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Abstract. The aim of the present study was to explore the 
protective role of resveratrol (RES) in asthma‑induced 
airway inf lammation and remodeling, as well as its 
underlying mechanism. An asthma rat model was induced by 
ovalbumin (OVA) treatment. Rats were randomly assigned into 
sham, asthma, 10 µmol/l RES and 50 µmol/l RES groups. The 
amount of inflammatory cells in rat bronchoalveolar lavage 
fluid (BALF) was detected. Pathological lesions in lung tissues 
were accessed by hematoxylin and eosin (H&E), and Masson's 
trichrome staining. Levels of inflammatory factors in lung 
homogenate were detected via ELISA. The blood serum of 
asthmatic and healthy children was also collected for analysis. 
Reverse transcription‑quantitative polymerase chain reaction 
was performed to detect high mobility group box 1 (HMGB1), 
Τoll‑like receptor 4 (TLR4), myeloid differentiation primary 
response gene 88 (MyD88) and NF‑κB expression in asthmatic 
and healthy children, as well as rats of the different groups. 
H&E staining demonstrated that multiple inflammatory cell 
infiltration into the rat airway epithelium of the asthma group 
occurred whilst the 50 µmol/l RES group displayed alleviated 
pathological lesions. Masson staining indicated that there was 
an increased airway collagen deposition area in the asthma 
and 10 µmol/l RES groups compared with the 50 µmol/l RES 
group. The number of inflammatory cells in BALF extracted 
from rats of the asthma and 10 µmol/l RES groups was higher 
compared with the 50 µmol/l RES group. Treatment with 
50 µmol/l RES significantly decreased the thicknesses of the 
airway wall and smooth muscle. ELISA results illustrated that 
interleukin (IL)‑1, IL‑10 and tumor necrosis factor‑α (TNF‑α) 
levels were elevated, whereas IL‑12 level was reduced in 
lung tissues of the asthma and 10 µmol/l RES groups whilst 

the 50 µmol/l RES group demonstrated the opposite trend. 
HMGB1, TLR4, MyD88 and NF‑κB mRNA levels were 
remarkably elevated in rats of the asthma and 10 µmol/l RES 
groups compared with the 50  µmol/l RES group. Serum 
levels of IL‑1, IL‑10 and TNF‑α were elevated, whereas IL‑12 
was reduced in asthmatic children compared with healthy 
children. The present results demonstrated that a large dose 
of RES alleviated asthma‑induced airway inflammation and 
airway remodeling by inhibiting the release of inflammatory 
cytokines via the HMGB1/TLR4/NF‑κB pathway.

Introduction

Asthma is a common chronic respiratory disease in children. 
Its main pathological features are airway inflammation 
and airway remodeling. Eosinophils, neutrophils and other 
inflammatory cells participate in asthma‑induced airway 
remodeling (1‑3). As a chronic inflammatory disease, asthma 
may progress to irreversible airway remodeling without the 
appropriate treatment (4). Research has identified that asthma 
pathogenesis involves multiple mechanisms, including genetic 
mechanisms, the immune response, chronic airway inflamma-
tion, airway hyper responsiveness, airway neuromodulation 
disorders and neural signaling pathway (5‑7). The immune 
response is the leading pathogenic factor.

High mobility group box 1 (HMGB1) is a highly conserved 
nuclear protein that is released by mononuclear cells, macro-
phages and other immune cells following stimulation by 
lipopolysaccharide, tumor necrosis factor‑α (TNF‑α) or inter-
leukin (IL)‑1. HMGB1 is also passively released from damaged 
and necrotic tissue cells to further promote the secretion of 
a number of inflammatory factors. As a vital endogenous 
pro‑inflammatory factor and inflammatory mediator, HMGB1 
participates in the pathological processes of sepsis, pneu-
monia, arthritis and other diseases  (8,9). Extracellular 
HMGB1 promotes cytokine release via the mitogen‑activated 
protein kinase (MAPK), ERK1/2 and NF‑κB pathways (10). 
HMGB1 also activates Τoll‑like receptor (TLR) 2 and TLR4, 
which in turn leads to a downstream inflammatory response 
via targeting myeloid differentiation primary response 
gene 88 (MyD88) and NF‑κB (11). It has been demonstrated 
that TLR4 is an essential receptor in HMGB1‑induced inflam-
mation  (12). HMGB1 exerts its pro‑inflammatory role via 
binding to TLR4 leading to release of inflammatory cytokines 
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such as IL‑β, IL‑10, IL‑12 and TNFα (13,14). The present study 
hypothesized that the HMGB1/TLR4/NF‑κB pathway may be 
of great significance in the pathogenesis of asthma.

