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Abstract: The ability to use the body’s resources to promote wound repair is increasingly becoming
an interesting area of regenerative medicine research. Here, we tested the effect of topical application
of blood-derived hypoxia preconditioned serum (HPS) on wound healing in a murine wound
model. Alginate hydrogels loaded with two different HPS concentrations (10 and 40%) were applied
topically on full-thickness wounds created on the back of immunocompromised mice. We achieved
a significant dose-dependent wound area reduction after 5 days in HPS-treated groups compared
with no treatment (NT). On average, both HPS-10% and HPS-40% -treated wounds healed 1.4 days
faster than NT. Healed tissue samples were investigated on post-operative day 15 (POD 15) by
immunohistology and showed an increase in lymphatic vessels (LYVE-1) up to 45% with HPS-40%
application, while at this stage, vascularization (CD31) was comparable in the HPS-treated and NT
groups. Furthermore, the expression of proliferation marker Ki67 was greater on POD 15 in the
NT-group compared to HPS-treated groups, in accordance with the earlier completion of wound
healing observed in the latter. Collagen deposition was similar in all groups, indicating lack of scar
tissue hypertrophy as a result of HPS-hydrogel treatment. These findings show that topical HPS
application is safe and can accelerate dermal wound healing in mice.

Keywords: peripheral blood cells; blood-derived therapy; hypoxia; angiogenesis; hypoxia
preconditioned plasma; hypoxia preconditioned serum; lymphangiogenesis; lymphatic
regeneration; wound healing

1. Introduction

The demographic shift towards an older society, combined with an increase in comor-
bidities such as diabetes or cardiovascular diseases, has led to an increasing prevalence
of chronic wounds, which have become not only a medical issue but also a significant
economic burden, consuming 2–4% of health care budget worldwide [1]. It is estimated
that 1 to 2% of the population will suffer from chronic wounds during their lifetime in
industrialized countries [2]. In the US alone, 3 to 6 million people suffer from non-healing
wounds [3], with an overall cost to the American healthcare system of around three billion
dollars a year [4,5]. Worldwide, the costs are estimated up to 25 billion dollars per year [6].
In Germany, around 1 million citizens suffer from chronic wounds (as of 2012) [7], which
can lead to social isolation, long-term inability to work and loss of quality of life [8].

As we come to understand wound healing processes in greater depth, we now ac-
knowledge that this is a complex system of biological interactions that requires the coordi-
nation of several cell types, intra- and extracellular mechanisms and signaling pathways.
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Either defect, loss, or dominance of any factor in these interactions can lead to failure of the
entire system, resulting in chronic wounds [9]. New wound healing approaches that are
aimed towards improving these interactions must be delivered in a targeted and sustainable
manner to effectively modulate these complex mechanisms [10]. Due to the significant risks
of systemic toxicity and numerous side effects of systemic drug administration, therapeutic
strategies are increasingly focusing on locally-targeted application [11]. The use of topical
approaches improves bioavailability and facilitates the achievement of controlled drug
concentration levels within a safe therapeutic range [12].

Current strategies for promoting angiogenesis in acute and chronic wounds are fre-
quently based on the exogenous supply of recombinant angiogenesis factors [13]. How-
ever, the concept of employing the body’s own natural resources towards regeneration
has recently gained increased interest [14]. Our preferred approach focuses on utiliz-
ing a physiologically-adjusted growth factor therapy which can be administered using a
minimally-invasive method [15,16]. We have shown that the localized delivery of peripheral
blood-derived hypoxia-induced growth factor-mixtures can serve as a tool for the natural
promotion of spatio-temporally controlled regeneration [15–18]. In accordance to the prin-
ciple that the host response for optimal wound healing depends on multiple regulatory
pathways [19,20], these paracrine proteins are used to stimulate a range of targeted cellu-
lar responses including wound angiogenesis, lymphangiogenesis, matrix deposition and
re-epithelialization through fibroblast migration and proliferation [16,18,20–25]. Previous
work by our group has already shown that collagen scaffolds containing hypoxia-induced
growth factor proteins, produced by dermal fibroblasts, can promote vascularization and
improve deep scaffold oxygenation when implanted in vivo in a rabbit model [26,27]. In
contrast to dermal fibroblasts, however, that must be obtained through an excisional biopsy,
peripheral blood cells (PBC, or more specifically peripheral mononuclear cells, PBMC)
readily serve as growth factor providers, as they exhibit several advantages: there is, firstly,
abundant supply, they are easy to obtain from peripheral venous blood and, if used au-
tologously, there is no risk of rejection by the immune system [16,17]. PBCs react to stress
(hypoxia, ischemia, inflammation, ultrasound, etc.) with an upregulation of angiogenic
growth factors such as VEGF [16,18,23,28–31], bFGF [16,18,23,29,30], IL-8 [16,18,23,30],
MMP-9 [16,18,23,30], as well as the downregulation of antiangiogenic factors such as
TSP-1 [16–18,23].

