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Abstract

A computational model of the physiological mechanisms driving an individual’s health

towards onset of type 2 diabetes (T2D) is described, calibrated and validated using data

from the Diabetes Prevention Program (DPP). The objective of this model is to quantify the

factors that can be used for prevention of T2D. The model is energy and mass balanced and

continuously simulates trajectories of variables including body weight components, fasting

plasma glucose, insulin, and glycosylated hemoglobin among others on the time-scale of

years. Modeled mechanisms include dynamic representations of intracellular insulin resis-

tance, pancreatic beta-cell insulin production, oxidation of macronutrients, ketogenesis,

effects of inflammation and reactive oxygen species, and conversion between stored and

activated metabolic species, with body-weight connected to mass and energy balance. The

model was calibrated to 331 placebo and 315 lifestyle-intervention DPP subjects, and one

year forecasts of all individuals were generated. Predicted population mean errors were less

than or of the same magnitude as clinical measurement error; mean forecast errors for

weight and HbA1c were ~5%, supporting predictive capabilities of the model. Validation of

lifestyle-intervention prediction is demonstrated by synthetically imposing diet and physical

activity changes on DPP placebo subjects. Using subject level parameters, comparisons

were made between exogenous and endogenous characteristics of subjects who pro-

gressed toward T2D (HbA1c > 6.5) over the course of the DPP study to those who did not.

The comparison revealed significant differences in diets and pancreatic sensitivity to hyper-

glycemia but not in propensity to develop insulin resistance. A computational experiment

was performed to explore relative contributions of exogenous versus endogenous factors

between these groups. Translational uses to applications in public health and personalized

healthcare are discussed.

Introduction

Managing the care of people with diabetes is an enormous burden on the US healthcare econ-

omy, costing $176 billion per year in direct medical expenses according to estimates from 2012
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[1]. The Centers for Disease Control and Prevention (CDC) estimate that in the US diabetes

affects nearly 29 million individuals (~9% of US population) [2]. Diabetes significantly

increases the risk of several co-morbidities including heart attack and stroke, retinopathy, risk

of amputation, nephropathy, neuropathy, hearing loss, and depression among others [3–9]. In

addition, an estimated 86 million people have prediabetes, which puts individuals at increased

risk of type 2 diabetes (T2D), heart disease, and stroke [2]. While the prevalence of diabetes is

stabilizing in the US, the global cost of diabetes is expected to increase by more than 50% by

the year 2035 with developing countries being the largest contributors [10]. New approaches

are required to curb the increasing global prevalence of T2D and improve care for patients

with diabetes to control disease progression.

Many studies have evaluated the effects of interventions in high-risk patients [11–14]. A

critical study was the Diabetes Prevention Program (DPP), which examined whether lifestyle

adjustments and pharmacological interventions could prevent or delay the onset of T2D in

prediabetic subjects over a four-year period [15]. The study found lifestyle interventions could

reduce diabetes onset in prediabetic subjects by up to 50% over 4 years compared to a placebo

group. Similar studies targeting prediabetic populations also found lifestyle interventions delay

or even prevent the onset of diabetes [16–20]. Even with care taken to ensure subject adher-

ence to interventions, such as in the DPP study [21], a significant portion of study subjects

failed to avoid becoming diabetic. This emphasizes the need to improve upon simple, uniform

interventions with ones specifically tailored to minimize the risk of diabetes onset in individual

and patient cohorts. Despite recognition of the value of individualizing interventions to maxi-

mize long-term risk reduction, there are few methods to design interventions that take into

account the subject’s current health state and clinical history. In the present work we have

taken a significant step in bridging this gap by using mathematical modeling and computa-

tional simulations to study the dynamics of T2D onset and its multifactorial regulation by

inherent individual characteristics and their interactions with lifestyle.

Several isolated computational models of diabetes-related biological systems and processes

such as macronutrient metabolism, macronutrient energy balance, insulin response, and insu-

lin resistance have been developed previously. Hall’s model of macronutrient energy balance

effectively captures changes in body weight components by simulating various metabolic

fluxes and was validated to predict body weight changes in response to caloric restriction [22].

Similar models have been developed independently that take energy balance into account to

predict the dynamics of body weight [23,24]. A limitation of these models is that while they do

phenomenologically model nutrient fluxes, they are not designed to fully account for mass bal-

ance, meaning that they do not contain equations that account for the conservation of mass of

the macronutrients in the system. They also do not include the dynamics of glucose regulation

by insulin or the pathophysiology of the development of insulin resistance or pancreatic

decompensation as observed in prediabetic and diabetic subjects. Others have proposed inte-

grative models to study population level dynamics of obesity and diabetes in the context of fac-

tors such as clinical management, environmental risks, and cultural norms etc., which are

outside the realm of pathophysiology of diabetes [25,26]. Fallah-Fini et al. used Hall’s individ-

ual model to construct a population level representation of BMI distribution and the shifts in

the distribution over time [27]. At the other end of the spectrum are models focused on

dynamics at the cellular and molecular levels, such as those focusing on the dynamics of

plasma glucose and its feedback effect on plasma insulin. For example, the so called minimal

model of glucose dynamics was designed to capture the restoration of plasma glucose follow-

ing an intravenous glucose tolerance test (IVGTT) [28]. A model developed by de Winter et al.

simulates the feedback between glucose and insulin and also incorporates the dynamics of gly-

cosylated hemoglobin (HbA1c) [29]. The model of De Gaetano et al. represents long term
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dynamics of glucose-insulin feedback and HbA1c along with regulation of beta cell mass and a

phenomenological representation of insulin resistance [30]. More detailed models of insulin

mediated cell signaling have been developed that represent the development of insulin resis-

tance in various cell types as a function of inhibition of insulin signaling by multiple factors

[31–33]. While these models are extremely useful for understanding diabetes related phenom-

ena such as body weight change, glucose-insulin dynamics, and insulin resistance, they are

limited by analyzing these aspects in isolation. Because the onset and progression of diabetes is

a systemic process driven by complex interactions of all the phenomena listed above, it is nec-

essary to study diabetes in an integrative way. Scaling up these models from representations of

individual cellular or organ level processes to a whole-body model of diabetes is extremely

valuable in understanding and predicting diabetes onset in response to various lifestyles and

medications.

The present work describes a holistic model of diabetes onset and progression that brings

together the relevant physiological systems including mass balance of major macronutrients

(carbohydrate, fat and protein), energy balance, regulation of insulin secretion, molecular

mechanisms of development of insulin resistance, and the role of ROS and inflammation in

diabetes progression. Our model is designed with a top-down structure comprised of multiple

components that together represent the major biological processes leading to the development

of pre-diabetes and onset of diabetes in humans. The model is divided into six components

containing processes that span three scales: cellular (insulin resistance), distinct organs/tissues

(adipose tissue, liver, muscle tissue, and pancreas), and whole-body (blood). Metabolic fluxes

within each component, transport and other interactions between components are shown in

Fig 1.

We chose to model the specific processes shown in Fig 1 because they form the structure

required to correctly reproduce macronutrient metabolism as it pertains to long-term indi-

vidual subject-level changes in body weight, development of insulin resistance, insulin

decompensation, and irreversible progression to diabetes. It could be argued that a more par-

simonious model is possible, but we have chosen this level of detail as it more readily enables

investigation of the causal origins of observed model behavior, maintains a more specific

connection to literature, and allows for future development to expand the capabilities of the

model. Previous mathematical models of whole-body human metabolism have focused on

energy balance in the body to predict the dynamics of body weight change [22–24]. In con-

trast to such models, the model presented here primarily focuses on mass balance of the

three major macronutrients in the body, i.e., carbohydrates, protein and fat. The model also

balances the energy of the entire system with the assumption that at a given time, energy con-

sumption by essential processes (such as cell growth, repair etc.) is proportional to fat and fat

free mass and together with physical activity, accounts for total energy needs of the body.

Alteration in resting metabolic rate in response to weight change is included in model. This

combination of mass and energy balance allows the model to simulate the dynamics of

weight components (fat and fat free mass) along with various molecular markers of diabetes

progression (Fig 1).

