ was not associated
with decline in executive function, given this is dependent on
the integrity of the frontal lobe [54]. One possible explanation
for the absence of any decline in executive function is very
early AD-related neuronal loss does not involve the prefrontal
cortex [55,56]. The lack of correlation between location of A3
deposition and neuronal death has been noted in many
pathologic studies (see review by Musiek & Holtzman
[57]). In this context, the results of this meta-analysis suggest
that early AD-related cognitive declines occur predominantly
in domains that rely on the normal function of the hippocam-
pus and entorhinal cortex, which are areas that are most sen-
sitive to early neuronal death in AD [58]. Thus, in preclinical
AD, despite the widespread deposition of A [59], neuronal
disruption and cognitive decline remain relatively specific.
Although some neuropsychological studies have concluded
that decline in executive function does occur in preclinical
AD and can also predict clinical progression to MCI and
AD [15,60], the neuropsychological tests classified as
measuring executive function have varied between studies.
For example, some studies include measures of working
memory [11,61,62] or tasks of verbal and semantic fluency
[13,15] as part of the domain of their executive function
composite scores. Previous research suggests that a specific
component of executive function, verbal switching, and
inhibition is more sensitive to executive dysfunction before
dementia than other measures, such as planning [63,64]. In
accord with previous meta-analyses and standard neuropsy-
chological models, the current study classified tasks of se-
mantic and verbal fluency as representing semantic
memory, whereas working memory was classified as a
domain separate from executive function. Thus, the definition
of executive function used here reflected tests of planning, er-

ror monitoring, and inhibition. Therefore, should the data
from the present study be considered in the context of a
broader definition of executive function, one possible conclu-
sion is that AB+-related decline in executive function in pre-
clinical AD does not manifest in areas of inhibition, planning,
error monitoring, or working memory but rather in semantic
and phonemic fluency. This absence of any impairment in se-
mantic and phonemic fluency from the analysis of cross-
sectional designs reinforces the subtlety of the impairment
and shows that repeated assessment is required for it to
become evident.

The lower than expected estimates of A+-related
cognitive decline in episodic memory might have been
due to the substantial heterogeneity between studies for
measures of this domain (Table 1). First, given the central-
ity of memory dysfunction to early AD, all but one study
measured episodic memory (i.e., [65]). This resulted in
many more measures of episodic memory being included
in the current meta-analysis than measures of other cogni-
tive domains. Thus, there was also the potential for greater
variation to be included in estimates of mean effect size.
Methodologic differences between studies might also ac-
count for some of this heterogeneity. For example, esti-
mates of decline in episodic memory were larger in the
subgroups of studies that used PET imaging, categorical
A levels, statistically controlled for extraneous variables
and in those which used the CDR criteria to exclude sub-
jects. As discussed, the reason for a stronger effect under
these conditions could be that the samples contain more in-
dividuals at later stages of preclinical AD. It is interesting
to note that the largest increase in effect size could be at-
tained if including only those studies which used both
PET imaging and categorically defined AP levels (n = 8;
d = 0.45). While, as mentioned, PiB-PET becomes
abnormal much later than CSF AB42, adding the additional
constraint of using a categorical classification for Af
increased the effect above that of just PET alone.

4.3. Comparison with previous meta-analysis

The current results extend conclusions about AP--
related cognitive impairment and decline drawn from a
previous meta-analysis [16]. Unlike for the current meta-
analysis, Hedden et al. (2013) concluded that the greatest
cognitive dysfunction in AB+ CN older adults occurred
in the domain of episodic memory (r = 0.12). The addi-
tional domains of AB+-related cognitive impairment and
decline identified in the present study is likely to have
occurred because of the comparatively greater number of
participants and studies now available and because the
Hedden et al. study did not separate data from studies
with cross-sectional and those with longitudinal designs.
The inclusion/exclusion criteria for the current meta-
analysis were also slightly different to that used previously.
For example, the present study did not include data from
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histopathologic studies as the prevalence of comorbidities
in these populations, and the substantial time between clin-
ical assessment and death can reduce the reliability of clin-
icopathologic correlations [66]. The present study also
excluded studies that classified Af from plasma, given
that as yet there are no reliable blood-based biomarkers
of CNS AP [67]. Most importantly, the current results
were based on a much larger sample than the
previous study. For example, 59% of studies included in
the current meta-analysis were published after the period
covered by Hedden et al. Furthermore, the length of
prospective studies is now greater, enabling more reliable
estimates of AP+-related cognitive decline. Thus, the
findings from the present study provide a current and
reliable foundation for understanding the nature and
magnitude of cognitive impairment and decline in AR+
CN older adults.