Based on these fundamental concepts, we had previously developed a novel approach
for providing a biomimetic cocktail of blood-derived growth factor proteins within a
locally-deployable carrier [16–18]. For this purpose, the primary stimulus of the wound
healing angiogenic response, i.e., hypoxia, is used to stimulate PBCs to produce ‘new’
angiogenic and lymphangiogenic protein factors [16,18,23–25]. To obtain these complex
growth factor mixtures we utilize a method of hypoxia-adjusted in vitro preconditioning, by
cultivating PBCs ex vivo within a self-regulated low-oxygen microenvironment [16,17,21].
Instead of using a hypoxic incubator chamber, we allow cell-mediated O2 consumption to
automatically generate local pericellular (i.e., surrounding the cell layer) hypoxia (~1% O2)
within the blood-containing chamber. Since blood cells sediment in the course of hypoxic
incubation, protein factors are secreted/released into the serum (hypoxia preconditioned
serum: HPS) and can be separated from PBCs through filtration without the need for
centrifugation, as currently required in the platelet-rich plasma (PRP) method [16,18,23,32].

Several in vitro experiments have validated the effectiveness of this approach in
promoting an angiogenic response in PBCs. Pro-angiogenic (VEGF) factor levels were
upregulated with longer incubation time and peak at 4 days of incubation [16,18,23]. In
HUVEC (human umbilical vein endothelial cell)-sprouting assays and aortic ring assays,
HPS stimulated a greater invasion of endothelial cells, more vascular sprouts (sprouting
angiogenesis) and greater sprout length compared to the recombinant VEGF- and PRP-
treated groups [18,23]. Regarding lymphangiogenesis, HPS has been tested in a ductus
thoracicus sprouting assay and exhibited superior formation of new lymphatic vessels
after 4 days compared to other lymphatic stimulants such as FCS 20% [25]. Importantly,
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we have shown that there was no loss of pro-angiogenic activity in vitro when blood
was derived from patients who receive oral anticoagulation due to underlying vascular
pathology or those who suffer from diabetes mellitus type 1 and type 2 [22]. Thus, patients
with arteriosclerosis and diabetic micro-angiopathies, who do have a higher prevalence of
chronic wounds, could potentially benefit from HPS therapy.

The controlled delivery of such complex, yet physiological growth factor mixtures
in vivo could represent a solution for overcoming the limited ability of chronically dam-
aged tissue to optimally switch on angiogenic and lymphangiogenic responses, which
are essential drivers of wound regeneration. In this context, we previously engineered an
integral HPS-hydrogel system that sequesters the protein factors at the site of application,
allowing the gradual generation of spatiotemporal gradients, which are essential for the
development of directionally-controlled angiogenesis [15,16,18]. Hydrogel carriers are
easy to clinically apply, either through injection or topical application and also have the
advantage of potentially serving as scaffolds for cellular ingrowth and biological defect
coverage [15–18]. In this study, we sought out to demonstrate the effects of HPS in an
in vivo murine excisional wound model, in which a silicon splint is used to prevent wound
contraction, thus, allowing the wounds to heal solely through epithelialization [33]. Here,
we used immunocompromised athymic nude mice to investigate the effects of human
blood-derived HPS, loaded onto an alginate hydrogel carrier, with regards to the time to
full wound closure, assessed by digital image analysis and immunohistochemical staining
for vascularization (CD31), lymphangiogenesis (LYVE-1) and proliferation activity (Ki-67).
We also measured collagen and connective tissue generation through Masson-Trichrom
staining. Our findings confirm the safety, but also demonstrate the efficacy of HPS treat-
ment in murine wound healing, thus offering a platform for potentially engineering a
therapy for human application.

2. Materials and Methods
2.1. Ethical Approval

All in vivo experiments were performed under the guidance of Zentrum für Präk-
linische Forschung (ZPF) Veterinary Department of the Technical University of Munich,
Germany and were approved by the General Administration of the Free State of Bavaria
(ROB-55.2-2532.Vet_02-17-189; date of approval: 21 September 2018). All blood donors
provided written informed consent as directed by the ethics committee of the Technical
University Munich, Germany, which approved this study (File Nr.: 104/21 S-EB; date of
approval: 19 February 2021).

