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Abstract Cerebral atherosclerosis (AS), small vessel

disease (SVD), and cerebral amyloid angiopathy (CAA)

are the most prevalent arterial disorders in the aged brain.

Pathogenetically, AS and SVD share similar mechanisms:

plasma protein leakage into the vessel wall, accumulation

of lipid-containing macrophages, and fibrosis of the vessel

wall. CAA, on the other hand, is characterized by the

deposition of the amyloid b-protein in the vessel wall.

Despite these differences between CAA, AS and SVD,

apolipoprotein E (apoE) is involved in all three disorders.

Such a pathogenetic link may explain the correlations

between AS, SVD, CAA, and Alzheimer’s disease in the

brains of elderly individuals reported in the literature. In

addition, AS, SVD, and CAA can lead to tissue lesions

such as hemorrhage and infarction. Moreover, intracerebral

SVD leads to plasma protein leakage into the damaged

vessel wall and into the perivascular space resulting in a

blood–brain barrier (BBB) dysfunction. This SVD-related

BBB dysfunction is considered to cause white matter

lesions (WMLs) and lacunar infarcts. In this review, we

demonstrate the relationship between AS, SVD, and CAA

as well as their contribution to the development of vascular

tissue lesions and we emphasize an important role for apoE

in the pathogenesis of vessel disorders and vascular tissue

lesions as well as for BBB dysfunction on WML and

lacunar infarct development.
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Introduction

The three most important vessel disorders in the elderly

brain are cerebral atherosclerosis (AS), small vessel disease

(SVD), and cerebral amyloid angiopathy (CAA). All three

disorders can lead to infarction and hemorrhage [56, 87,

102]. SVD is also associated with white matter lesions

(WMLs) [48]. Infarction, hemorrhage, and WMLs cause

the destruction of brain tissue and, thereby, frequently

cause neurological symptoms.

This review is aimed at identifying pathogenetic

mechanisms involved in AS, SVD, and CAA that may

explain their correlation with one another and with vascular

lesions, such as hemorrhage, infarction, and WMLs. To

address this aim, we will first summarize the current

knowledge about these vessel disorders. Second, we will

discuss the correlation between these vessel diseases and

the proteins involved in the pathogenesis of all three dis-

orders. Third, we will summarize the current concepts

about the involvement of apolipoprotein E (apoE) in these

vessel disorders, and discuss potential pathogenetic

mechanisms that may represent a link among them. Then,
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the relationship between the vessel disorders and vascular

brain lesions will be reported and pathogenetic mecha-

nisms will be discussed.

Pathology of major vessel disorders in the aging brain

Atherosclerosis

Atherosclerosis is a degenerative vessel disorder that fre-

quently affects large- to medium-sized arteries. In the brain,

the vessels of the circle of Willis are often involved [5, 66].

The occurrence and the severity of AS in the circle of Willis

increase with age (Table 1). AS changes in small arteries

overlap with those found in SVD. Atherosclerotic plaques

are prone to rupture with subsequent thrombosis [119, 120].

The thrombus resulting from plaque rupture can either lead

to vessel occlusion or it can embolize and occlude a smaller

artery [73]. Embolism is most frequently originated from the

extracerebral parts of the vertebral artery and the common

and internal carotid arteries [73]. Atherosclerotic aneurysm

is a consequence of cerebral vessel wall destruction, rarely

leading to subsequent rupture and hemorrhage [56].

Intima thickening and accumulation of blood-derived

lipids in the intima initiate the development of AS [66, 121].

Further intima proliferation, splitting of the lamina elastica

interna and the accumulation of cholesterol-laden macro-

phages lead to the generation of atherosclerotic plaques

[119–121] (Fig. 1a, b), which is accompanied by further

destruction of the vessel wall and the accumulation of

T-lymphocytes and macrophages [42, 119–121]. In later

stages, AS plaques exhibit a necrotic core, cholesterol clefts

and calcifications [119]. AS plaque rupture is associated with

(1) inflammation, including the secretion of cytokines [e.g.

interleukin (IL)-1a, IL-12, IL-18], (2) collagen-degrading

enzymes, such as matrix-metalloproteinases (e.g. MMP-1,

MMP-9) and the neutrophil elastase, which are involved in

the degradation of the vessel wall [20, 21, 23, 71, 72], (3)

anti-oxidative stress response as indicated by the presence of

glutathione-S-transferase omega [65], and (4) endothelial/

intimal alteration as indicated by the occurrence of plasma

proteins [e.g. a2-macroglobulin (A2M; Fig. 1), neutrophil

elastase] in the AS plaque [70, 117]. Arterial hypertension is

a well-known risk factor for AS [76] and may foster plasma

protein leakage into the vessel wall. Other risk factors are

increased homocysteine plasma levels found in AS patients

[148] and the 677C-T mutation in the MTHFR gene

(methylenetetrahydrofolate reductase—an enzyme that is

involved in the remethylation of homocysteine, the mutation

results in increased plasma homocysteine levels) [32].