The resulting model is a multi-scale system of ordinary differential equations that spans cel-

lular, tissue and whole-body scales and represents the dynamics of body weight, blood bio-

markers of diabetes progression, the long term effects of lifestyle and is able to capture the

development of pre-diabetes and onset of diabetes. We describe the design of the model, cali-

bration of the model to individual subjects from the DPP placebo arm, apply the model to pre-

dict outcomes of the intervention arm, and perform retrospective, out of sample forecasts for

individuals over a one-year period. The model is also applied to understand endogenous bio-
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logical and exogenous lifestyle reasons for observed differences in HbA1c changes between

individuals. A full description of the model equations and parameters, initial conditions, and

sensitivity analysis are presented in supporting information.
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Fig 1. Schematic diagram of model components. Model compartments, internal component processes, flow of chemical species

and metabolic information, and definitions of model variables.

https://doi.org/10.1371/journal.pone.0192472.g001
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Model structure

General mathematical model structure

Mathematically, the model is comprised of a system of ordinary differential equations. The

general form of the differential equation is:

dCip
dt
¼

P
jðJ

j!i
p � J

i!j
p Þ

Vi
þ
X

q

ðRiq;p � R
i
p;qÞ

Cipðt ¼ 0Þ ¼ Cipjt¼0

where Cip is the concentration of species p in component i, Vi is the volume of component i,
the mass fluxes between components i and j are represented as Jj!ip and Ji!jp and the conver-

sions between different molecular species p, q in the component i are represented as Riq;p and

Rip;q. Detailed diagrams of the components show in Fig 1 are described with fluxes and their

mathematical representations in S1, S2, S3, S4, S5 and S6 Figs and S1, S2, S3, S4, S5, S6 and S7

Tables). The conversion rates (Rip;q) are generally represented using one of three kinetic equa-

tions as appropriate:

1. Law of mass action with a single parameter and reaction rate proportional to substrate con-

centration with one parameter.

2. Michaelis-Menten equation with two parameters and reaction rate increasing hyperbol-

ically before reaching saturation as the substrate increase.

3. Hill equation with three parameters, also saturable but with a sigmoidal increase in rate

with substrate concentration.

The form of the equation to use for a particular reaction is either based on existing knowl-

edge of how the reaction occurs or is chosen to fit the model to expected behavior. When no

prior information was available about the reaction kinetics, law of mass action was assumed as

the simplest default choice. The complexity was progressively increased to Michaelis-Menten

and Hill equations if the simpler rate equations failed to reproduce the expected system behav-

ior. When a reaction rate is known to be further modified by another molecular species (acti-

vation or inhibition), the functional form chosen as described above is modified appropriately

to represent the corresponding increase or decrease in the rate.

Blood

The blood component connects the other 5 components as shown in Fig 1 and provides the

serum concentrations of many molecules (Fig 1, S1 Fig and S2 Table) that can then be com-

pared to standard clinical measurements. The process of glycosylation of hemoglobin is incor-

porated in the blood component (flux v28 in S1 Fig and S2 Table), The representation of

glycosylation enforces a threshold on the maximum percentage of hemoglobin that can be gly-

cosylated, which produces an upper bound on the concentration of glycosylated hemoglobin

(HbA1c). This term is a modification of the equation used by De Gaetano et al. [30]. The

blood component interfaces with the terms related to the ingestion of food and delivery of

macronutrients to the blood supply through the intestine. The processes of ingestion, digestion

and absorption of food have been abstracted into direct delivery of the relevant forms of the

macronutrients to the blood component. Specifically; carbohydrate consumption is repre-

sented as flux of glucose into blood, fat consumption is represented as flux of chylomicrons

A mechanistic model of type 2 diabetes onset in humans
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into blood, protein consumption is represented as flux of amino acids into blood. For long-

term simulations, food intake is modeled as a continuous input of mass of each macronutrient

consumed per unit time. This is a simplifying assumption we made to enable numerical inte-

gration of the model over long simulated time periods. For shorter bolus ingestion experi-

ments, a simple first-order process represents the dynamics of the appearance of the

macronutrients into blood upon ingestion.

Muscle

The muscle component is an abstraction of all major tissues in the body other than pancreas,

liver and adipose tissue, which have been distinguished in the model as their own separate

components. The muscle component is where consumed macronutrients are used for ATP

generation and ATP is expended for bodily functions, and physical activity. Metabolism of

glucose and fat in the adipose tissue has also been lumped into the energy metabolism in the

muscle component. The muscle component incorporates the transport of all 3 major macro-

nutrients from blood e.g. uptake of free fatty acids (FFA) from chylomicrons and triglycerides

etc. (Fig 1, S2 Fig). The component further represents the metabolic processes for the inter-

conversion between different species, e.g. de novo lipogenesis (DNL), glycogenesis, glycogen-

olysis, lipolysis, proteolysis, and protein synthesis. The component incorporates the oxidation

of macronutrients, phosphorylation of adenosine diphosphate (ADP) to adenosine triphos-

phate (ATP), and the hydrolysis of ATP to release energy (S1 Fig and S3 Table). The model

assumes the concentration of molecular species in the interstitial space (ISF) and inside the

cell is in rapid equilibrium. This assumption simplifies the model by allowing us to treat the

muscle compartment as a single, well-mixed compartment. Hence concentrations in the mus-

cle component can be taken to mean both intracellular and ISF concentrations unless specified

otherwise. Details of specific processes within the muscle component are described below.

Insulin-dependent and independent glucose transport

The transport of glucose into the muscle component is driven by glucose gradient, and the per-

meability of glucose is defined as a non-linear function of the concentrations of GLUT1 and

GLUT4 transporters on the cell surface (v1 in S1 Fig and S3 Table). The GLUT1/GLUT4 cell

surface concentrations are inputs from the insulin resistance (ISR) component. As described

in the ISR component, GLUT1 acts as the constitutive transporter of glucose. Its trafficking is

relatively weakly regulated by insulin and it acts as the insulin-independent glucose trans-

porter. The cellular trafficking of GLUT4 is strongly insulin dependent and it acts as the insu-

lin-dependent glucose transporter of glucose. Glucose transport into cells is assumed to

increase linearly with GLUT1 and in a sigmoidal manner with GLUT4, based on previously

reported sigmoidal response of GLUT4 to increasing insulin concentration [34]. As described

in the section “General mathematical model structure”, the simplest possible model was cho-

sen for GLUT1, and a more complex model was used for GLUT4 in view of the supporting

experimental data.

Continuous cycling of GLUT1 and GLUT4 ensures there is always some concentration of

glucose transporter present on cell membrane, irrespective of insulin levels (Yang 1993). By

including this mechanism, the model accounts for insulin-independent glucose disposal. Fur-

thermore, since glucose transport is dependent on glucose concentration (e.g., v1
MUS in S3

Table), increase in glucose concentration above baseline level upregulates glucose uptake by

cells independently of available insulin, thus satisfying part of cellular glucose requirement and

slowing down endogenous glucose production. The notion of glucose effectiveness, which is

A mechanistic model of type 2 diabetes onset in humans

PLOS ONE | https://doi.org/10.1371/journal.pone.0192472 February 14, 2018 6 / 37

https://doi.org/10.1371/journal.pone.0192472


defined as the ability of glucose to enhance its own uptake and inhibit its production [35,36], is

accounted for by this mechanism.

De novo lipogenesis

While the liver is the main site for de novo lipogenesis (DNL), in conditions of excess glucose

inside the muscle component, there is conversion to fat in this component as well. The conver-

sion of glucose to fat is modeled as a Hill function such that significant lipogenesis only hap-

pens in conditions of significant excess of glucose over steady-state conditions (v8 in S2 Fig

and S3 Table).

Glycogenesis and glycogenolysis

The model represents the dynamic equilibrium between glucose and glycogen in the muscle

component. In the model, glycogen is made from 4 glucose molecules and this stoichiometry

is maintained throughout the model. Any excess glucose is converted to glycogen until a maxi-

mum glycogen threshold is reached. As the simplest possible model, the rate of glycogenesis

was assumed proportional to the concentration of glucose in the tissue, insulin sensitivity (IS,

an input from the ISR component) and the remaining availability for glycogen storage. The

glycogenolysis process is proportional to glycogen concentration but is further controlled by

the energy state of the muscle cells measured as the ATP/ADP ratio (AAR; terms v7 and v10 in

S2 Fig and S3 Table).