2.2. Production of Hypoxia Preconditioned Serum (HPS) and HPS-Hydrogel

HPS was produced following the protocol described previously by Hadjipanayi
et al. [18]. Briefly, peripheral venous blood was drawn under sterile conditions from
3 blood donors and collected into separate 30 mL polypropylene syringe (Omnifix®, B
Braun AG, Melsungen, Germany) for HPS preparation. Five milliliters of air was drawn
into the syringe through a 0.2 µm filter (Sterifix®, B Braun AG, Melsungen, Germany),
with the plunger fully retracted. Subsequently, the syringes were placed upright in the
incubator (37 ◦C/5% CO2) and incubated for 4 days. Following incubation, the blood
was separated through sedimentation into three layers (from top to bottom: serum, clot,
red blood cell layer), so that the top layer (HPS) could be filtered (Sterifix®, B Braun AG,
Melsungen, Germany) into a new syringe, removing cells/cellular debris. In the next step,
the HPS of the 3 blood donors was pooled. As a vehicle for controlled delivery of the
HPS protein factors, we mixed the HPS at 10 and 40% final concentration with a clinically
available alginate hydrogel (Nu-Gel, KCI GmbH, Wiesbaden, Germany) to achieve a topical
application for wounds. HPS-Hydrogel was stored at 4 ◦C until testing.
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2.3. Animals

Six-week-old female athymic nude mice Crl:NU(NCr)-Foxn1nu were purchased from
Charles River laboratories (Wilmington, MA, USA), which have a spontaneous deletion in
the Foxn1 gene that causes a deteriorated or absent thymus. This results in an inhibited
immune system with reduction of number of T-cells which leads to an impaired immune
system of the mice. The athymic nude mouse is valuable for research since it can be applied
with many different types of tissue and cells, including those of human origin, as there is
no immune response to them. Animals were housed five animals per cage prior to surgery
and alone post procedure in a temperature-controlled animal facility with a 12-h light/dark
cycle. The mice were acclimated to their environment for 10 days prior to the procedure
and were allowed food and water ad libitum.

2.4. Full-Thickness Excisional Wounds

Splinted full-thickness excisional wounds were created following the model described
by Galiano et al. [33]. Anesthesia was induced with isoflurane 5%, 1 L/min oxygen and
maintained at isoflurane 1–3%, 1 L/min oxygen. The mouse was placed on a heating mat to
prevent a drop of body temperature during surgical procedure. The dorsum of each mouse
was cleaned with antiseptics (Octenisept, Schülke & Mayr GmbH, Norderstedt, Germany)
and two identical 8 mm circular wounds were created on each side of the dorsum at the
level of the shoulder with a sterile 8 mm punch biopsy tool. Surgical forceps were used
to lift off the skin in the center of the outline and a piece of tissue extending through the
subcutaneous tissue including the panniculus carnosus was excised with microsissors.
0.5 mm thick donut shaped silicone splints with 8 mm inner diameter were fixed to the
surrounding wound edge using an immediate bonding cyano-acrylate adhesive (UHU
46971, UHU GmbH & Co. KG, Bühl, Germany) and simple interrupted 6-0 nylon sutures
(Ethicon Inc., Raritan, NJ, USA). Thus, the falsification of results by wound contraction
of the panniculus carnosus region was avoided. For the treatment groups, HPS-10% or
HPS-40% was used and was compared to wounds in which sterile saline was placed in the
wound bed (no treatment = NT). Wounds were covered with clear occlusive dressing (KCI
GmbH, Wiesbaden, Germany), which was changed on alternating days. Upon completion
of surgery, the mice were placed in separate mice cages and observed until they fully
recovered from anesthesia. We used 8 mice for each of the HPS-10%, HPS-40% and NT
group, totaling a number of 16 wounds per group.

2.5. Wound Analysis

Digital photographs were taken on the day of surgery and on post-operative days
(POD) 3, 5, 7, 9, 11, 13 and 15. Time to closure was defined as the time period at which
the wound bed was completely epithelialized, as blindly assessed by three independent
reviewers. Wound area was analyzed by tracing the wound margin and calculating the
area (in mm2) using ImageJ software (NIH, Bethesda, MD, USA, version 1.53) [34]. As
the splint has a constant and predefined area, it was used to normalize and calculate the
wound sizes. Images were analyzed by three blinded observers. A wound was considered
completely closed when the wound area was macroscopically no longer visible.