ApoE and its receptors are critically involved in the

pathogenesis of AS. ApoE-knockout mice and low-den-

sity lipoprotein (LDL) receptor knockout mice develop

AS [8, 156]. Dysfunctional uptake of LDLs may, thereby,

lead to the accumulation of oxidized LDLs in the ath-

erosclerotic vessel wall [9]. Thus, oxidized LDLs may be

candidates to trigger the development of atherosclerotic

plaques. ApoE and LDL receptors [e.g. LDLR and A2M

receptor/LDL receptor-related protein (LRP = CD91)]

were found in AS plaques (Fig. 1c) [8, 43]. The apoE e4

allele is controversially discussed as a possible genetic

risk factor for AS [64, 75, 116]. The second ligand of

LRP, the plasma protein A2M, also accumulates within

AS plaques (Fig. 1d) [117] and an association of its

deletion/insertion polymorphism with the expansion of AS

plaques within the circle of Willis has been reported [70].

The accumulation of A2M within the AS plaque did not

correlate with the type of the AS lesions [71] suggesting

that plasma protein influx including A2M may play a role

in the initiation of AS plaques but not for plaque rupture.

In summary, apoE, LDL receptors and A2M are involved

in the pathogenesis of AS. Leakage of plasma apoE and

A2M possibly contributes to the development of AS

plaques.

Table 1 Distribution of frequencies of autopsy cases with a given extent of atherosclerosis (AS) within the arteries of the circle of Willis (CaW)

among different age groups

Extent of AS Frequency of cases/% in the age group

60–70 years 71–80 years 81 years and older

No AS 20.69 3.57 4.00

1–25% of CaW vessels with AS 17.24 7.14 12.00

26–50% of CaW vessels with AS 20.69 32.14 8.00

51–75% of CaW vessels with AS 24.14 35.71 40.00

76–100% of CaW vessels with AS 17.24 21.43 36.00

The table presents the percentage of cases without AS and with AS in a given extent in the age groups 60–70, 71–80, and 81 years and older. This

observation is based on the data obtained from 82 non-selected autopsy cases. The circle of Willis was observed macroscopically for the presence

or absence of the 11 arteries of the circle of Willis as previously described [70]. The extent of AS was calculated as: number of AS-affected

vessels 9 100/number of investigated vessels of the circle of Willis [70]. The cases analyzed here were already included in other studies under

other aspects [65, 70]
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Small vessel disease

Small vessel disease encompasses degenerative alterations

in the vessel wall of the small arteries and arterioles that

are assumed to be pathogenetically linked [51, 67, 142].

SVD includes changes also described as small vessel

arteriosclerosis/atherosclerosis, arteriolosclerosis, and lip-

ohyalinosis [51, 67, 142]. These three subforms of SVD

and how they are pathogenetically linked to one another

will be discussed hereunder. CAA is not included in this

group basically because of differences in the pathogenesis

and the location of affected vessels.

Small vessel arteriosclerosis/atherosclerosis constitutes

AS in small intracerebral and leptomeningeal arteries

(200–800 lm in diameter). The vessels show endothelial

proliferation, splitting of the lamina elastica interna

(Fig. 2a), small plaque-like accumulations of plasma pro-

teins, lymphocytes and macrophages (microatheroma) [31,

67]. The pathogenesis is similar to that of AS including the

role of apoE leakage and the mechanisms responsible for

thrombosis and hemorrhage development [67]. Smaller

arteries (40–300 lm) exhibit asymmetric areas of fibrosis/

hyalinosis associated with foam cells and leakage of

plasma proteins such as apoE, A2M, and immunoglobulin

G (IgG) (Fig. 2b–f) termed lipohyalinosis. The initial

lesion is a fibrinoid necrosis of the vessel wall in the

absence of inflammation [67]. High arterial pressure and

blood–brain barrier (BBB) breakdown are implicated

in plasma protein leakage and fibrinoid necrosis in this

disease [68, 91, 92]. Lipohyalinosis is different from con-

centric hyaline thickening of small arteries (40–150 lm in

diameter) leading to a concentric stenosis of the vessel

lumen (Fig. 2g) [67] termed arteriolosclerosis. Due to the

high blood pressure, plasma proteins, such as albumin,

A2M and apoE, leak into the vessel wall and into the

perivascular brain parenchyma [1, 139] (Fig. 2h–i). These

changes are usually seen in white matter arteries [84, 140,

151].

SVD is first seen in the arteries of the basal ganglia,

mainly in the putamen and the globus pallidus, which

exhibit small vessel AS and lipohyalinosis. Secondly, small

white matter arteries become affected by arteriolosclerosis

or lipohyalinosis. Leptomeningeal arteries of the hemi-

spheres and the cerebellum develop small vessel AS in

parallel. Brain stem arteries, including those located

between the pontine nuclei, usually develop lipohyalinosis

or arteriolosclerosis only in the end stage of SVD [129].