Fatty acid uptake

Serum triglycerides (TGs) and chylomicrons serve as the primary sources of fat to the muscle

component. Lipoprotein lipase (not explicitly modeled) hydrolyses circulating TGs and chylo-

microns (v13 in S2 Fig and S3 Table) into free fatty acids (FFAs) and glycerol in the muscle

component. Glycerol transport back into blood is represented as a first order mass action (v4).

There is bi-directional transport of FFAs between blood and muscle component (v2, v3).

FFA, glycerol and TG exist in a dynamic equilibrium (v16, v17) where three FFA molecules

combine with one glycerol molecule to create one TG molecule, and this stoichiometry is pre-

served throughout the model. In reality it is glycerol-3-phosphate (gly-3-P) that is used in

esterification of FFAs. The generation of gly-3-P is known to occur by several pathways includ-

ing direct phosphorylation of glycerol by glycerol kinase, from glucose via glycolysis, or from

pyruvate through glyceroneogenesis [37]. Glycerol released by hydrolysis of TG can be utilized

for gluconeogenesis, and then released as gly-3-P during glycolysis, finally cycling back to

form TG. Instead of explicitly modeling the steps of this cycle and glyceroneogenesis through

intermediates of other metabolic pathways, we assumed that there is a fixed pool of glycerol

available systemically that cycles between bound (as TG) and free forms.

Amino acid uptake and protein metabolism

The amino acid fluxes in and out of the muscle component are represented as first order mass

action processes (v5, v6). Inside the muscle component amino acid and protein concentrations

are in dynamic equilibrium with a stoichiometric ratio of 500 (v16, v17). Amino acids are con-

verted into ketoacids (v18) for use in energy metabolism (S2 Fig and S3 Table). The contribu-

tion of amino acids to energy production is smaller than that of carbohydrates and fats. The

main purpose served by amino acids is to maintain the body’s nitrogen balance. Since we have

not simulated starvation, the amino acid metabolism component is designed to maintain a

steady nitrogen balance and excess protein is excreted [38].
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Macronutrient oxidation and ATP hydrolysis

The muscle component is the main site of macronutrient oxidation and ATP hydrolysis. Glu-

cose, fat, and ketoacids fuel the ATP synthesis process in the model. The model only represents

aerobic oxidation of the fuels as a single step reaction. The rate of ATP generation from all

three types of fuels is proportional to the concentration of ADP and mitochondrial function

(input from ISR component). The rate of oxidation of ketoacids is directly proportional to the

concentration of ketoacids in the components while the rates of oxidation of glucose and FFA

are represented as saturating processes (terms v19, v9 and v13 in S2 Fig and S3 Table). Since

systemic protein levels are maintained at an approximately steady level in the model (as

described in “Amino acid update and metabolism”), a simple mass action term was sufficient

to capture their nearly constant contribution to energy production under non-starvation con-

ditions. Glucose and FFA are the main contributors to ATP generation regulated by a series of

enzymes. The complex process of oxidative phosphorylation was simplified to a single mathe-

matical expression representing the saturable nature of enzyme catalyzed processes. The three

fuels lead to the generation of different amounts of ATP and this stoichiometry is also incorpo-

rated into the equations. The stoichiometry is tuned such that the respiratory quotient is 0.85

at steady state and ketoacids contribute approximately 20% to ATP synthesis.

The hydrolysis of ATP to ADP is proportional to available concentration of ATP in the mus-

cle component; however, several additional mechanisms regulate the rate of hydrolysis. The rate

of ATP hydrolysis is assumed to increase with differential change in fat mass (FM) and fat-free

mass (FFM) as compared to baseline. Use of differential change instead of the absolute mass is a

recognition of the fact that the same amount of weight change in two individuals with different

baseline weights may lead to different levels of perturbation in energy balance. The model dif-

ferentiates between energy expenditure for regular body function defined as basal metabolic

rate (BMR) and physical activity, so changes in energy expenditure due to changes in physical

activity are also incorporated into the ATP hydrolysis equation. It has been shown previously

that decrease in metabolic rate following weight loss cannot be fully accounted for by changes

in FM and FFM [39–41]. To account for this adaptation in metabolic rate, the model incorpo-

rates regulation of metabolic rate through mechanisms independent of FM and FFM. There is

evidence the central nervous system, through the action of leptin and other factors, is an impor-

tant regulator of basal metabolic rate [42]. We abstracted the effects of leptin and other molecu-

lar level causes of BMR adaptation into a single simulated mechanism whereby leptin, whose

secretion is regulated by the average concentration or loading of adipocytes with triglycerides

(input from adipose component), modifies the basal metabolic rate (BMR) through a Hill func-

tion such that the BMR decreases as leptin levels go up. It has also been suggested the gut micro-

biome plays a role in glucose homeostasis [43], but there does not exist an established consistent

literature that can be used to guide a mechanistic representation of this process.

Liver

Liver is the third major component involved in macronutrient metabolism. Many of the pro-

cesses incorporated in the muscle component are also present in the liver component (Fig 1,

S3 Fig and S4 Table). The aspects that are different between liver and muscle are described in

the following sections.

GLUT1/GLUT4 mediated glucose transport

The mechanism of glucose uptake by the liver component (v1, v2 in S3 Fig and S4 Table) fol-

lows a similar mechanism as that in the muscle component. However, unlike the muscle where

there is no net outflow of glucose from the muscle component into blood, there is secretion of
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glucose from the liver into blood. Hence, the influx and efflux terms are separated. The influx

of glucose is represented as a function of GLUT1/GLUT4 and serum glucose. The efflux term

(v2 in S3 Fig and v2
LVR in S4 Table) is separately represented and depends on liver glucose

concentration.

De novo lipogenesis

The liver is the primary site for de novo lipogensis (DNL) in the body. The expression for DNL

(v12, S3 Fig and S4 Table) in liver is the same as that in the muscle component.

Glycogenesis and glycogenolysis

Glycogen-glucose dynamics in the liver component are represented the same way as in the

muscle component. During rigorous physical activity liver glycogen is preferentially used as a

source of glucose [44]. It has been reported that the suspected mechanism for this enhanced

glycogenolysis is increase in levels of catecholamines like epinephrine [45,46]. Hence, the form

of the function for change in glycogenolysis follows data for levels of epinephrine with increas-

ing intensity of exercise [47].

Gluconeogenesis from amino acids and glycerol

The liver component is the site of gluconeogenesis. The model incorporates gluconeogenesis

from glycerol as well as from a glucogenic portion of amino acids. Gluconeogenesis from

ketoacids is assumed to be proportional to the concentration of ketoacids in the liver (v17, v21

in S3 Fig and S4 Table). Gluconeogenesis from glycerol is inhibited by increased insulin sensi-

tivity (input from the ISR component).

Lactate produced by anaerobic glycolysis is an important source of gluconeogenesis

through the Cori cycle. We have ignored anaerobic metabolism in our model and did not

include lactate in our model since it was not our goal to simulate intense muscular activity

resulting in cellular oxygen deprivation.

Fatty acid metabolism

Unlike in the muscle, in the liver, there is no uptake of FFA from TGs and chylomicrons.

There is uptake of FFAs from blood into liver that follows a 1st order process (v3 in S3 Fig and

S4 Table). New FFAs that are synthesized through DNL and FFA absorbed from blood are

combined with glycerol to form TG that is transported out (v14, v4). Lipolysis of TG in the

liver is ignored.

Ketogenesis

The model also incorporates a simplified representation of the ketogenesis (v15 in S3 Fig and

S4 Table) that increases significantly when there is excess FFA in the liver component. Some

ketone bodies are reconverted to FFA (v16) while the rest are transported to blood over a gra-

dient (v7, v8).