In recent years, resveratrol (RES) has attracted research 
focus due to its low toxicity and wide range of action. Beneficial 
effects of RES have been demonstrated in pulmonary fibrosis, 
chronic obstructive pulmonary disease, pulmonary hyperten-
sion and other lung diseases  (15‑17). RES can effectively 
inhibit eosinophil activation and degranulation (18), and alle-
viate airway inflammation and airway hyper‑responsiveness 
in an acute asthma model (19). In addition, RES regulates 
the differentiation of type 1 T helper (Th1)/Th2 cells through 
Tbet/GATA binding protein 3 pathway, suggesting that RES 
may have a role in protecting against bronchial asthma (20). 
However, the specific mechanisms of RES in regards to 
asthma remains not fully understood. The present study first 
constructed an asthma rat model. Following intervention with 
different doses of RES, the alterations in rat airway remodeling 
and the HMGB1/TLR4/NF‑κB pathway were observed. These 
findings provided a theoretical basis for improving clinical 
asthma outcomes in children.

Materials and methods

Animal procedures. A total of 40 male Sprague Dawley rats 
(age, 4 weeks; weight, 80±15 g) were purchased from Beijing 
Vital River Laboratory Animal Technology Co., Ltd. and 
housed at 24±3˚C and humidity of 40‑60% on a 12‑h light/dark 
cycle (lights on at 06:00 am). The rats were provided food and 
water ad libitum. Rats were acclimated for 1 week and subse-
quently randomly assigned into the sham, asthma, 10 µmol/l 
RES or 50 µmol/l RES groups (n=10).

Asthma rat model construction. A total of 0.2 ml of mixed 
antigen [2  mg ovalbumin (OVA) + 40  mg aluminum 
hydroxide] solution (Sigma‑Aldrich; Merck KGaA) was intra-
peritoneally injected into rats of the asthma group, 10 µmol/l 
RES (Sigma‑Aldrich; Merck KGaA) group and 50 µmol/l 
RES group on day 1, 8 and 15, respectively. Rats in the sham 
group received intraperitoneal injection of 0.2 ml of saline. 
On day 22, rats in the asthma group, 10 µmol/l RES group 
and 50 µmol/l RES group received atomization inhalation of 
1% OVA to induce the asthma model. For the RES group rats, 
30 min before inhalation of OVA, 0.2 ml of either 10 µmol/l or 
50 µmol/l RES was injected intraperitoneally into rats. Rats in 
the sham group and asthma group were injected with 0.2 ml of 
saline. The experiment lasted until day 35.

Bronchoalveolar lavage fluid (BALF) sample collection. Rats 
were anesthetized with 1% sodium pentobarbital (40 mg/kg) 
intraperitoneally prior to collection of BALF. In brief, 1 ml of 
saline was injected into rats then repeat suction was performed 
three times. BALF was recycled and centrifuged at 400 x g 
for 15 min at 4˚C. A sample was considered as suitable for 
experimentation when the recycled amount was >0.8  ml. 
Cell counting was performed within 1 h. Cell sedimentation 
was resuspended with PBS solution, then 10 µl was used for 
measurement of total cell number. Then 0.1 ml was used for 
cell pellets smear. The cell pellets smear was fixed and stained 
with Wright's staining. Cells were differential counted in 

three visual field and the values were averaged as previously 
described in the literature (19).

Hematoxylin and eosin (H&E) staining. The right lung tissue 
of rats was fixed with 10% paraformaldehyde (Sigma‑Aldrich; 
Merck KGaA) at room temperature for 48 h. Then the tissue 
was dehydrated in an ascending series of ethanol, embedded in 
paraffin and sectioned (5 µm). Following deparaffinization in 
xylene and rehydration in a descending series of alcohol, lung 
tissues were stained with H&E. Inflammatory cell infiltration and 
airway epithelial injury were observed under a light microscope.