Cortical vessels are usually free of SVD [129]. Enlarged

Fig. 1 a, b The left internal

carotid artery of a 79-year-old

man exhibits severe

atherosclerotic changes (Type 5

according to Stary [119]). There

is a thinning of the lamina

media, proliferation and lipid

accumulation in the intima

including cholesterol clefts

(arrows). The necrotic core is

covered by a fibromuscular

tissue layer (arrowheads)

indicative for Stary Type 5

lesions. b Corresponds to a high

magnification view of the boxed

area in (a). ApoE (c) and A2M

(d) occur in the plaque core of

an AS plaque. Staining in (a, b)

Elastica van Gieson (EVG),

c anti-apoE [Covance (Dedham,

USA), D6E10, 1/500, formic

acid and microwave

pretreatment], d anti-A2M

[BioMac (Germany, Leipzig),

polyclonal rabbit, 1/5,000]. The

calibration bar in (b)

corresponds to: a 400 lm,

b 90 lm, c, d 70 lm
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perivascular spaces are often associated with SVD-affected

vessels. As such, all subforms of SVD contribute to this

hierarchical expansion of SVD changes throughout the

brain and seem to be pathogenetically linked.

Arterial hypertension and diabetes mellitus are risk

factors for SVD [69]. However, this association is lacking

in a significant number of cases [69]. Plasma protein

leakage into the vessel wall including apoE and A2M is a

common feature in all three subforms of SVD (Fig. 2c–e,

h, j). Genetically, an association between SVD and the

apoE e4 allele has been reported [154].

Cerebral amyloid angiopathy

Deposits of amyloid b-protein (Ab) in the cerebral and

leptomeningeal vessel walls are characteristic of CAA in

Fig. 2 Small vessel disease-related changes. a A leptomeningeal

artery shows intima proliferation and a splitting of the internal elastic

lamina (arrow). These changes are related to small vessel arterio-

sclerosis/atherosclerosis. b A white matter artery exhibits fibrosis,

lipohyalinosis of the vessel wall, and fibrinoid necrosis (arrow).

Lipohyalinosis affected vessels exhibit the plasma proteins apoE (c),

A2M (d), and IgG (e) within the vessel wall (arrows in c–e) indicating

the leakage of plasma proteins into the vessel wall and into the

perivascular space (asterisk in e). f Macrophages within the lipohyali-

notic lesions and perivascular astrocytes strongly exhibit the A2M and

apoE receptor LRP (CD91) (arrows) indicating that these cells are

capable of taking up A2M and apoE. g Arteriolosclerosis of a white

matter artery shows severe hyalinization (arrow) of the vessel wall. h–j
ApoE and A2M were observed within the vessel wall of arterioloscle-

rotic vessels (arrows in h, i). Within the enlarged perivascular spaces

high numbers of apoE (h), A2M (i), and LRP-positive cells (arrow in j)
were observed indicating that these perivascular cells accumulate apoE

and A2M due to an insufficient perivascular drainage. These perivas-

cular macrophages are often Prussian blue negative and do not

necessarily represent hemorrhagic residues [129]. Stainings in a–j as

indicated. Anti-apoE and anti-A2M staining was performed as

indicated in Fig. 1. For anti-IgG and anti-LRP immunohistochemistry

the following antibodies were used [anti-IgG: polyclonal goat; Biome-

da, Foster City, CA; 1/100; microwave pretreatment; anti-LRP (anti-

CD91): a2-M-R-II2C7; BioMac, Leipzig, Germany; 1/150; microwave

and protease pretreatment]. The calibration bar in i corresponds to:

a 300 lm, b 80 lm, c 40 lm, d, j 35 lm, e, f 60 lm, g 20 lm, h 16 lm,

i 50 lm. a and b are reproduced from Thal et al. 2003 [129] with kind

permission
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both sporadic and Ab-related familiar forms [34, 55, 108].

Ab deposits occur in arteries, veins and capillaries [141]

(Fig. 3a, b). Ab40 is more predominant in vascular Ab
deposits than in parenchymal ones [45, 110]. In the

sporadic form of CAA, vascular Ab deposition is strongly

associated with AD-related pathology and around 80–

100% of all AD patients have CAA [3, 4, 51, 55, 108,

126, 129, 132, 141]. Morphologically, two types of CAA

can be distinguished: CAA with capillary involvement

(CAA-type 1) and CAA lacking capillary Ab deposition

(CAA-type 2) [130]. Capillary CAA is more common in

AD patients [4, 132] and it can induce capillary occlusions

resulting in disturbances of cerebral blood flow [128].

The severity of CAA is related to the degree of vessel

wall destruction [144]. Intracerebral hemorrhage, cerebral

infarction [14, 79, 132, 141], and CAA-related angiitis

[62, 78, 107] are complications of CAA (Fig. 3c).

CAA begins in cortical and leptomeningeal vessels of

neocortical areas and then, expands into vessels of allo-

cortical areas and the cerebellum. In single cases, even

white matter arteries and vessels of the basal ganglia, the

diencephalon, and/or the brain stem exhibit CAA [129,

132]. This hierarchical pattern resembles the one described

for Ab plaques [2, 131, 134].