Adipose

The adipose component represents the site of both visceral and subcutaneous fat tissue. The adi-

pose component incorporates uptake of fat from blood, and the dynamic equilibrium between

lipolysis and esterification of FFA. The fatty acid metabolism in adipose tissue is modeled simi-

larly to the muscle component (Fig 1, S4 Fig), with difference being that adipose tissue takes up

more FFA from circulating TG and chylomicrons than muscle. The increase in lipolysis by
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physical activity [48,49] is captured in the model. It has also been shown that the increase of

lipolysis saturates with increased intensity of physical activity [50]; therefore, a saturating func-

tion is used to connect lipolysis with increasing intensity of physical activity. Finally, regulation

of lipolysis by insulin is also included in the model such that increased insulin sensitivity (input

from ISR component) decreases the rate of lipolysis [51] (v4 in S4 Fig and S5 Table).

Pancreas

The proposed pancreas model is a modification of that presented by De Gaetano et al. [30]. The

model incorporates the long-term dynamics of beta cell mass, beta cell function and insulin pro-

duction as distinct elements (Fig 1 and S5 Fig). While the fasting plasma insulin is predominantly

dictated by the dynamics of the beta cell number, the increased response of insulin secretion to

increased serum glucose is predominantly driven by beta cell function. Proliferation of beta cells

is represented as a Hill function dependent on blood glucose concentration (v1 in S6 Table). The

choice of the Hill function implies that beta cell growth, and hence subsequent insulin production,

is low for very low glucose concentrations and increases rapidly toward a saturation point when

glucose concentration crosses a certain threshold. Beta cell apoptosis is a function of chronic

inflammation (v2). Beta cell function, a value bounded between 0 and 1, decreases at a rate pro-

portional to remaining beta cell function and ROS concentrations. The beta cell function recovers

by a first order mass action process. Beta cell function was introduced to take into account the

lack of insulin producing capacity in the remaining beta cells in diabetic subjects. The rate of insu-

lin production is proportional to the beta cell mass, beta cell functional capacity, and also increases

in a saturating manner (through independent Hill functions) with serum glucose and FFA con-

centrations. Insulin is removed from blood by a simple first order mass action process.

Hormones counter-regulatory to insulin, in particular glucagon which is secreted by the

alpha cells of the pancreas, were not explicitly modeled. Since the secretion of insulin and glu-

cagon is reciprocally regulated in the maintenance of glucose homeostasis with paracrine and

endocrine effects of insulin determining glucagon levels [52], we reasoned that the dynamics

of insulin contain sufficient information to estimate the effect of counter-regulatory hormones

and incretins. We used this as the basis to simplify the model and only include insulin as an

explicit hormonal regulator of glucose homeostasis. As effects of glucagon and other counter-

regulatory hormones of insulin are to counteract the action of insulin, the parameters related

to insulin action were adjusted to achieve the net effect of the opposing mechanisms.

Insulin resistance

The insulin resistance (ISR) component (Fig 1, S6 Fig and S7 Table), represents processes that

modulate the following: a) the response of cells to insulin, simulating deficiency in insulin

action as insulin resistance increases; b) short and long-term regulation of mitochondrial func-

tion; and c) the effects of energy depletion on AMPK activity. Binding of insulin to the trans-

membrane insulin receptors leads to phosphorylation and activation of downstream signaling

resulting in translocation of glucose transporters GLUT1 and GLUT4 to the membrane

[53,54]. Reactive oxygen species (ROS), FFA and pro-inflammatory cytokines (e.g. IL-6) have

been shown to inhibit insulin signaling and contribute to insulin resistance [55–60]. Since the

dynamics of insulin receptor phosphorylation and dephosphorylation are significantly faster

than the dynamics of metabolic fluxes simulated in the model (such as glycogenesis, lipolysis,

insulin secretion etc.), a quasi-steady state approximation was used to convert the differential

equations representing the dynamics of insulin receptor activation into algebraic equations.

Insulin sensitivity is expressed as the fraction of insulin receptors that are in the phosphory-

lated (active) state (S6 Fig and S7 Table).
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The concentrations of GLUT1 and GLUT4 on the cell surface regulate the glucose transport

into cells. The model represents the dynamics of GLUT1 and GLUT4 concentrations on the

cell surface as well as the intracellular concentrations. Trafficking of GLUT1 and GLUT4 to

the cell surface is controlled by phosphorylated insulin receptors and the membrane bound

forms are constitutively endocytosed. While the trafficking of GLUT4 is primarily insulin

dependent, that of GLUT1 is weakly regulated by insulin. In particular, insulin driven exo-

cytosis of GLUT4 is much stronger than that of GLUT1 (exocytosis rate constant of GLUT4,

kgsc4,glut4_ins, is four times that of GLUT1, kgsc1,glut1_ins, as shown in S8 Table). Consequently,

GLUT1 acts as the constitutive transporter regulating insulin-independent glucose uptake and

is assumed to represent other types of constitutively active glucose transporters in various tis-

sue types. GLUT4, on the other hand, is strongly regulated by insulin and controls insulin-

dependent transport of glucose into cells. GLUT4 transport to the cell surface is additionally

known to be upregulated by AMPK activity and is represented in the model [61,62]. GLUT1

and GLUT4 in intracellular storage components (GSC1 and GSC4) are synthesized at a con-

stant rate and degraded by a first order mass action process.

Mitochondrial function (half-life of 3 days [63]) controls macronutrient oxidation, thereby

controlling the rate of generation of ATP. In this model, it is assumed mitochondrial concen-

tration represents mitochondrial function. It is further assumed leakage of mitochondrial ROS

from the electron transport chain is the major source of systemic ROS. Cumulative effects of

ROS over the process of aging are represented by slow accumulation of instantaneous ROS (S7

Table) leading to degradation of mitochondrial function. This structure allows the model to

reproduce the reduced mitochondrial function as observed in aging studies [64]. Due to this

age-dependent reduction in mitochondrial concentration, macronutrient oxidation in the

model decreases over time, causing changes in weight and body-fat content with age for a con-

stant diet and activity level.

ATP deficiency (or AMP excess) leads to upregulation of AMPK activity, which in turn

enhances mitochondrial function [62,65]. In the model, concentration of adenosine mono-

phosphate (AMP) is assumed to be proportional to that of ADP. ADP (hence AMP) increases

AMPK activity through a Hill function in the model and mitochondrial synthesis is assumed

to be directly proportional to AMPK activity (S7 Table).

Body weight

Body weight is a direct function of the total body glycogen, protein, fat mass, fat-free mass, and

hydration, making body weight tightly connected to mass and energy balance in the model.

The calculations of body-weight and its components (FM and FFM) are adapted from the

model presented by Hall [22]. The following equations were used for computing body weight

components:

Mgly ¼ ðC
LVR
gly � V

LVR þ CMUSgly � V
MUSÞ �MGgly

Mpro ¼ ðC
LVR
pro � V

LVR þ CMUSpro � V
MUSÞ �MGpro

MFM ¼ ðC
LVR
tg � V

LVR þ CMUStg � V
MUS þ CADItg � V

ADIÞ �MGtg

MFFM ¼
wFM �MFM þMgly þMpro þMbone þMecp

1 � wFFM

BW ¼ MFM þMFFM
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In the above equations,Mi represents the mass of the species i, Cji is concentration of i in com-

ponent j, Vj is the volume of component j, χi represents the hydration coefficient of i,MGi is

molecular mass of species i, and BW is the total body-weight. These equations show body-

weight is a direct function of the changes in amounts of the relevant molecular species; thus,

body-weight is tightly connected to mass and energy balance in the model.

Physical activity

The model incorporates the effects of physical activities at multiples places. A fraction of the

total energy expenditure represented by ATP hydrolysis is attributed to physical activity which

include any specific exercise routines. Changes in lifestyle of an individual, which result in

changes in physical activity, lead to proportional changes in the fraction of ATP hydrolysis

attributed to physical activity. Physical activity, especially high intensity exercises, have been

shown to lead to rapid release of glucose from the liver through the process of glycogenolysis

[47]. This effect is known to be mediated through increased release of epinephrine. Though

the model does not currently incorporate epinephrine, the increased glycogenolysis leading to

reduced liver glycogen is represented in the model. Physical activity in the model has been rep-

resented in the model to lead to increased lipolysis. It has been reported that the increase in

lipolysis is a function of fraction of VO2 max of an individual [66,67] and that functional

representation is incorporated in the model.