Masson staining. The aforementioned paraffin embedded slices 
(5 µm) were stained with Weigert solution (Sigma‑Aldrich; 
Merck KGaA) for 5‑10 min. After being fully washed, sections 
were treated with Ponceau fuchsin acid solution for 5‑10 min, 
immersed in 2% acetic acid aqueous solution for 1 min, then 
differentiated in 1% phosphomolybdic acid aqueous solu-
tion for 3‑5 min. Without washing with water, the sections 
were treated with aniline blue for 5  min then immersed 
in 0.2% acetic acid aqueous solution for 1 min. Slices were 
permeabilized with xylene and mounted with neutral resin.

Measurement of the thicknesses of airway wall and smooth 
muscle. The intact small bronchioles were identified using a 
light microscope. Three transverse sections were randomly 
selected in each rat. Basement membrane perimeter (Pbm), 
total bronchial wall area (Wat1), bronchial luminal area (Wat2), 
external smooth muscle area (Wam1) and internal smooth 
muscle area (Wam2) of each rat were accessed using Image 
Pro Plus v.6.0 software (Media Cybernetics, Inc.). The thick-
ness of airway wall (Wan) and smooth muscle (Wat) were then 
calculated using the following formulas:

(1) Wan=(Wat1‑Wat2)/Pbm
(2) Wat=(Wam1‑Wam2)/Pbm

Determination of inflammatory factors in lung homogenate. 
Harvested rat lung tissue (0.5 g) was ground and centrifuged 
at 4,500 x g for 10 min at 4˚C for preparation of lung homog-
enate. Levels of IL‑1, IL‑10, IL‑12 and TNF‑α in rat lung 
homogenate were detected using the respective ELISA kits 
(Rat IL‑1 ELISA kit, cat. no. RAB0272; Rat IL‑10 ELISA kit, 
cat. no. RAB0246; Rat TNF‑α ELISA kit cat. no. RAB0480; 
all from Sigma‑Aldrich; Merck KGaA; and Rat IL‑12 ELISA 
kit, cat. no. KRC0121; Invitrogen; Thermo Fisher Scientific, 
Inc.) according to the manufacturer's instructions.

Reverse transcription‑quantitative PCR (RT‑qPCR). 
The lung tissue (0.5 g) was cut and homogenized; TRIzol 
(Invitrogen; Thermo Fisher Scientific, Inc.) was used to 
extract total RNA. Total RNA underwent reverse transcription 
according to the instructions of PrimeScript RT reagent Kit 
(Takara Bio, Inc.). qPCR was performed using SYBR®-Green 
Master Mix (Takara Bio, Inc.) according to the manufacturer's 
protocol; amplification was performed under the recom-
mended parameters: Initial denaturation at 95˚C for 5 min, 
followed by 40 cycles of 95˚C for 5 sec, 60˚C for 15 sec and 
72˚C for 15 sec, and a final extension at 94˚C for 15 sec. The 
expression level of the target gene was calculated using the 
2‑ΔΔCq method (21). Primers are listed in Table I.
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Determination of inflammatory factors in serum of children. 
A total of 34 pediatric patients with asthma (age, 4‑14 years; 
19 male, 15 female), admitted to The Affiliated Changzhou 
No.  2 People's Hospital of Nanjing Medical University 
(Changzhou, China) from January 2018 to May 2018 were 
selected as the asthma group. The diagnosis of childhood 
asthma conforms to the diagnostic criteria in the Guidelines for 
the Diagnosis and Prevention of Childhood Bronchial Asthma, 
formulated by the Respiratory Group of the Chinese Medical 
Association in 2008. Exclusion criteria: i) Patients with other 
tracheal, bronchial or pulmonary diseases; ii) patients with 
severe multiple organ, nervous or psychiatric diseases. Subjects 
were all in the acute asthmatic stage regardless of the severity 
of the attack. For the control group, 24 healthy children (age, 
4‑12 years; 13 male, 11 female) were selected during the same 
period. From each subject, 5 ml of venous blood sample was 
collected for detecting serum levels of IL‑1, IL‑10, IL‑12 and 
TNF‑α by ELISA. Written informed consent was obtained 
from the legal guardians for all patients and healthy controls.

Statistical analysis. Data were analyzed by SPSS v.17.0 statis-
tical software (SPSS Inc.). Quantitative data were presented 
as mean ± standard deviation. Student's t‑test was used for 
comparing differences between two groups. One‑way analysis 
of variance was performed for assessing differences amongst 
multiple groups, followed by Fisher's least significant differ-
ence analysis or Dunnett's test. P<0.05 was considered to 
indicate statistical significance.