2.6. Staining and Immunohistochemistry

Mice were sacrificed under 5% isoflurane and cervical dislocation. The wound sites
were harvested by excising them in the shape of the inner circle of the silicone ring to
the subdermis with microscissors. The round-shaped tissue samples were bisected into
identical halves and were immediately fixed in 4% paraformaldehyde at 4◦C overnight.
Samples were dehydrated in series of ethanol, embedded in paraffin and serially cut from
the center into sections of 4-µm thickness, examined on a coated slide glass and were
stained with H&E and Masson-Goldner’s Trichrom. Immunohistochemical staining for
endothelial cell marker CD31 (dianova GmbH, Hamburg, Germany), lymph-endothelial
cell marker LYVE-1 (Abcam, Cambridge, UK) and proliferation marker Ki-67 (Abcam, Cam-
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bridge, UK) were performed on the fully automated Bond-Max system (Leica Biosystems,
Nussloch, Germany). All immunohistochemical antibodies were followed by the two-step
peroxidase technique and the staining process was achieved using diaminobenzidine (DAB)
chromogen. A Leica Aperio microscope (Leica Biosystems, Nussloch, Germany) was used
to digitally scan the slides. Masson-Goldner’s Trichrom staining and immunohistochem-
istry slides were analyzed following the method used by Mezei et al. [35]. Using ImageJ
Hue/Saturation/Brightness color filtering we could measure the area of a given tissue
marked by collagen staining or DAB. Briefly, the following settings were used (numbers
indicate minimum and maximum values while letters in brackets indicate filter type: P—
pass; S—stop): DAB Hue 44/255 (S), Saturation 37/255 (P), Brightness 0/255 (P); Trichrom
Hue 0/216 (P), Saturation 56/255 (P), Brightness 0/255 (P). A high-powered field (HPF)
was selected at 2500 × 2500 pixels and each tissue sample was analyzed by four separate
HPFs. By color filtering, DAB and collagen staining marked areas were calculated as
pixels. The epidermal thickness was determined using the H&E sections. Measurements
and quantification were performed with Aperio ImageScope (Leica Biosystems, Nussloch,
Germany) by evaluating eight random HPFs of each tissue sample.

2.7. Statistical Analysis

Data sets were analyzed by one-way analysis of variance (ANOVA), with subsequent
comparisons using Tukey’s post-hoc analysis, when one independent variable is present.
In the case of repeated measures with two independent variables, a two-way repeated
measures ANOVA with Tukey’s multiple comparisons test was applied. All values are
expressed as means ± standard error of the mean (SEM). A value of p < 0.05 was considered
statistically significant (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

3. Results
3.1. HPS Accellerates Wound Closure

Using two different HPS concentrations, we sought to measure dose-dependent effects
on wound healing in mice. We tested a low (10%) and high (40%) concentration HPS-
hydrogel formulation on a murine excisional wound model (note: there was a loss of 5 mice
due to anesthesiology complications on the day of surgery). No HPS-related complications
(e.g., infection or bleeding, autoimmune reaction) occurred in the duration of the study;
thus, the following treatment groups were included in this experiment: HPS- 10% and
40% with 7 mice (14 wounds) each and no treatment (NT) group (rinsed with sterile saline
solution) with 5 mice (10 wounds). We performed a dressing change with re-application of
HPS-hydrogel and took wound photographs on post-operative day (POD) 3 and thereafter
every 2 days until POD 15.

The wounds were determined as completely healed in a mean of 11.7 days in both
the HPS-10% (11.71 ± 0.28 days) and HPS-40% (11.67 ± 0.32 days) group, compared to
13.07 ± 0.57 days in the NT group, thus showing a faster wound healing response by
1.4 days (p < 0.05) (Figure 1). Although both HPS-hydrogel treated groups achieved full
wound closure at approximately the same timepoint, HPS-40% treated wounds appeared
to heal relatively faster than HPS-10%: the wound surface area was already significantly
smaller at day 5 by 19.2% compared to NT (23.91 ± 1.45 cm2 vs. 29.60 ± 1.66 cm2) (p = 0.04)
and by 39.8% at day 7 (14.00 ± 1.73 cm2 vs. 23.28 ± 1.63 cm2) (p = 0.002), while in the
HPS-10% group wound surface area was only significantly reduced by 28.3% at day 7
(16.69 ± 1.86 cm2 vs. 23.28 ± 1.63 cm2) (p = 0.03). However, with regards to wound healing
kinetics of the total time course, treatment with HPS-10% showed to be significantly better
compared to NT (p = 0.02), whereas HPS-40% exhibited even superior performance (vs. NT;
p = 0.0002). On the other hand, a true significant difference between HPS-10% and -40%-
groups was not detected at any time point, although mean wound areas of HPS-40% were
smaller at every POD. Thus, we observed a relative benefit with higher HPS concentration
regarding earlier wound area reduction.
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Figure 1. Accelerated wound healing in HPS-10% and 40% treated wounds. (A) Representative
macroscopic photographs of full-thickness wounds in the excisional murine skin model on post-
operative day (POD) 0, 3, 5, 7, 9, 11, 13 and 15. Two treatment groups were tested, HPS-10% (n = 14)
and HPS-40% (n = 14) vs. no treatment (NT) (n = 10). (B) Plot showing wound surface area (50 mm2

wound area on POD 0) change from POD 0 to POD 15 in the HPS-10%/-40% and NT groups. HPS-40%
group has smaller wound area compared to NT already at POD 5 and POD 7 (p = 0.04 and p = 0.002
respectively), HPS 10% group has smaller wound area compared to NT at POD 7 (p = 0.03). Wound
healing kinetics of HPS-10% and -40% treatment groups showed to be significantly better than NT
(p = 0.02 and p = 0.0002, respectively). Two-way repeated measures ANOVA with Tukey’s multiple
comparisons test. Data points represent means ± SEM. * = p < 0.05, ** = p < 0.01, ns = non-significant.