Materials and methods

Data processing

The publicly released Diabetes Prevention Program (DPP) data set from the National Institute

of Diabetes and Digestive and Kidney Diseases (NIDDK) [15] was used to calibrate and vali-

date the model. We examined individual subject data collected from participants in the pla-

cebo and lifestyle-intervention trial arms of the DPP study. Subjects with at least three years of

data were selected to have sufficient data to study the time-course of their health. The variables

extracted for the analysis are listed under “Variable Name” column of Table 1. Study subjects

were grouped according to their intervention arm assignment. Individuals who did not meet

the required number of data points per variable (Table 1), had height < 158 cm, BMI< 27,

opposing trends in HbA1c versus glucose/insulin measurements, and/or were pregnant were

excluded from the analysis. The remaining subjects’ data were cleaned to remove duplicates,

Table 1. DPP data requirements.

Variable Name Data Requirements

Subject ID 1 value

Gender (male, female) 1 value

Age (years) 1 value

Initial BMI (kg/m2) 1 value

Height (m) 1 value

Study arm

(placebo, lifestyle-intervention)

1 value

Weight (kg) � 7 measurements

HbA1c (%) � 5 measurements

Fasting Insulin (μU/mL) � 4 measurements

Fasting Plasma Glucose (mg/dL) � 7 measurements

Daily Diet (kCal) � 2 measurements

https://doi.org/10.1371/journal.pone.0192472.t001
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missing rows, extreme outliers (1 subject with weight gain> 75%; 2 subjects with outlying

HbA1c). A total of 331 subjects from the placebo arm and 315 from the lifestyle intervention

arm were used for our analysis.

Numerical solution of model equations. The model consists of a series of first order

ordinary differential equations (ODEs) and algebraic equations coded in Python. The ODE

system was numerically integrated forward in time using the LSODA routine in the scipy.inte-

grate submodule of the SciPy Python library [68,69]. LSODA dynamically accounts for stiff-

ness in the equations over the course of the simulation. The numerical simulation of an

individual is started at age 20 in an assumed healthy state with a fixed set of initial conditions

and integrated forward to current time. The model is fit so that when the numerical integra-

tion reaches the current time, the outputs of model match the individual’s specific data. A

detailed list of the initial conditions at age 20 is provided in S11 Table. Interventions or

changes in lifestyle are implemented by stopping the integration at the time of the change of

lifestyle, changing model parameters and/or inputs (e.g., reduced diet, increase physical activ-

ity) to introduce the intervention into the simulation, then restarting the model at that time

and running forward to the end of simulation. The model is run for an individual, and popula-

tions are represented by pooling the collection of individual model simulations to generate

population information.

Model calibration technique. The parameters of the model were estimated using the dif-

ferential evolution optimization algorithm [70] to minimize a weighted least squares objective

function. The specific form of the objective function, Ф, given the set of model parameters, θ,

was:

FðyÞ ¼
X

i

X

j

wij fyijðyÞ � y
�

ijg
2

where y
�

ij represents measured DPP data, yij (θ) represents model outputs for parameter set θ,

and wij are weights specific to the data point. The index i indicates the variable being fit, and

the index j indicates the times at which yi was measured. To determine whether the match of

the model output to the data was adequate, measurement errors and natural variability in the

measured variables were used to assess the fit. Population size was set at 7 times the number of

parameters to be optimized and convergence was generally observed in less than 200 iterations.

The parameter search was considered to have converged numerically when the best score did

not change by more than a pre-set threshold, or the coefficient of variation for any of the

parameters in the population was lower than 5%. The weights wij were determined empirically

on some test cases and were adjusted to obtain the best qualitative fit as determined by visual

comparison of the model output and training data. The weights determine the contribution of

each variable or data point to the goodness of fit score (objective function). Variables known

to be more reliably measurable (e.g., body weight), were assigned higher weights than those

less so (e.g., fasting plasma glucose). Additionally, in situations where the optimization algo-

rithm fit a small number of data points very well while generating poor fits for a large number

of other data points, the weights of the points were adjusted to ensure a better overall fit.

Baseline model calibration

Before simulating individual subjects, the model was calibrated to data from multiple studies

to generate a canonical set of 109 parameters representing the “typical” individual. A variety of

data ranging from intracellular cell signaling data to clinical study data were used for this pur-

pose. The calibration was accomplished in broadly four stages: 1) obtain parameters directly

available in the literature and set corresponding model parameters to those values; 2) calibrate
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parameters of intracellular pathways (Table 2); 3) calibrate parameters related to metabolic

response to interventions in healthy individuals (Table 3); 4) calibrate to interventions in over-

weight/obese individuals in the context of the development of pre-diabetes, onset of diabetes

and response to lifestyle interventions (Table 4). The complete list of parameters that were fit

along with the specific studies used are provided in S8, S9, S10 and S12 Tables. The parameters

obtained after these four stages of model calibration were used to define the “baseline model”,

which represents the typical individual and produces reasonable responses to dietary and

physical activity interventions. The baseline model served as the starting point for individual

model calibration to individual subjects in the DPP study.

Individual model calibration. To fit the model to individual subjects in the DPP study,

parameter values of the baseline model calibration were used as a starting point (see Methods:

Baseline model calibration and Model calibration technique). The initial condition of the

model corresponds to a lean individual of age 20. Most initial conditions were obtained from

known normal levels of serum biomarkers, normal levels of storage of glycogen, and fat in dif-

ferent tissues and the rest were computed by assuming an equilibrium condition at the initial

state. A subset of parameters was further refined to customize the baseline model to individual

data from the first 3 years of the DPP study. The following data were used for individual cali-

bration: age, height and gender of each subject were provided as inputs to the model; time

courses of weight, BW (kg), HbA1c, CBLDhba1c (%), fasting serum glucose, CBLDglu (mM), and fasting

serum insulin, CBLDins (mM) were used to calibrate the model to individual subjects. Initial analy-

sis indicated using self-reported diets to calibrate the model resulted in poor fits. Previous

studies have shown that self-reported caloric intake data can be inaccurate [116,117]. To

account for the possibility of diet misreporting, we introduced two additional parameters that

account for misreporting of fat and carbohydrates.

The large number of model parameters available to be fit to an individual could result in

parameter degeneracy, where arbitrary sets of parameters that could be tuned to fit the time

course data. To deal with this, we sought to find the smallest set of physiologically relevant

Table 2. Intracellular calibration processes and studies.

Intracellular studies References

Insulin receptor phosphorylation, dephosphorylation, GLUT1/4 translocation and response to

insulin

[31,58,71–73]

Change in de novo lipogensis in response to increased availability of glucose [74,75]

Intracellular glucose metabolism [66,76]

AMPK activation by AMP; AMPK mediated processes [77–79]

Insulin resistance due to FFA, ROS, inflammation; ROS accumulation [34,57,58,80–

83]

https://doi.org/10.1371/journal.pone.0192472.t002

Table 3. Healthy metabolic calibration processes and studies.

Healthy metabolic studies References

Carbohydrate, fat, protein, energy homeostasis and overfeeding [38,84–98]

Short-term and longer duration starvation studies [99,100]

Physical activity of differential intensities and durations [66,101–106]

Intravenous lipid infusion studies [58,85–87]

Glucose bolus ingestion studies [107]

Low/high fat, low/high carbohydrate diet studies [74,75,108,109]

Insulinic/glycemic clamp studies [110]

https://doi.org/10.1371/journal.pone.0192472.t003
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parameters that would allow us to obtain reasonable model fits. We started by calibrating six

parameters to individuals (four related to diet requirements, and one each related to glucose

and HbA1c) and leaving the rest of the parameters fixed at the values in the baseline model,

but found we could not satisfactorily explain all the observed data points. We sequentially

expanded the list of calibrated parameters to a set of twelve parameters, related to the mea-

sured data, which could be varied on an individual subject basis and enabled the model to be

fit. The names of the parameters and their biological meanings are provided in Table 5. The

basal requirement of macronutrients to maintain constant body weight was assumed to be dif-

ferent for each individual. This assumption is justified by our knowledge that different individ-

uals have different dietary requirements due to individual variability. Since no information

was available from the study about the basal macronutrient requirements of study subjects,

the basal carbohydrate and fat requirements per day (CI0 and FI0) were calibrated for each

individual. Additionally, ratios of actual intake to baseline intake (CI/CI0, FI/FI0) in the period

between 20 years of age to the beginning of study and the ratio during the study (CI2/CI0,

FI2/FI0), which accounts for potential misreporting, were also calibrated individually. It was

observed that subjects at similar levels of weight had different levels of serum glucose and the

rates of increase in serum glucose were different between individuals. To reproduce the vari-

ability, two parameters related to insulin resistance, αdep_ffa and kdep_ffa, were included in the

estimation process. We observed in the data that individuals with similar fasting glucose levels

can have different HbA1c levels. To capture this inter-individual variability two parameters

related to the rate of synthesis of HbA1c, CmaxBLDhba1c and CBLDhba1cðt ¼ 0Þ, were included. It is likely

that the observed variability in HbA1c is due to differences in postprandial glucose excursion

across individuals, and not due to differences in maximal concentration of HbA1c. However,

Table 4. Diabetes related calibration processes and studies.