4.4. Limitations and directions for future research

Although the estimates of AP-+-related cognitive
impairment and decline were based on large sample sizes
measuring multiple cognitive domains, there are some
important caveats on our conclusions. This study did not
consider relationships between tau and cognitive impair-
ment or decline. Given that post mortem studies of AD
report that cognitive dysfunction is related more strongly
to NFT burden than to amyloid burden [66], it is likely
that the addition of levels of tau to meta-analyses will pro-
vide greater explanation of variability in cognitive out-
comes. Second, as discussed above, there was bias
toward the measurement of episodic memory in the studies
included. Third, although we identified no evidence of pub-
lication bias in studies using cross-sectional designs, the
limited number of studies using longitudinal designs meant
that publication bias was unable to be assessed. This is
indicative of the small number of independent, ongoing
observational cohort studies. Furthermore, results from
the same cohort are often published in multiple articles,
so although there may be a wealth of articles reporting
on cognitive decline, only a few can be chosen to represent
the cohort. Importantly, 20% of the references that were
screened in full were excluded due to not including suffi-
cient information for effect size elicitation, and this lead
to exclusion of information from some very important
and influential studies in the area. While reporting of
means and standard deviations is not always appropriate,
the explicit reporting of effect sizes and confidence inter-
vals around these should be standard practice, as basing
conclusions solely on the absence or presence of statistical
significance is inherently flawed [68]. Fourth, the small
sample sizes for some estimates may have reduced the reli-
ability of moderator analyses. Although 60% of studies us-
ing PET neuroimaging classified AP burden using a
dichotomous outcome (e.g., low/negative or high/positive)
in studies using the [''C] PiB-PET tracer, and calculating

burden using distribution volume ratios, the criterion score
used to define abnormality has ranged between 1.06 [35]
and 1.80 [69]. Additionally, the neocortical areas contrib-
uting to these estimates of AP burden varied slightly.
Recent recommendations outlined by Dubois et al. (2016)
[70] highlighted the large methodological variation be-
tween studies with regard to their PET and CSF analyses,
stating that differences in thresholds established, protocols
and procedures used, and reference and target regions used
are possible confounding variables.

These caveats notwithstanding, the conclusions here
that AP is associated with small impairments in episodic
memory, executive function, processing speed, visuospatial
function, and global cognition, and with greater decline in
episodic and semantic memory, visuospatial function, and
global cognition, are based on a large sample that can be
considered to provide a good representation of a preclini-
cal AD population, with an average age of 70 years,
approximately equal numbers of males and females, and
the number of APOE €4 carriers consistent with popula-
tion prevalence rates [71]. Although these estimates can
be considered representative of what would be seen in a
preclinical AD population, it is clear that the effect of
AP on cognition in this early stage is very subtle, and
that current neuropsychological measures do not possess
the sensitivity to reliably detect AR+ related cognitive
dysfunction. Development or refinement of neuropsycho-
logical measures and procedures sensitive to early neuro-
logical changes will ultimately provide the sensitivity
and specificity that is required to enable the use of cogni-
tive outcomes as clinical markers of disease. This may
mean focusing on tools that have characteristics such as
the ability for use with increased frequency of testing,
sensitivity to other biological markers of disease in addi-
tion to amyloid (such as tau or other markers of neurode-
generation) and which provide evidence of reliable change
specific to clinical groups such as those with MCI and AD.
The estimates generated here do provide a foundation for
determination of the extent to which new tests of cognition
or behavioral assays can be used to identify AP in CN
adults.
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RESEARCH IN CONTEXT

1. Systematic review: The authors conducted meta-
analyses of the published literature examining re-
lationships between amyloid levels and cognition in
cognitively normal older adults using online database
Medline OVID. Estimates of cognitive impairment
from studies using cross-sectional designs and
cognitive decline from studies using longitudinal
designs were obtained.

2. Interpretation: The findings indicate that subtle yet
statistically significant cognitive impairment and
cognitive decline occur in cognitively normal older
people with high levels of amyloid. Cognitive
impairment is general in nature and small in magni-
tude, whereas moderate cognitive decline manifests
primarily in episodic memory, semantic memory,
and visuospatial function.

3. Future directions: The estimates of amyloid-related
cognitive impairment and cognitive decline devel-
oped from the current meta-analyses provide a
strong foundation for the design of studies that
seek to improve the detection of amyloid in
cognitively normal older adults through the
development of new approaches to assessment.
They also provide a basis for computing statistical
power for secondary prevention clinical trials
where slowing cognitive decline may determine the
effectiveness of experimental drugs designed to
reduce amyloid burden.
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