Physiologically, brain-derived Ab is drained along the

perivascular space [15, 147] and the vascular basement

membranes [16, 146]. Alterations of this clearance path-

way may result in the deposition of Ab near the basement

membrane [146]. In addition, smooth muscle cell-derived

Ab is potentially capable of contributing to the deposition

of Ab in the vessel wall [85, 86]. ApoE plays an important

role in the pathogenesis of CAA. It is found in vascular Ab
deposits [93] and it is physiologically drained along the

perivascular space co-occurring with Ab [133, 139]. ApoE

binds Ab [123]. Alterations of the perivascular drainage of

Ab and apoE likely lead to CAA [133, 146, 147]. CAA,

especially capillary CAA, is associated with the apoE e4

allele [37, 100, 103, 126, 130, 132]. This finding points to

an important role of apoE for the development of CAA

because apoE4 is less effective in the receptor-mediated

clearance of Ab when compared to apoE3 [19]. This

property of apoE4 presumably results in capillary Ab
deposition in apoE e4 carriers as soon as alterations in the

perivascular drainage occur. In addition, the apoE e4-

genotype promotes Ab aggregation in vascular smooth

muscle cell cultures [85]. Finally, CAA-related hemor-

rhage is reported to be associated with the apoE e2 and e4

allele [37, 88, 95, 97].

In familial cases, other amyloidogenic proteins can also

aggregate in the cerebral blood vessels and cause other

forms of CAA, i.e., ABri, ADan, transthyrretin, gelsolin,

cystatin D, and prion protein [108]. Unlike Ab-related

CAA, these forms of CAA are usually not restricted to the

cerebral and leptomeningeal vessels [108].

Relationship between SVD subforms, AS, and CAA

Although AS, SVD, and CAA are distinct disease entities,

they correlate with one another as well as with AD except

for AS, which did not correlate with CAA [5, 13, 109, 129].

In our own sample, we confirmed the correlation between

AS and SVD, SVD and CAA, SVD and AD, and CAA

and AD whereas there was no significant correlation

between AS and CAA, and AS and AD (Table 2). In the

Fig. 3 Cerebral amyloid angiopathy (CAA). a Ab deposition in the

vessel wall of leptomeningeal arteries (A) and veins (V) as well as in

cortical arteries (arrows). b Capillary CAA is characterized by Ab
deposits at the basement membrane of cortical capillaries (arrows).

c Severe CAA in a case of CAA-related hemorrhage. The CAA-

affected artery exhibits multiple aneurysmal dilations of the vessel

wall as indicated by arrows. Ab deposits are stained in red
(permanent red; DAKO, Glostrup, Denmark) with an antibody

against Ab17–24 (4G8, Covance, Dedham, USA, 1/5,000, pretreatment

with formic acid). The same antibody was also used in figures

a and b but 3,3-diaminobencidine–HCl was used as chromogen. The

calibration bar in b corresponds to: a 85 lm, b, c 20 lm
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light of these correlations, it is tempting to speculate that

AS, SVD, and CAA share common or linked pathogenetic

mechanisms.

SVD and AS exhibit similar morphological alterations.

For example, atherosclerotic lesions in small arteries are

defined either as AS or as SVD (subform: small vessel

arteriosclerosis/atherosclerosis). Partly, this overlap is

explained by the similarities of the pathogenetic mecha-

nism of AS in large- and medium-sized vessels as well as

in small vessels [67], such as plasma protein leakage into

the vessel wall. On the other hand, there are morphological

differences that justify the distinction between AS and the

SVD subform small vessel arteriosclerosis/atherosclerosis:

AS plaques in large- and medium-sized vessels often

contain cholesterol clefts and calcifications, which are

usually not seen in small vessel arteriosclerosis/athero-

sclerosis.

SVD itself is subclassified into small vessel arterio-

sclerosis/atherosclerosis, arteriolosclerosis, and lipohyalinosis/

fibrinoid necrosis. Despite morphological differences,

plasma protein leakage into the vessel wall and/or into the

perivascular space are common features of all three sub-

forms (Figs. 2, 4a). The hierarchical expansion of SVD,

encompassing all of its subforms, throughout the brain, as

described in detail in ‘‘Small vessel disease’’, also argues in

favor of a common disease entity with different presenta-

tions in larger and smaller vessels rather than three

different vessel disorders.

A pathogenetic link between AS and SVD on the one

hand and CAA on the other is less obvious. However, apoE

occurs in the SVD- and AS-related vessel wall lesions and

in association with CAA-related Ab deposits. Moreover,

the apoE e4 allele is a risk factor for CAA [100, 115, 126],

SVD [154], and is discussed as a risk factor for AS [64, 75,

116]. The absence of apoE in apoE-knockout mice results

in AS and hypercholesterolemia [156]. These points indi-

cate that apoE is a common player in the pathogenesis of

all three vessel disorder and may represent a pathogenetic

link.