Diabetes related studies References

DPP study averages for both placebo and lifestyle intervention arms [15]

Study with large change in lifestyles [15,111]

Study with dynamics of pancreatic decompensation [112,113]

Study accounting for changes in metabolic rate with changes in FM and FFM [100,111,114,115]

https://doi.org/10.1371/journal.pone.0192472.t004

Table 5. Model parameters fit to individual subjects.

Parameters fit to individual DPP subjects Parameter

abbreviation

Placebo Population mean

(SD)

Biological

Range

Reference

Basal carbohydrate requirement to maintain steady body weight CI0 130.6 (48.0) gm 50 – 800g [118]

Basal fat requirement to maintain steady body weight FI0 49.1 (19.4) gm 10 – 300g

Relative increase over basal carbohydrate intake prior to study CI/CI0 1.50 (0.27) 1.0–3.0 Estimated

Relative increase over basal fat intake prior to study FI/FI0 1.32 (0.35) 1.0–3.0

Relative increase in carbohydrate intake during the study CI2/CI0 1.41 (0.33) 0.5–2.0

Relative increase in fat intake during the study FI2/FI0 1.31 (0.42) 0.5–2.0

Maximal serum HbA1c concentration CmaxBLDhba1c 41.3 (32.7) 10–100 [119]

Initial HbA1c concentration CBLDhba1cðt ¼ 0Þ 4.57 (0.41) 4–8

Maximal inhibitory effect of FFA on insulin signaling αdep_ffa 15.1 (8.40) 1.0–30.0 Estimated

FFA concentration for half maximal inhibition of insulin signaling kdep_ffa 18.5 (15.6) 2.0–48.0

Strength of pancreatic beta cell damage due to glucotoxicity, lipotoxicity and

inflammation

αbc,s_ros 8.73 (5.10) 1.0–15.0

Fasting plasma glucose required for half maximal insulin production rate KMs,ins_glu 13.1 (5.05) 2.0–20.0

https://doi.org/10.1371/journal.pone.0192472.t005
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meal-to-meal data and corresponding glycemic excursions were not available to us and we had

to choose CmaxBLDhba1c as the best available proxy. Baseline values of fasting plasma glucose and

insulin were independent of each other across subjects. During the study, while the serum glu-

cose of most subjects increased, the serum insulin of some subjects increased while decreasing

in others. To capture this individual variability, two parameters related to the dynamics of pan-

creatic insulin production, KMs,ins_glu and αbc,s_ros, were optimized for each subject. All other

model parameters fit from baseline calibration were assumed to remain constant across all

individuals analyzed and are listed in the S8, S9, S10 and S11 Tables. Adjusting only these 12

parameters was sufficient to generate acceptable fits for individuals in the analysis.

Parameters were fitted using differential evolution algorithm (see Methods: Model calibra-

tion technique) to minimize the objective function

FðyÞ ¼
X

i

X

j

wij fyijðyÞ � y
�

ijg
2

where yi,j are the study data, y�i;j is the corresponding model simulation of variable j, i indicates

the time points at which data were recorded over the first 3 years of the study, N is the number

of data points corresponding to variable j, and �y j is the mean of the study data recorded for

variable j. The normalized root mean squared error,

NRMSE ¼
X

j

1

�yj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðyij � y�ijÞ

2

N

s

was used to determine the error in the resulting fit.

Initial conditions. The exact initial conditions of all species for any subject at a particular

point in time are not possible to determine, as such, we assumed all simulated individuals were

lean at age 20, eating a diet equal to their metabolic need, and at quasi-steady state at that time

point. A similar assumption was used by De Gaetano et al. [30] to initialize their pancreatic

model. Using this assumption, several parameters and initial conditions of states are solved for

based on known parameters and initial conditions. A list of the initial conditions used are

listed in S11 Table.

Nearest neighbor estimation. To determine the nearest neighbor, attributes (age, gender,

height, baseline weight, baseline HbA1c) of each placebo and in-sample lifestyle-intervention

subject were normalized using a z-score. This resulted in δi, the z-scored lifestyle-intervention

subject attributes, and d
�

i the z-scored placebo subject attributes. Using the normalized attri-

butes of the two populations, the Euclidian distances between lifestyle-intervention and pla-

cebo subjects, d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

iwiðdi � d
�

i Þ
2

q

, were measured, where wi were empirically derived

weights for the different attributes. The nearest neighbor of the placebo subject was defined as

the in-sample lifestyle-intervention subject with the minimum value of d.

Results

Dynamics of the baseline T2D model

To illustrate the dynamics of some representative variables of the model, the baseline model,

not calibrated to any of the individual DPP subjects, was run for three years under the condi-

tions of an increased diet intervention. The baseline diet, prior to the start of the simulation,

was 161g/day of carbohydrates, 39g/day of fat, and 75g/day of protein (approximately 1300

kCal/day with caloric ratios of 50% carbohydrates, 30% fats, and 20 protein). The baseline

model was simulated from age 20 to age 50 with the baseline diet as described in Methods:
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Numerical solution of model equations. At age 50 a step-function diet change was introduced

that switched to a diet with increased carbohydrates by 20% (194g/day), increased fat by 10%

(43g/day), and held protein at baseline levels (75g/day). The baseline model was then simu-

lated for three years to age 53. The results of the baseline simulation are plotted in Fig 2.

In addition to weight (Fig 2B), HbA1c (Fig 2H), glucose (Fig 2G), and insulin (Fig 2I),

which are examined in detail in this study, the plots also include time courses of fat mass (Fig

2C), fat free mass (Fig 2D), glycogen (Fig 2E), serum free fatty acids, FFA, (Fig 2F), body mass

index, BMI, (Fig 2A), insulin sensitivity (Fig 2J), number of beta cells (Fig 2K), and beta cell

damage (Fig 2L) over the course of the three year simulation.

With the increased diet there is general response of increased biomarker levels expressed in

the rising curves of BMI, weight, fat mass, and fat free mass. There is an initial spike in insulin

sensitivity (IS) due to the increased insulin, that is quickly followed by a decline in IS as serum

2A 2B 2C 2D

2E 2F 2G 2H

2I 2J 2K 2L

Fig 2. Baseline 3 year model simulation under increased diet intervention. 2A: Body mass index (BMI); 2B: Weight; 2C: Fat mass; 2D: Fat free mass; 2E: Glycogen;

2F: Serum free fatty acid (FFA); 2G: Glucose; 2H: HbA1c; 2I: Insulin; 2J: Insulin sensitivity; 2K: Number of beta cells; 2L: Beta cell damage.

https://doi.org/10.1371/journal.pone.0192472.g002
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FFA starts increasing and inhibits insulin signaling. Within the glucose/HbA1c dynamics

there is movement from healthy values into a pre-diabetic state towards the end of the simula-

tion. In combination with the damage caused over time by ROS levels, increased deviation of

glucose and FFA from their baseline levels increases gluco- and lipotoxicity to the pancreatic

beta cells causing their numbers and activity to decrease.