Results

High dose RES treatment attenuates pathological lesions in 
a rat asthma model. Pronounced pathological lesions were 
observed in the lung tissues of the asthma group, manifesting 
as edema and abscission of airway epithelium, airway constric-
tion, multiple inflammatory cell infiltration and tracheal 
smooth muscle thickening (Fig.  1A). In addition, marked 

capillary congestion, alveolar fusion enlargement and alveolar 
septum widening were observed in asthma rats  (Fig. 1A). 
Pathological changes were similar in the 10  µmol/l RES 
group. By contrast, pathological changes in lung tissues were 
less pronounced in the 50 µmol/l RES group compared with 
the asthma group (Fig. 1A).

High dose RES treatment decreases airway collagen deposi-
tion area. Masson staining is commonly used to stain collagen 
fibers, mucus and cartilage blue. Muscle fibers, cellulose and 
red blood cells are stained red, whilst cell nuclei are stained 
blue‑black. Airway collagen deposition was more marked in 
the asthma group compared with the sham group (Fig. 1B). 
No significant difference in airway collagen deposition area 
was observed between the asthma group and 10 µmol/l RES 
group (Fig. 1B). By contrast, the airway collagen deposition 
area was markedly reduced in the 50  µmol/l RES group 
compared with the asthma group (Fig. 1B).

High dose RES treatment decreases inflammatory cell levels 
in the BALF of asthma model rats. Total amounts of inflam-
matory cells, eosinophils and lymphocytes were elevated in 
the asthma group and the 10 µmol/l RES group compared 
with the sham group (P<0.05; Fig. 2A‑C). By contrast, the 
amounts of inflammatory cells, eosinophils and lymphocytes 
were significantly decreased in the 50 µmol/l RES group 
(P<0.05; Fig. 2A‑C).

High dose RES treatment decreases airway wall and smooth 
muscle thickness in asthma model rats. Airway wall and 
smooth muscle thickness were increased in the asthma 
group and 10  µmol/l RES group compared to the sham 
group (P<0.05; Fig. 2D and E). Treatment with 50 µmol/l 
RES decreased airway wall and smooth muscle thickness 
(P<0.05; Fig. 2D and E).

High dose RES treatment decreases inflammatory factor 
levels in lung tissues of asthma model rats. ELISA results 
illustrated that IL‑1, IL‑10 and TNF‑α levels in lung tissues of 
the asthma and 10 µmol/l RES groups were elevated, whereas 
IL‑12 level was reduced (P<0.05; Fig. 3). In the 50 µmol/l RES 
group, IL‑1, IL‑10 and TNF‑α levels were downregulated but 
IL‑12 was upregulated in rat lung tissues following establish-
ment of the asthma model (P<0.05; Fig. 3).

High dose RES treatment reduces HMGB1, TLR4, MyD88 
and NF‑κB expression in asthma model rats. HMGB1, TLR4, 
MyD88 and NF‑κB mRNA expression levels were remark-
ably elevated in rats of the asthma and 10 µmol/l RES groups 
compared with the sham group (P<0.05; Fig. 4). By contrast, 
50 µmol/l RES treatment significantly decreased HMGB1, 
TLR4, MyD88 and NF‑κB mRNA expression in rat lung tissue 
following establishment of the asthma model (P<0.05; Fig. 4).

Inflammatory factor levels increase in serum samples of asth-
matic children. Serum levels of IL‑1, IL‑10, IL‑12 and TNF‑α 
in asthma children and healthy children were analyzed. 
Asthmatic children had increased IL‑1, IL‑10 and TNF‑α 
serum levels, as well as decreased IL‑12 levels compared with 
healthy children (P<0.05; Fig. 5).

Table I. Primer sequences.