The role of apoE in vessel pathology of the aging brain

Apolipoprotein E appears to be a common player in the

pathogenesis of AS, SVD, and CAA. It is a plasma protein

produced by hepatocytes and macrophages [77] and it

functions as a transporter for cholesterol and other lipids

[77]. In the brain, apoE is produced by astrocytes [10, 77].

Under physiological conditions, an intact BBB prevents the

influx of plasma apoE into the brain [22, 27]. Brain-apoE is

drained along perivascular channels and vascular basement

membranes [133]. It can bind cholesterol, lipids, and pro-

teins such as Ab [77, 123], which are cleared together with

apoE [6, 106], suggesting that apoE may have a transporter

function not only for cholesterol and lipids but also for

proteins such as Ab.

In AS- and SVD-affected vessels, plasma proteins

including apoE leak into the vessel wall and accumulate in

the respective lesion [1, 18, 91, 92, 139, 150] (Figs. 1, 2,

4). Plasma proteins also leak into the perivascular space of

vessels affected by SVD indicating an alteration of the pre-

capillary segment of the BBB [127, 139]. Thus, SVD

presumably impairs perivascular clearance, including that

of Ab and apoE, by several mechanisms: (1) SVD-induced

fibrosis of the vessel wall may decrease the capacity for

drainage along the basement membranes [146], (2) the

increasing stiffness of the SVD-affected arteries leads to a

less effective outward transport of the perivascular fluid

due to a cessation of the pulsations [146, 147], and (3) the

SVD-induced leakage of plasma proteins including apoE

into the vessel wall and the perivascular space competes for

perivascular drainage with the extracellular fluid of the

brain [127, 136, 137, 139] (Fig. 4). Therefore, SVD pre-

sumably contributes to the accumulation of Ab in the brain

leading to CAA and Alzheimer’s disease-related Ab plaque

deposition. This hypothesis is supported by the association

between SVD, CAA, and Ab plaque deposition [13, 129]

(Table 2) and by the increase of plasma Ab1–40 in patients

with SVD [35]. Since SVD and CAA are both localized in

intracerebral small arteries and arterioles, which have a

perivascular space, and since both disorders develop apoE-

containing lesions [93, 139] and are associated with the

apoE e4 allele as a genetic risk factor, it is tempting to

assume that apoE represents a pathogenetic link between

SVD and CAA. The hypothesis that apoE contributes

to vessel wall destruction is further supported by the

Table 2 Correlations between extent of cerebral atherosclerosis

(AS), small vessel disease (SVD), cerebral amyloid angiopathy

(CAA), and Alzheimer’s disease (AD)

Correlation between r p n

AS–SVD 0.475 0.003 36

AS–CAA -0.109 0.488 43

AS–AD 0.15 0.175 83

SVD–CAA 0.252 0.025 79

SVD–AD 0.177 0.022 166

CAA–AD 0.575 0.001 87

The extent of AS was obtained as described in the legend of Table 1.

The extent of SVD and CAA was measured by the stage of SVD and

CAA distribution throughout the entire brain [129]. AD was diag-

nosed in the event that the pathology of the demented cases showed a

moderate or high likelihood for AD according to the NIA-Reagan

criteria [135]. Non-AD controls were all cases that did not match the

NIA-Reagan criteria and did not develop dementia

r Spearman rho correlation coefficient, p probability, n number of

cases analyzed
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association of the apoE e2 and e4 alleles with CAA-related

hemorrhages [37, 88, 95, 97].

One argument against the hypothesis that SVD-related

BBB alterations contribute to the development of CAA and

parenchymal Ab deposition is the lacking increase of apoE

in the brain [139]. However, in the event that Ab accu-

mulates in the brain, e.g. in AD cases, apoE clearance

switches from perivascular drainage to enzymatic cleavage

as indicated by the predominance of C-terminal truncated

apoE over full-length apoE [139]. Hence, the absence of an

apoE increase in the brain of AD patients or of patients

with perivascular drainage deficits does not argue against

the hypothesis that altered perivascular drainage of extra-

cellular fluid leads to a congestion of extracellular fluid and

proteins in the brain. Moreover, the increase of 27-

hydroxycholesterol levels in AD brains indicates an influx

of plasma steroids through the BBB [46]. Another argu-

ment against a pathogenetic link between SVD and Ab
accumulation in the brain is that AD-related Ab deposition

in aged individuals first occurs in the cortex [11, 104, 129,

134] whereas SVD affects mainly white matter, leptome-

ningeal and basal ganglia vessels [129]. However, the

cortex is a distal area in relation to the areas with SVD-

affected vessels, and Ab is mainly produced by neurons

located in this distal area [40, 94]. Thus, a proximal

clearance block for peripheral extracellular fluid drainage

containing neuron-derived Ab will lead to a protein accu-

mulation, e.g. of Ab, in distal areas such as the cortex. This

is exactly where parenchymal and vascular Ab deposits

occur first [11, 104, 129, 134]. Therefore, it is tempting to

speculate that the distribution of Ab deposits in aging and

AD brains may represent the result of insufficient clearance

of Ab, rather than an anterograde neuronal expansion as

previously discussed [134]. A strong argument in favor of

this hypothesis is the fact that normal brain transplants into

APP-transgenic mice, which produce a high number of Ab
plaques, also develop Ab plaques in the absence of neu-

ronal connections [89].