3.2. Effect of HPS Treatment on Wound Vascularization

Immunohistochemistry (IHC) using diaminobenzidine (DAB)-dye was carried out
on POD 15 in healed tissue samples to analyze angiogenesis with CD31 staining. CD31 is
highly expressed on the surface of endothelial cells and is involved in cell-cell associations
during the formation of new capillaries [36]. ImageJ software was used with semiautomatic
color segmentation to measure the extend of DAB chromogenic reaction of CD31 stained
proteins. For the examined time point, vascularization did not appear different in either
HPS-treated group compared to the NT group, showing similar capillary density and vessel
size in the subcutaneous layer at the stage of fully healed wounds (Figure 2). Given the
observed accelerated wound closure in the HPS-treated groups, this data suggests that
angiogenesis here may have been completed much earlier than POD 15 and probably
even before POD 13, when differences in wound surface area were no longer statistically
different compared to the NT group.
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Figure 2. CD31 DAB Immunostaining. (A) Quantitative measurement of CD31 Diaminobenzidine
(DAB) staining in HPS-10% (n = 14) and 40% (n = 14) treated murine wounds vs. no treatment (NT)
(n = 10) on POD 15 by color segmentation of DAB-positive cells calculated as pixels. Vascularization
did not appear different in either HPS-treated group compared to the NT group. Data are means
± SEM. Ns = non-significant. One-way ANOVA with Tukey’s post-hoc test. (B–D) Representative
high-power fields of CD31 DAB Immunostaining of HPS-10%, HPS-40% -treated wounds and NT
wounds. Scale bar = 200 µm.

3.3. HPS Promotes Lymphangiogenesis

Fully healed wounds on POD 15 were further investigated for lymphatic vessel
endothelial hyaluronic acid receptor (LYVE-1) expression using DAB-IHC. LYVE-1 is a
lymphatic-specific marker, which is expressed on both sides of lymphatic endothelial cells
and is involved in lymph node homing of leukocytes [37]. LYVE-1 was augmented in the
subcutaneous layer of HPS-40% treated wounds compared to NT (p = 0.01), indicating
superior lymphangiogenesis with a higher concentration of HPS application (Figure 3).
Mean LYVE-1 expression in the HPS-40% group was up to 45% higher than NT (164656 vs.
113218 Pixels). Mean LYVE-1 expression in the HPS-10% group was also higher than NT,
but this difference was not significant (p = 0.65).
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Figure 3. LYVE-1 DAB Immunostaining. (A) Quantitative measurement of lymphatic vessel endothe-
lial hyaluronic acid receptor (LYVE-1) Diaminobenzidine (DAB) staining in HPS-10% (n = 14) and
40% (n = 14) treated murine wounds vs. no treatment (NT) (n = 10) on POD 15 by color segmentation
of DAB-positive cells calculated as pixels. HPS-40% showed higher LYVE-1 expression compared to
the NT group (p = 0.01). Data are means ± SEM. * = p < 0.05, ns = non-significant. One-way ANOVA
with Tukey’s post-hoc test. (B–D) Representative high-power fields of LYVE-1 DAB Immunostaining
of HPS-10%, HPS-40% -treated wounds and NT wounds. Scale bar = 200 µm.