Gene	 PCR
name	 size (bp)	 Primer sequence (5'→3')

HMGB1 	 356	 F:	CGGATGCTTCTGTCAACT
		  R:	TCAGCTTGGCAGCTTTCT
TLR4 	 310	 F:	GGTGAGAAATGAGCTGGTA
		  R:	TCTGCTAAGAAGGCGATA
MyD88	 113	 F:	CGTCGCATGGTGGTGGTTGTTT
		  R:	GGGATCAGTCGCTTCTGTTGGA
NF‑κB 	 425	 F:	GCGCATCCAGACCAACAATAAC
		  R:	GCCGAAGCTGCATGGACACT
GAPDH	 526	 F	 CCACTTGAAGGGTGGAGC
		  R:	TGAAGTCGCAGGAGACAA

HMGB1, high mobility group box 1; MyD88, myeloid differentia-
tion primary response gene 88; TLR4, Τoll‑like receptor; R, reverse; 
F, forward.
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Figure 1. Hematoxylin and eosin, and 2 of rat lung tissues demonstrating pathological lesions and collagen deposition following establishment of an asthma 
rat model. (A) Pathological lesions in rat lung tissue of sham, asthma, 10 µmol/l RES and 50 µmol/l RES groups. (B) Alterations of airway collage deposition 
(blue staining) in rat lung tissues of sham, asthma, 10 µmol/l RES and 50 µmol/l RES groups (magnification, x200). RES, resveratrol.

Figure 2. Inflammatory cell amount in BALF, and airway wall and smooth muscle thickness for sham, asthma, 10 µmol/l RES and 50 µmol/l RES groups. 
(A) Number of inflammatory cells in rat BALF for different groups. (B) Number of eosinophils for different groups. (C) Number of lymphocytes for 
different groups. (D) Thickness of airway wall for different groups. (E) Thickness of airway smooth muscle for different groups. *P<0.05 vs. sham group; 
#P<0.05 vs. asthma group. BALF, bronchoalveolar lavage fluid; RES, resveratrol; EOS, eosinophils; LYM, lymphocytes; Wan, the thickness of airway wall; 
Wat, the thickness of smooth muscle.



EXPERIMENTAL AND THERAPEUTIC MEDICINE  18:  459-466,  2019 463

Discussion

Bronchial asthma in children is a common disease that can 
severely influence daily life  (1). Asthma can progress to 
adulthood if proper and timely treatment is not received. 

Pathologically, asthma is an airway chronic inflammatory 
disease involving a variety of cells and cellular components. 
Airway inflammation and remodeling are important patholog-
ical features of chronic asthma. IL‑1β has an important role in 
the development of allergic asthma by inducing the formation 

Figure 3. IL‑1, IL‑10, IL‑12 and TNF‑α levels in rat lung tissues for sham, asthma, 10 µmol/l RES and 50 µmol/l RES groups. (A) IL‑1β, (B) IL‑10, (C) IL‑12, 
and (D) TNF‑α levels in rat lung tissues from the different experimental groups. *P<0.05 vs. control; #P<0.05 vs. asthma group. IL, interleukin; TNF‑α, tumor 
necrosis factor‑α; RES, resveratrol.

Figure 4. HMGB1, TLR4, MyD88 and NF‑κB mRNA expression in rat lung tissues for sham, asthma, 10 µmol/l RES and 50 µmol/l RES groups. (A) HMGB1, 
(B) TLR4, (C) MyD88 and (D) NF‑κB mRNA expression levels in rat lung tissues from the different experimental groups. *P<0.05 vs. control; #P<0.05 vs. asthma 
group. HMGB1, high mobility group box 1; TLR4, Τoll‑like receptor; MyD88, myeloid differentiation primary response gene 88; RES, resveratrol.
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of Th17 cells (22). IL‑10 can regulate immune function and 
improve airway inflammatory response (23). IL‑12 is a Th1 
cytokine, which increases airway hyper responsiveness due to 
exogenous injury and decreases eosinophil aggregation around 
the airway (24). The present study determined that serum levels 
of IL‑1, IL‑10 and TNF‑α in lung tissues of asthma model rats 
and serum samples of asthmatic children were significantly 
elevated. By contrast, IL‑12 level was decreased. These results 
indicated that the inflammatory response is involved in the 
occurrence and progression of asthma.