Fig. 4 Plasma protein leakage induced by vessel disorders and its

relation to perivascular alterations of the brain parenchyma. a This

schematic representation shows that plasma proteins occur (1) in the

plaque cores of AS plaques, (2) in the vessel wall of lipohyalinotic

vessels as well as in the perivascular space and in macrophages within

the perivascular space, and (3) in the vessel wall of arteriolosclerotic

vessels as well as in accompanying macrophages. CAA, on the other

hand, is characterized by the deposition of proteins of the extracel-

lular fluid of the brain, i.e. Ab [15] and apoE [133]. b Impact of

plasma protein leakage into the brain. Physiologically, extracellular

fluid is drained into the perivascular space and along the vascular

basement membranes [16, 60, 155]. In the event of SVD, there is

plasma protein leakage into the vessel wall and into the perivascular

space [139] resulting in (1) a competition between leaking plasma and

extracellular fluid from the brain for perivascular drainage and (2) the

congestion of extracellular fluid leading to the accumulation and/or

alternative processing of proteins of the extracellular fluid, and 3) the

influx of the peripheral cholesterol metabolite 27-hydroxycholesterol

into the brain [46, 127, 139]. The influx of 27-hydroxycholesterol into

the brain is accompanied by decreased levels of brain derived 24-

hydroxycholesterol indicating a reduction in the cerebral 24-hydrox-

ycholesterol production [46]
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Thus, SVD-related alterations of the BBB may con-

tribute to the development of CAA and possibly of

parenchymal Ab deposition. In general, the results

reviewed here for the fate of Ab and apoE after SVD-

related BBB alteration point to two different effects of

protein retention in the brain (1) accumulation, as docu-

mented for Ab, and (2) degradation as presumed for apoE.

Therefore, it is likely to posit that accumulation or degra-

dation of other proteins also takes place and may be related

with other SVD-associated brain lesions.

Vascular brain lesions and their relationship

to AS, SVD, and CAA

Brain infarction, hemorrhage, and WMLs are the major

brain lesions related to AS, SVD, and CAA. The location

and size of the lesions vary according to the underlying

vessel disorders and the potential risk factors. Here, we will

briefly describe the vascular brain lesions and their asso-

ciation with AS, SVD, and CAA.

Brain infarction

Brain infarction is a circumscribed brain tissue necrosis

resulting from insufficient blood supply [73, 102]. Infarcts

are subdivided by nature into ischemic (anemic) or hemor-

rhagic infarcts. Alternatively, the descriptive classification

distinguishes large infarcts (those involving the supply

territories of major cerebral arteries and veins), lacunar

infarcts (i.e. small vessel infarcts), and microinfarcts.

First, we will describe the relationship between ischemic

and hemorrhagic infarcts to AS, SVD, and CAA regardless

of the size of the infarct. Ischemic infarcts occur when

focal brain perfusion falls below critical levels and no

relevant collateral or remaining blood flow is available.

This type of infarct is seen after thrombosis of large- to

medium-sized arteries with atherosclerotic plaque rupture

with or without subsequent embolism or after occlusion

of SVD- or CAA-affected vessels [14, 73, 141]. Cardiac

embolism also causes ischemic brain infarction [29, 33,

73]. Hemorrhagic infarcts are characterized by blood

influx into the infarct territory. Different mechanisms can

be responsible for hemorrhagic infarcts: (1) embolism due

to AS or cardiac thrombosis [29, 81] with insufficient blood

influx into the infarcted tissue (the mechanism is not clear,

partial lysis of the embolus with resting blood flow, which

is insufficient to save the tissue, is considered), (2) reper-

fusion of an anemic infarct (e.g. following lysis therapy or

resuscitation), (3) collateral blood influx (insufficient to

save the tissue but enough to bleed), (4) infarction in areas

in which the remaining vessels are fragile due to a vessel

disease such as SVD or CAA [41], and (5) venous

obstruction with subsequent congestion and extravasation

of blood into the infarct area. Thus, AS, SVD, and CAA are

related to infarcts, regardless of their nature. The under-

lying vessel disorder is, therefore, not predictive of the

ischemic (anemic) or hemorrhagic nature of an infarct.

On the other hand, the underlying vessel disorders have

influence on the infarct size. Large infarcts are bigger than

15–20 mm3. They are frequently ischemic (70–80%) and

due to thrombotic or embolic artery occlusion [73]. AS

plaque rupture with subsequent thrombosis and/or embolism

usually occurs in the extracranial parts of the vertebral and

the internal and common carotid arteries [73, 81]. Large

infarcts due cardiac embolism are less frequent [73, 81].