3.4. Reduced Cell Proliferation in HPS-10%-Treated Wounds

Cell proliferation by Ki67 was then analyzed to investigate the regeneration speed of
fully epithelialized tissue on POD 15. Ki67 is an antigen which is expressed in the G1, G2, S
and M phases of the cell cycle, but not in resting cells of G0 phase [38]. Here, Ki67 using
DAB-IHC was stained especially in keratocytes in the epidermis and mainly in the basal
and suprabasal layers as well as dermal papillary cells. The highest level was measured in
the NT group (p = 0.02) compared to HPS-10% (Figure 4). Furthermore, Ki67 staining of
HPS-40%-treated tissue was also significantly higher than in the HPS-10% group (p = 0.03).
There was no difference in Ki67 expression between HPS 40% group and NT (p = 0.88). In
summary, Ki67 was detected least in the HPS-10% group, indicating that the regeneration
process may have been completed earlier here than in the HPS-40% group and NT.
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Figure 4. Ki67 DAB Immunostaining. (A) Quantitative measurement of Ki67 Diaminobenzidine
(DAB) staining in HPS-10% (n = 14) and 40% (n = 14) treated murine wounds vs. no treatment (NT)
(n = 10) on POD 15 by color segmentation of DAB-positive cells calculated as pixels. HPS-10% group
showed the least Ki67 expression compared to HPS-40% (p = 0.03) and NT group (p = 0.02). Data
are means ± SEM. * = p < 0.05, ns = non-significant. One-way ANOVA with Tukey’s post-hoc test.
(B–D) Representative high-power fields of Ki67 DAB Immunostaining of HPS-10%, HPS-40% treated
wounds and NT wounds. Ki67 positive cells were mainly located on POD 15 in the dermal papillary
cells as well as in the basal and suprabasal epithelial layers. Scale bar = 200 µm.

3.5. Normal Production of Collagen in HPS-Treated Wounds

The analysis of connective tissue regeneration was studied by employing Masson-
Goldner’s Trichrome staining. Measurements were taken of the green dye of collagen
staining by Masson-Goldner’s Trichrom staining procedure following the ImageJ-software
method by Mezei et al. [35]. Throughout every tissue sample, there was no overproduction
of collagen in HPS-treated groups compared to NT, thus indicating no hypertrophy of scar
tissue formation (Figure 5). Furthermore, the return of skin appendages (hair follicles and
sebaceous glands) seemed to be equally distributed by gross visualization throughout all
healed tissues. The epidermis thickness was determined by software measurement through-
out the healed tissue, with no significant differences between treatment and no treatment
groups (mean thickness ± SEM: HPS-10% 29.19 ± 1.52 µm, HPS-40% 27.46 ± 1.39 µm, NT
26.62 ± 1.23 µm).
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Figure 5. Masson-Goldner-Trichrom staining. (A) Quantitative measurement of collagen fiber
deposits in the subdermal layers of HPS-10% (n = 14) and 40% (n = 14) treated murine wounds vs. no
treatment (NT) (n = 10) on POD 15 by color segmentation of collagen-staining, calculated as pixels.
There was no overproduction of collagen in HPS-treated groups compared to NT. Data are means
± SEM. Ns = non-significant. One-way ANOVA with Tukey’s post-hoc test. (B–D) Representative
high-power fields of Masson-Goldner-Trichrom staining of HPS-10%, HPS-40%-treated wounds and
NT wounds. Scale bar = 200 µm.

4. Discussion

Blood-derived growth factor-based therapies have gradually gathered more attention
for their potential use in the regenerative medicine field [14,39]. Our approach focuses
primarily on locally delivering a physiological mixture of blood-derived growth factor
proteins to the injury site [16,18], which may offer a simple and convenient way to support
and accelerate wound regeneration. Here, we tested the regenerative effects of a HPS-
loaded alginate hydrogel in an in vivo splinted murine wound model. Using a topical
application, we showed faster wound closure by up to 1.4 days compared with no treatment
(NT), as well as significant wound surface area reduction by 19.2% starting at day 5 with
HPS-40% application. Wound area reduction was accelerated between day 5 and day 11
with HPS application, exhibiting up to 74% smaller wound surface area on day 11 compared
with NT (Figure 1B).
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The absolute difference between HPS-hydrogel and NT in wound healing kinetics
of 1.4 days appears small at first glance. However, it is important to note that the mouse
model employed has a high basal wound healing speed which lies in the faster epidermal
cell turnover of murine skin (8–10 days vs. 40–56 days in humans) and higher stem cell
mitosis [40]. In fact, as murine wound healing is faster than in other wound models
(e.g., rabbit, porcine) [41], an increase of 1.4 days is more than 10% of the wound-closure
time. Accordingly, a comparable increase in human wounds would shorten the healing time
by 5–6 days. More particularly, the splinted murine wound model has been used in several
other regenerative wound studies [42–44], which also looked at the effects of adipose-
derived stem cells (ADSCs) and platelet-rich plasma (PRP), currently the best-known blood-
based therapy [39]. In comparison to HPS, growth factor release in PRP relies only on the
activation of platelets, that are concentrated through centrifugation to a supraphysiological
level [23,45]. As mentioned earlier, HPS does not only comprise platelet-derived factors
that are released during blood clotting, but also the complete secretome of growth factor
proteins that are produced during the inflammatory and angiogenic/proliferative phases by
PBCs [18,23]. Treatment with PRP-only has been shown elsewhere to promote faster wound
closure by 0.5 days in the same wound model (even with 60% smaller surgical wound area:
20 mm2 vs. 50 mm2), whereas the addition of ADSCs to PRP exhibited an acceleration of
up to 2.2 days compared to NT [44]. Indeed, a head-to-head comparison of the effects of
HPS and PRP in a standardized in vivo wound model remains to be investigated.