Training of T2D model to DPP placebo trial arm

The T2D model was calibrated separately to 331 study subjects as described in Methods: Indi-

vidual model calibration. To compare the results of the calibration to the data, each subject

was simulated from age 20 through to the completion of the third year of the study according

to the Numerical solution model equations section in Methods. The results of the placebo arm

calibration are plotted in Fig 3A, 3C and 3E.

An example individual placebo subject model simulation is plotted in Fig 3A, including the

corresponding subject data, error bars representing standard clinical measurement error

[120–123], and normalized root mean square error, NRMSE (see Methods: Individual model

calibration). The model fit well to the data with NRMSE errors ranging from 0.4–4.3%, which

were well in agreement within the clinical measurement errors. In general, of the four bio-

markers presented, glucose and insulin had larger errors than weight and HbA1c. Variability

of fasting glucose and insulin measurement are higher because the duration of fasting and

amount of physical activity just prior to sample collection is not standardized in the clinical

setting. Whereas. the temporal consistency of weight and HbA1c is much higher leading more

stable measurements. Scatter plots of errors in each of the four biomarkers for the full placebo

calibration population are shown in Fig 3C. In all four scatter plots, the mean population

NRMSE of each biomarker was less than the corresponding clinical measurement error, indi-

cating, at the population level, the model’s ability to reliably simulate the time courses of the

biomarkers; quartiles of model errors of all biomarkers are listed in Table 6. For all four bio-

markers the model error was weakly correlated with measurement error (Fig 3C). Distribu-

tions of the four biomarkers across all 331 placebo subject simulations after simulating the 3

years of the study were compared to the corresponding population data (Fig 3E). A 2-sample

Kolmogorov-Smirnoff (K-S) test failed to reject, for all four biomarkers, the null hypothesis

that the simulated placebo population was different from the DPP placebo population. Com-

paring the T2D prevalence at year three of the DPP study (defined as HbA1c� 6.5%), the sim-

ulated placebo population had 80 T2D subjects (prevalence rate = 24.2%), and the DPP study

had 73 T2D subjects (prevalence rate = 22.1%).

Training of the T2D model to the DPP lifestyle-intervention arm

The T2D model was also calibrated to individual subject data from the lifestyle-intervention

arm of the DPP study [124] using the same subject characteristic and biomarker time course

data as in the placebo calibration (Table 1). As with the placebo group, the dietary intake of

each subject in the lifestyle group was estimated by model calibration. The reported physical

activity for the lifestyle subjects was found to have high intra-subject variability during the

study period. To represent the additional physical activity of the lifestyle subjects in the model

and reduce the variability in the reported activity, a linear regression was fit to each subject’s

reported physical activity over the course of the 3-year period and was used as a continuously

varying representation of physical activity in the model. Only lifestyle subjects who met the

data requirements (Method: Data processing) and whose physical activity regression fits had

an R2 > 0.85 were selected (462 subjects) for calibration/prediction. An additional number of

the lifestyle subjects (147 subjects) were excluded from the analysis that had an initial decrease
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Lifestyle-Intervention Individual Simulation

Placebo Population Calibration Errors: N = 331

Lifestyle-Intervention Population Calibration Errors: N = 315

Placebo Population: Data and Model Simulation: N = 331

Lifestyle-Intervention Population: Data and Model: N = 315 

Subjects

p-val = 0.295

Fig 3. Results of model calibration to DPP placebo and lifestyle-intervention subjects. 3A: Example of model calibration to individual placebo subject

(data: black dots, standard measurement error: blue bars, model simulation: green line); 3B: Example of model calibration to individual lifestyle-

intervention subject (data: black dots, standard measurement error: blue bars, model simulation: green line); 3C: Scatterplot of placebo population
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in weight and HbA1c but eventual rise that, within the construction of the model, were physio-

logically inconsistent with the reported constant diet during the study.

Results of the lifestyle-intervention arm calibration are presented in Fig 3B, 3D and 3F. An

example lifestyle subject (Fig 3B) lost approximately 10% of their starting weight and had

reductions in their other three biomarkers with NRMSEs in the range of 1.0–9.5%. Scatter

plots of the errors for each individual lifestyle subject are shown in Fig 3D. For the lifestyle-

intervention arm, the mean errors were either less than or nearly equal to the standard mea-

surement errors [120–123] for each of the four biomarkers (Fig 3D); quartiles of biomarker

errors are listed in Table 6. Similar to the placebo errors, the lifestyle arm errors show a trend

towards increase in error as the SD of the data increased (Fig 3D). As with the placebo popula-

tion, K-S tests of model simulations versus the data from the four biomarkers failed to reject

the null hypothesis that the model generated biomarker distributions of lifestyle subject were

different from DPP distributions (Fig 3F).

Sensitivity analysis of the T2D model

Sensitivities of weight, HbA1c, glucose, and insulin, output by the model, to the model param-

eters were estimated for each placebo subject (S1 Text), the median values across all subjects

were chosen as a point estimate of the sensitivity and are plotted S7 Fig. It was found HbA1c is

sensitive to changes in CmaxBLDhba1c [S = 6.58E-2] whereas serum glucose is rather insensitive to it

[S = 2.18E-4]. There was a strong sensitivity of weight to changes in fat intake during the study

[S = 5.97E-2] consistent with the coaching the DPP subjects received to reduce fat intake dur-

ing the study. The sensitivity of insulin to carbohydrate intake before the study [S = 4.19E-2]

highlights the need to account for subject history in addition to their current state. Also there

was a strong sensitivity of glucose to the half-maximal concentration of glucose for insulin syn-

thesis [S = 1.33E-1] while insulin was not as sensitive to the same parameter [S = 2.32E-2]. In

prediabetic subjects serum glucose begins to rise due to increase of insulin resistance and, as

described in S7 Table, it is expected that serum glucose would be sensitive to changes in αdep_ffa
which directly increases insulin resistance. Yet it is observed from our analysis that serum glu-

cose is more sensitive to the kdep_ffa rather than αdep_ffa.

calibration errors (individual subjects: dots, population mean error: blue line, standard measurement error: red dash line); 3D: Scatterplot of lifestyle-

intervention population calibration errors (individual subjects: dots, population mean error: blue line, standard measurement error: red dash line); 3E:

Simulated placebo population (blue) compared to placebo arm population (pink) at year three of the DPP study; 3F: Simulated lifestyle-intervention

population (blue) compared to lifestyle-intervention arm population (pink) at year three of the DPP study.

https://doi.org/10.1371/journal.pone.0192472.g003

Table 6. Population calibration and forecast NRMSE errors.

DPP study arm Biomarker Calibration mean

(NRMSE %)

Calibration 25th

percentile

Calibration 75th

percentile

Forecast mean

(NRMSE %)

Forecast 25th

percentile

Forecast 75th

percentile

Placebo Weight 2.80 1.40 3.34 4.38 1.44 5.94

HbA1c 1.53 0.81 1.81 4.34 1.64 6.01

Insulin 8.57 4.62 10.8 33.7 10.7 35.8

Plasma

glucose

4.41 2.32 5.53 6.82 2.32 10.3

Lifestyle-

intervention

Weight 2.70 1.37 3.34 5.45 1.81 6.96

HbA1c 1.87 0.97 2.31 3.86 1.40 5.24

Insulin 10.5 5.46 13.3 36.8 9.39 45.9

Plasma

glucose

5.20 2.69 5.86 7.60 3.24 9.94

https://doi.org/10.1371/journal.pone.0192472.t006

A mechanistic model of type 2 diabetes onset in humans

PLOS ONE | https://doi.org/10.1371/journal.pone.0192472 February 14, 2018 20 / 37

https://doi.org/10.1371/journal.pone.0192472.g003
https://doi.org/10.1371/journal.pone.0192472.t006
https://doi.org/10.1371/journal.pone.0192472


Confidence in parameter estimates was tested by computing the standard deviation and

coefficients of variation (S1 Text and S12 Table). The median CV for each of the parameters

across all the placebo subjects is given in S12 Table. All the parameters had median CVs below

20% which provides significant confidence on the estimation process. Further, based on the

covariance matrix, the correlation matrix was also computed for each subject and the median

correlation matrix was analyzed. No significant cross-correlations was observed between the

parameters estimated [-0.13, 0.08].