About 10% of all large infarcts are watershed infarcts. It is a

distinct type of infarct located between two vessel territories

that results from insufficient blood supply during hypoten-

sive episodes [52, 57, 157]. SVD and CAA usually do not

lead to large infarcts [73]. Therefore, large infarcts are

mainly linked to AS and its complications. Lacunar infarcts

are cavitating infarcts, measuring up to 5–15 mm3 in volume

or 5–10 mm in diameter [30, 44, 73, 102]. They are largely

confined to the cerebral white matter and subcortical struc-

tures, most commonly found in the putamen, caudate

nucleus, thalamus, pons, internal capsule and the cerebral

white matter. Lacunar infarcts are associated with SVD [17,

74] but not with CAA. Pathogenetically, hypertension, dia-

betes, previous brain infarcts, an increase of high-density

lipoproteins and triglycerides in the blood [36] were con-

sidered risk factors, but a recent review reported that this risk

is not greater than that for large infarcts [49]. However, SVD-

affected vessels showing lipohyalinosis or small vessel ath-

erosclerosis are often found in the center of lacunar infarcts

[30, 31, 111] presumably indicating that SVD is a major

cause of lacunar infarcts. The risk factors described for

lacunar infarcts are similar with those of AS and SVD. AS-

related or cardiac embolism can also cause lacunar infarcts

[33]. As opposed to large and lacunar infarcts, microinfarcts

are usually not visible at gross examination. They are smaller

than 5 mm in diameter. Multiple microinfarcts in the cortex

and the white matter rather than a single one likely impact

cognition [48]. Microinfarcts result either from AS-related

embolism, SVD, or CAA [14, 33, 53, 61, 99]. Due to the

location of the underlying vessel disorder, cortical microin-

farcts are often associated with CAA whereas subcortical

infarcts are mainly linked to SVD [7, 14, 53, 99, 118, 129,

132, 143].

In summary, AS is capable of causing infarcts of all size,

whereas SVD is only related to lacunar infarcts and micr-

oinfarcts and CAA is mainly restricted to microinfarcts.

These relationships can be easily explained by the vessel

types affected by the respective vessel disorders and do not

seem to reflect a more specific pathomechanism.
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Hemorrhages

Cerebral hemorrhages are blood extravasations into the

brain parenchyma larger than 10 mm in diameter and are

differentiated from microbleeds. Together with other dis-

orders, such as saccular aneurysms of the circle of Willis,

vascular malformations, or coagulation disorders, AS,

SVD, and CAA can lead to hemorrhage. In particular, AS

results in hemorrhage after rupture of an atherosclerotic

aneurysm [56], although this is a rare cause of intracerebral

hemorrhage. More often, SVD leads to intracerebral hem-

orrhage, especially when it is associated with arterial

hypertension. These hemorrhages preferentially occur after

rupture of the lenticulostriate artery [125, 153]. Lobar

hemorrhages with destruction of cortical tissue are fre-

quently associated with severe CAA [50, 79, 141, 143].

Microaneurysms can be formed in SVD- and CAA-affected

vessels (Fig. 3c) and are prone to rupture [87, 141, 142].

Microbleeds are blood extravasations into the perivascular

and/or Virchow-Robin space without further tissue dis-

placement and/or small intracerebral hemorrhages. They

usually measure less than 10 mm in diameter [44] and are

found in *6% of the population with an increasing ten-

dency during aging, especially in the presence of CAA [38,

63, 138]. Hemosiderin-laden macrophages within the

perivascular space indicate prior microbleeds [149].

Hypertension-related microbleeds are preferentially loca-

ted in the basal ganglia, thalamus, and the pons in

association with SVD-affected vessels [54]. Thus, SVD

and CAA are the major causes of cerebral hemorrhage and

microbleeds in the aged human brain, whereas AS com-

plications rarely lead to cerebral bleedings.