HMGB1 is widely present in the cell nucleus and 
cytoplasm. Nuclear membrane permeability is increased 
by inflammation, which in turn promotes the transloca-
tion of HMGB1 to the cell cytoplasm where it exerts 
pro‑inflammatory effects  (14,25,26). HMGB1 stimulates 
mononuclear cell and macrophage‑secreted inflammatory 
mediators, such as IL‑1β, IL‑10, IL‑12 and TNF‑α (27). In 
addition, HMGB1 promotes major histocompatibility complex 
II, CD80, CD83, CD86 and other costimulatory molecules 
in dendritic cells (DCs), inducing DC maturation to produce 
pro‑inflammatory cytokines (28). Eosinophils are recruited 
by HMGB1 to the inflammatory sites further aggravating the 
inflammatory response (29,30). Recent studies have identified 
that HMGB2 deteriorates airway inflammation by upregu-
lating TNF‑α, VEGF, MMP‑9 and TSLP expression. HMGB1 
knockdown remarkably decreases relative indicators of airway 
inflammation, mucus secretion, collagen deposition, and 
airway smooth muscle thickness (31). TLR4 was the first TLR 
identified in mammals; it comprises an extracellular domain, 
a transmembrane domain and an intracellular domain (32,33). 
Relative studies have demonstrated that TLR4 is involved in 
the regulation of airway inflammation through regulating DC 
maturation and activation, antigen presentation and T cell 

immune responses. TLR4 is overexpressed in airway smooth 
muscle cells by elastase stimulation, leading to thickening of 
the airway wall via activation of NF‑κB (34) therefore it is 
evident that TLR4 participates in airway remodeling. NF‑κB is 
a nuclear transcription factor with various biological activities. 
NF‑κB pathway regulates genes involved in asthma‑related 
airway inflammation  (35). Inhibition of NF‑κB activity 
alleviates the airway inflammatory response, thereafter 
improving airway remodeling. TLR4 activates NF‑κB through 
MyD88‑dependent and MyD88‑independent ways, eventu-
ally stimulating the production of pro‑inflammatory factors. 
HMBG1 induces the immune and inflammatory response after 
binding to its receptor TLR4 (36,37). It is hypothesized that 
the HMGB1/TLR4/NF‑κB pathway may serve an important 
role in the development and progression of asthma.

RES is a plant polyphenolic substance present in grape 
skins, berries and nuts (38). Numerous studies have demon-
strated that RES exerts anti‑apoptosis, anti‑inflammatory 
and anti‑oxidative effects in vitro (39‑43). RES also allevi-
ates airway inflammation and airway hyper responsiveness 
in vivo, partially through inhibiting eosinophil activation and 
degranulation (18,19). The most pronounced effect of RES is 
inflammation alleviation, mainly via NF‑κB pathway regula-
tion (44,45). RES is capable of inhibiting TLR4 expression 
in cardiomyocytes with hypoxia‑reoxygenation injury (46). 
However, the pathogenesis of asthma and the mechanism of 
RES on asthma are complex. In the present study, airway 
lesions were obvious in asthma model rats, manifesting as 
abundant inflammatory cell infiltration. Pathological lesions 
in rat airways were remarkably alleviated by treatment with 
50 µmol/l RES. However, 10 µmol/l RES treatment did not 
present therapeutic effect on asthma‑induced inflamma-
tion. HMGB1, TLR4, MyD88 and NF‑κB mRNA levels in 

Figure 5. Inflammatory factor levels in serum samples of asthmatic and healthy children. (A) Serum levels of IL‑1β, (B) IL‑10, (C) IL‑12 and (D) TNF‑α. 
*P<0.05 vs. control. IL, interleukin; TNF‑α, tumor necrosis factor‑α.
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50 µmol/l RES group were significantly lower compared with 
the asthma group. Treatment with 10 µmol/l RES did not affect 
HMGB1, TLR4, MyD88 and NF‑κB mRNA levels following 
establishment of an asthma model. The results confirmed that 
HMGB1 and TLR4 were involved in asthma‑induced airway 
inflammation. However, the present study used only RT‑qPCR 
to detect HMGB1, TLR4, MyD88 and NF‑κB levels; addi-
tional experimental methods should be investigated in future 
work. In addition, detection of the remodeling‑associated 
proteins and verification of which cell type is targeted by RES 
require to be further elucidated. Finally, the relationship of the 
HMGB1/TLR4/MyD88/NF‑κB axis and RES will be further 
studied in future work.

In conclusion, the present study demonstrated that large 
dose RES alleviated asthma‑induced airway inflammation and 
airway remodeling by inhibiting the release of inflammatory 
cytokines via the HMGB1/TLR4/NF‑κB pathway. The present 
results provided evidence for RES as a potential novel treat-
ment for asthma.
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