The therapeutic approach presented here demonstrates the safety of using human
HPS in a xenogeneic murine wound model. In continuation of our work for the safety
characterization of HPS-1% and HPS-5% [18], we decided to choose a 10 and 40% mix
ratio to exclude adverse effects, such as inflammatory responses, which may be caused by
inflammatory cytokines (e.g., IL-8), contained in HPS [16,18,23]. Having also previously
examined the in vivo biocompatibility and regenerative effects of HPS-hydrogel on chronic
leg ulcers (patient case report) [18], the mix ratios have been adapted to investigate its effects
in this standardized wound model. In particular, given that our previous data showed
dose-dependency in in vitro angiogenesis experiments [23,25], we aimed to elucidate any
similar effects in this model by applying a four-fold dilution ratio. Despite the fact that
there was no significant difference in wound healing kinetics between HPS-10% and -40%
dosing, we measured smaller mean wound sizes with HPS-40% treatment on every POD
(Figure 1B), which indicates greater acceleration of wound healing with a higher HPS
concentration, especially in early stages of wound repair.

Interestingly, we found no hypervascularization in HPS-hydrogel treated wounds at
the healed stage on POD 15 in comparison to NT (Figure 2). Other studies using the same
murine model, in which wounds were treated with MSCs (mesenchymal stem cells) [43]
or ADSCs [42], had found significantly elevated CD31 expression in healed tissue around
POD 14. In the scope of the observed acceleration of wound surface area reduction, as well
as our previous in vitro results [16,18,23], we hypothesize that HPS-hydrogel treatment
also promotes angiogenesis, the primary driver of wound healing. However, this response
may have been completed much earlier than POD 15. It is also possible that HPS provides
regulatory signaling through anti-angiogenic growth factors (e.g., TSP-1, PF-4) which
could inhibit excessive blood vessel formation in vivo [18,20,23,25]. This may well be
a naturally-occurring adaptive response, to prevent aberrant angiogenesis and vascular
leakage once wound healing has been completed - a result that would support the safety
of this therapeutic approach. Nevertheless, the exact mechanism(s) through which HPS
protein factors may exert these regulatory effects remain unclear.

Beside blood vessel angiogenesis, lymphatic vessel generation plays a critical role
in interstitial fluid transport, which reduces excessive oedema and supports angiogenic,
inflammatory and proliferative processes, thus contributing to more efficient regenera-
tion [46]. Here, we have shown dose-dependent promotion of up to 45% more lymphatic
vessels with HPS-treatment compared to NT (Figure 3). Provided that there was no signif-
icant difference in terms of wound surface area between these groups after POD 13, the
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observation of these differences at POD 15 indicates that lymphangiogenesis may occur at
a later stage compared to angiogenesis. We do acknowledge that we investigated a broader
overview of the first 15 days post-wounding and that the cellular dynamics and processes,
especially regarding angiogenesis and lymphangiogenesis, involved within and after this
time-window, have not been closely examined. For this purpose, we aim to conduct further
research in a larger animal model (e.g., swine) to develop a better understanding of these
spatio-temporal events.

As a marker of cell proliferation and metabolism, Ki67 has been previously inves-
tigated on earlier stages of wound healing (POD 6 and 12) in a study of diabetic rat leg
ulcers, in which MSCs encapsulated in polysaccharide hydrogels were applied as treat-
ment [47]. It was shown that Ki67-expression was upregulated in the MSC-therapy group
compared to NT in the course of active wound repair. In our study, it is noteworthy that
on completion of wound healing (POD 15), HPS-treated wounds generally showed lower
Ki67 expression compared to NT, whereas HPS-10% showed the least expression (Figure 4).
Based on this data, we hypothesize that the relative downregulation of Ki67 in HPS-treated
wounds may indicate an earlier completion of wound healing processes and underlines
the accelerated wound closure observed with HPS treatment. However, we expected to
see a similar (i.e., low) level of Ki67 expression in the HPS-40% group as in the HPS-10%
group. The higher Ki67 expression in the HPS-40% group may be accounted for by the
greater concentration of inflammatory (MMP-9, IL-8, CXCL-16) or other stimulatory (VEGF,
IGF-BP3, Prolactin) cytokines that may well maintain a prolonged state of active wound re-
pair [18,23,25], despite an overall comparable level of macroscopic epithelialization. These
mechanisms require, however, further investigation.