White matter lesions

White matter lesions, synonymous with leukoaraioses

when found in imaging examinations, are present in up to

65% of the subjects over 65 years of age. They are more

prevalent in patients with cerebrovascular disease or with

cardiovascular risk [58, 96]. Clinically, WMLs are often

asymptomatic [12, 25], but they can also impair cognition

[26, 105]. Leukoencephalopathy, Binswanger’s disease

(synonymous with subcortical arteriosclerotic encephalop-

athy), periventricular arteriosclerotic leukoencephalopathy,

and leukomalacia are clinical correlatives of WMLs [26,

48, 138]. Risk factors for the development of WMLs are

advanced age, female sex [114], increased plasma homo-

cysteine [47], increased ICAM levels [80], and arterial

hypertension [24]. Some of these risk factors such as

hypertension and increased plasma homocysteine levels

also act as risk factors for AS and SVD. WMLs usually

display, in variable degrees, white matter rarefaction (i.e.,

demyelination and axon loss), mild reactive astrocytosis,

edema, and macrophage reaction [28, 39, 48, 124]. These

changes are frequently observed in the frontal, parietal,

temporal, and occipital deep white matter, especially in the

centrum semiovale, and as a rule, spare the subcortical

U-fibers, which are located close to the border between the

cortex and the white matter [59, 98, 101, 113]. It is not

clear whether periventricular WMLs have the same nature

as those in the deep white matter [28]. White matter

infarcts, hemorrhages and enlarged perivascular spaces do

not fall into the category of WMLs [48]. SVD-affected

vessels are often seen together with perivascular WMLs

[140]. AS and CAA, on the other hand, are not directly

associated with WMLs because these vessel diseases are

usually not seen in white matter vessels. Pathogenetically,

SVD-related chronic hypoperfusion of the white matter and

BBB alterations are presumed to lead to the degeneration

of axons and myelin sheets, i.e. to WMLs [59, 98, 101, 136,

137, 140].

Pathogenetic relations between vessel disorders

and brain lesions

According to the issues discussed above, SVD can lead to

infarction, hemorrhage, and WMLs. In turn, infarction and

hemorrhage can be caused by AS, SVD, and CAA. Thus,

the type of brain lesion cannot be related to a specific

vessel disorder and vice versa. All vessel disorders result in

narrowing of the lumen of the affected blood vessels and

can lead to vessel occlusion with subsequent infarction.

Likewise, AS, SVD, and CAA damage the vessel wall.

Rupture with subsequent hemorrhage can take place.

In addition to these non-specific mechanisms, WMLs

and lacunar infarcts are mainly related to SVD. Despite

vessel occlusion leading to lacunar infarcts, chronic

hypoxia and SVD-related congestion of extracellular fluid

may contribute to the development of WMLs and lacunar

infarcts. This hypothesis is supported, first, by studies

showing that chronic hypoxia presumably causes WMLs

and lacunar infarcts given that oligodendrocytes are the

most vulnerable cell type under these conditions and that

their degeneration contributes to the development of

WMLs and lacunar infarcts [48, 82, 83, 101, 122, 152].

Thereby, chronic hypoxia may result from SVD-related

concentric fibrosis of the arterial walls and consecutive

hypoperfusion [30, 31, 111, 112, 140]. Second, SVD leads

to a leakage of plasma proteins, such as IgG, A2M and

apoE, into the enlarged perivascular spaces [139].

Recently, BBB alterations in patients with leukoaraiosis

(i.e. WMLs) and lacunar stroke have been described [136,

145]. Accordingly, these observations point to a SVD-

related alteration of the pre-capillary BBB segment

involved in the pathogenesis of WMLs and lacunar infarcts
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and, thereby, extend the present knowledge of SVD-related

BBB alterations and its association with vascular lesions

in addition to AD-related changes [127, 139]. Moreover,

it is well-known that plasma proteins leak into the brain

parenchyma of hypertensive or hypotensive animals [91,

137] and patients with vascular dementia [1]. Endothelial

changes have been found in animal models for hypo- as

well as hypertension [91, 92, 137] indicating that endo-

thelial cell alterations due to high arterial pressure or due to

chronic hypoxia in hypotensive states are capable of pro-

moting alterations of the pre-capillary BBB segment. In the

light of all these considerations, it is tempting to speculate

that chronic plasma protein leakage into the brain and

retention of extracellular fluid due to altered perivascular

clearance for the above-mentioned reasons contributes to

the development of WMLs and/or lacunar infarcts (Fig. 4b)

in addition to chronic hypoxia. Such a mechanism causing

alterations of tissue is well-known in liver and lung con-

gestion. Here, chronic hypoxia and a decreased venous

drainage of extracellular fluid and blood lead to a perive-

nous parenchymal necrosis with subsequent fibrosis [90].

In short, hemorrhage and infarction result from non-

specific vessel wall changes seen in AS, SVD, and CAA

whereas WMLs and lacunar infarcts appear to be specifi-

cally linked to SVD-related BBB leakage and chronic

hypoxia.

Conclusions

Despite the etiology of the vessel disorders, infarction and

hemorrhage appear to result non-specifically from vessel

wall changes of the respective vessel disorders. WMLs and

lacunar infarcts can be addressed quite specifically to SVD

[140]. The alteration of the pre-capillary segment of the

BBB, thereby, allows leakage of plasma proteins into the

vessel wall and into the perivascular space. These plasma

proteins may compete with the extracellular fluid of the

brain for perivascular drainage leading to retention of

extracellular fluid, including Ab in the brain. Such a

retention of Ab may also contribute to the development of

CAA and Alzheimer’s disease. ApoE is physiologically

involved in the perivascular clearance of the extracellular

fluid from brain. It is found in AS, SVD, and CAA lesions,

and may represent a link between these disorders. Taken

together, SVD-related alterations of the pre-capillary seg-

ment of the BBB seem to play an important role in vascular

pathology, i.e. WMLs, lacunar infarcts, and CAA.
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