Masson Trichrome analysis of collagen fibers has been conducted in many wound
healing studies to determine the orientation and quantification of collagen fibers [48–50].
We detected no excess deposition of collagen fibers in HPS-hydrogel treated wounds
(Figure 5), indicating no hypertrophic scar production in our study. Furthermore, there
were no apparent differences on POD 15 in skin layer structure compared to NT, including
epidermal thickness and number of skin appendages. This finding again demonstrates the
safety of HPS treatment which likely prevents overproduction of scar tissue and fibrosis.
Yet, based on the current findings we expected to see faster collagen fiber production at
earlier wound healing stages with HPS treatment. As discussed beforehand, a temporal
histological investigation examining the rate of collagen deposition should be carried out
in future studies.

It has to be mentioned that in this study, we tested only the combination of HPS and
alginate hydrogel (AH), without testing each component individually. We have previously
demonstrated that topical HPS application can be optimally realized through a hydrogel-
matrix carrier [16,18], which is required as a vehicle for local delivery of HPS protein
factors. Alginate is an anionic linear polysaccharide that is obtained from brown algae
or bacteria and serves as a natural biopolymer [51]. Studies have confirmed a promotion
of wound healing through effects of AH alone, which are dependent on wound cellular-
debridement by macrophage activation, dissolution of necrotic/fibrotic tissue and wound
rehydration [51]. These are properties of AH which lead to faster wound closure, as
reported in several rat wound models [52–54]. Evidently, there must have been a certain
compounding effect of AH in the observed HPS-hydrogel acceleration of wound closure.
Nonetheless, solely AH-driven promotion of new blood vessel growth could not so far be
shown in vitro [53] and in vivo [52], while its effects on lymphatic vessels have yet to be
investigated. Despite the fact that a control group of AH-only could not be included in
this pilot study, which is certainly a limitation of this work, we did see different effects of
HPS-dosing (10% vs. 40% concentration) that can only be accounted for by a cumulative
effect of HPS growth factor-induced responses, especially in terms of accelerated wound
healing, lymphangiogenesis and cell metabolism. To put this into greater perspective, a
non-hypoxia conditioned serum, PRP (activated by CaCl2), speeded up wound healing by
only 0.5 days [44]. Therefore, HPS-hydrogel therapy is possibly 3 times more effective than
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PRP in this model. In terms of study design, we conducted this first animal experiment
based on the ‘3-R principle’ (Reduction, Refinement, Replacement), to assess the utility
of HPS as a potential wound healing therapy. By completing this pilot study, we could
confirm the safety and effectiveness of topical HPS-hydrogel application in comparison to
no treatment. Our findings encourage further investigation using a formal set of control
groups, including a carrier-only group.

Another limitation of this study was the inability to use autologous murine blood,
which was, unfortunately, not possible to draw from these mice, due to physiologically-
insufficient blood volume to produce adequate HPS for testing. Our primary goal, however,
focuses on autologous HPS application in humans, which can better suit the inter-individual
variability of growth factor responses involved in the wound repair process than any
allogeneic therapy. For these reasons, we used human blood-derived HPS, which was
tested on immunocompromised mice in order to exclude possible allergic/autoimmune
reactions that could have interfered with wound healing. The fact that the HPS secretome
tested was cell-free may indeed have reduced this confounding factor.

In a further stage, the efficacy of HPS also remains to be determined in the setting
of pathological (i.e., non-traumatic) wound healing, such as in diabetes and peripheral
vascular disease. Previously conducted in vitro experiments showed no difference in
terms of pro-angiogenic factor composition between HPS obtained from diabetic patients
or patients receiving anticoagulants and HPS obtained from healthy blood donors [22].
This is promising for the clinical translation of this approach in this patient group, that is
burdened by chronic leg ulcers, commonly necessitating partial or complete lower extremity
amputation and complex reconstructive surgery [55]. Beyond reducing overall morbidity
and the length of patient hospitalization, HPS holds, therefore, the potential to reduce the
large healthcare costs associated with these conditions.

5. Conclusions

Our in vivo findings demonstrate the regenerative potential of blood-derived hypoxia
preconditioned serum (HPS)-hydrogel on wound healing. The promising results of this
study suggest that this therapeutic method could be similarly efficacious in settings where
the physiological mechanisms of wound healing are impaired. The wider application
of HPS-based treatments may have a true positive impact in reducing healthcare costs,
although this should not be considered as a replacement treatment for standard medical
care, such as thorough debridement of necrotized tissue, but rather as a complementary
therapy for bioactively supporting tissue regeneration. Further in vivo studies should be
conducted to confirm the safety and to analyze temporal molecular mechanisms of hypoxia
preconditioned blood-derived secretomes in wound repair.

6. Patents

Device-based methods for localized delivery of cell-free carriers with stress-induced
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