Prediction of lifestyle-intervention

One goal of this study was to predict the effect of lifestyle interventions on pre-diabetic subjects

based on the time course of weight and HbA1c measurements. The DPP lifestyle-intervention

arm was not designed with a specific uniform intervention for all subjects, but was broadly

defined as aiming to achieve a 7% weight reduction through diet change and moderate activity,

such as brisk walking for at least 150mins per week. As a result, every subject in the study had

a unique intervention. It was observed, at the start of the study, the baseline distributions of

age, weight and HbA1c of placebo subjects when compared to those of subjects in the lifestyle-

intervention arm were significantly different (K-S test: p<0.05). This necessitated a sub-sample

of subjects (n = 200) from the lifestyle-intervention subjects be chosen whose population base-

line measurements were statistically similar to those of the placebo subjects. The subsample

was chosen such that the resulting population’s baseline distributions of weight and HbA1c

and were not significantly different between the placebo and lifestyle groups (Fig 4A and 4C;

K-S test: p>0.05). To test the simulated placebo interventions, the sub-sampled lifestyle group

was randomly divided into equal size (100 each) in-sample and out-of-sample groups. To vali-

date the model’s ability to predict the effects of lifestyle interventions, each placebo subject was

assigned a unique lifestyle-intervention based on their nearest neighbor from the in-sample

lifestyle-intervention group (as described in Methods: Nearest neighbor estimation). The

change in physical activity (intercept and slope) and change in intake of carbohydrate and fat,

estimated from model calibration, of the lifestyle nearest neighbor was assigned to the placebo

subject. Each placebo subject was then simulated for the three years of the study using the

assigned lifestyle intervention and the aggregate population of model outputs were compared

to the data from the out-of-sample lifestyle-intervention group.

The simulated placebo population with interventions and the out-of-sample lifestyle-inter-

vention were compared at year three (Fig 4B and 4D). The p-values indicate the K-S tests failed

to find a statistical difference between these two groups in their distributions of weight and

HbA1c at year three. This indicates the model was able to predict the effect of the lifestyle-

intervention arm by applying the intervention to the placebo arm. This is valuable because it

demonstrates the model’s capability of being used to computationally explore the effect of dif-

ferent interventions on a specified population.

We also included the population distributions of glucose and insulin in Fig 4. The popula-

tion was not matched on glucose and insulin at baseline because of higher variability in these

measurements as discussed in section Result: Training of T2D model to DPP placebo trial

arm. To be eligible to participate in the DPP study the subject’s glucose had to greater than 5.3

mmol/L, this generated the hard cutoff seen in the baseline glucose population. In running the

model for the lifestyle-intervention prediction glucose and insulin are generated as outputs

and their dynamics are of interest in assessing the prediction. Even though the populations’

glucose and insulin did not match well at baseline, at year three they found to not be signifi-

cantly different (three year p-val: glucose = 0.10, insulin = 0.36). This indicates that the internal

A mechanistic model of type 2 diabetes onset in humans

PLOS ONE | https://doi.org/10.1371/journal.pone.0192472 February 14, 2018 21 / 37

https://doi.org/10.1371/journal.pone.0192472


4A

4C

4B

4D

83.0 = lav-p99.0 = lav-p

p-val = 0.67 p-val = 0.23

Baseline

Baseline

Year Three

Year Three

Placebo with simulated intervention Lifestyle-intervention data

4E 4F

4G 4H

M
at

ch
ed

 a
t B

as
el

in
e

N
ot

 M
at

ch
ed

 a
t B

as
el

in
e

p-val = 1.0e-6

A mechanistic model of type 2 diabetes onset in humans

PLOS ONE | https://doi.org/10.1371/journal.pone.0192472 February 14, 2018 22 / 37

https://doi.org/10.1371/journal.pone.0192472


homeostasis or physiological consistency of the model insured that the population glucose and

insulin matched even though they were not explicitly accounted for at baseline.

Forecasting of individual subjects. Having shown the T2D model can be calibrated to

both placebo and lifestyle subjects, we investigated the model’s ability to do one year forecasts

of the four biomarkers outputs. The forecasts were constructed by withholding the last year of

the three years of data used in the Results: Placebo calibration. Each subject in the placebo and

lifestyle-intervention arms were fitted with only the first two years of data, with fitted models

containing no information about the data from the third year of the study. Having calibrated

the model to the first two years, trajectories of biomarkers in the third year were predicted by

simulating the intervention during year three (Fig 5).

The mean forecasting errors for this group were 4.4% weight, 4.3% HbA1c, 33.7% insulin,

6.8% plasma glucose (Fig 5A); population mean errors, and 25th and 75th percentiles for the

biomarkers are listed in Table 6. All forecasting errors for the placebo group were within the

same order of magnitude as the measurement error, with the HbA1c mean forecast error

being less than standard measurement error. The mean forecasting errors for the lifestyle-

intervention group were 5.5% weight, 3.9% HbA1c, 36.8% insulin, 7.6% plasma glucose (Fig

5B). The mean forecast errors for the lifestyle arm were nearly identical to those of the placebo

group. This similarity demonstrates the T2D model’s flexibility in predicting, with similar

accuracy, people with their historical diet and physical activity and those that abruptly shifted

to a new lifestyle that forced a change in their health trajectory.

Role of endogenous and exogenous factors in diabetes progression. All subjects in

the placebo arm were similar at baseline by design of the original DPP study [124]. By the end

of the three years examined here, the values of HbA1c for individuals in this group had dis-

persed. We ranked the subjects by their change in HbA1c values over the three years of the

study and compared the individuals in the first quartile (Q1), whose HbA1c remained steady

or decreased, to those in the fourth quartile (Q4), whose HbA1c rose the most, indicating pro-

gression/onset of diabetes (Fig 6A and 6B). K-S tests of the HbA1c distributions of these two

groups show at baseline the Q1 and Q4 populations were not significantly different (p-value =

0.08) but at year three they had diverged (p-value < 1e-4). The fitting of the T2D model to the

individual subjects in both the Q1 and Q4 populations (Results: Placebo Calibration) resulted

in a collection of parameters, for each individual, that describes the subjects’ exogenous and

endogenous characteristics (Methods: Individual model calibration). We used this collection

of parameters to investigate the differences between the subjects in the Q1 and Q4 quartiles.

To compare these groups, we independently tested the distributions of fitted parameters in Q1

and Q4 for each of the 12 model parameters using a K-S test (Table 7).

The parameters found to be significantly different between the Q1 and Q4 groups were the

carbohydrate and fat consumption before (CI/CI0 and FI/FI0) and during (CI2/CI0 and FI2/FI0)

the study, two parameters related to the dynamics of the pancreas in response to chronic

hyperglycemia (αbc,s_ros and KMs,ins_glu), and CmaxBLDhba1c, the maximal serum HbA1c concentra-

tion. It is unsurprising and reassuring that within the structure of the model the diets of these

two groups were different as this is accepted as a major driver of the progression of pre-diabe-

tes into diabetes. The basal metabolisms (CI0 and FI0) between Q1 and Q4 were not found to

Fig 4. Comparison of simulated placebo intervention and observed lifestyle-intervention groups. 4A: Simulated

placebo intervention (blue) and lifestyle-intervention (pink) populations weight at DPP study baseline; 4B: Simulated

placebo intervention (blue) and lifestyle-intervention (pink) populations weight at DPP study year three; 4C:

Simulated placebo intervention (blue) and lifestyle-intervention (pink) populations HbA1c at DPP study baseline; 4D:

Simulated placebo intervention (blue) and lifestyle-intervention (pink) populations HbA1c at DPP study year three.

https://doi.org/10.1371/journal.pone.0192472.g004

A mechanistic model of type 2 diabetes onset in humans

PLOS ONE | https://doi.org/10.1371/journal.pone.0192472 February 14, 2018 23 / 37

https://doi.org/10.1371/journal.pone.0192472.g004
https://doi.org/10.1371/journal.pone.0192472


St
an

da
rd

 D
ev

ia
tio

n

St
an

da
rd

 D
ev

ia
tio

n

St
an

da
rd

 D
ev

ia
tio

n

St
an

da
rd

 D
ev

ia
tio

n

St
an

da
rd

 D
ev

ia
tio

n

St
an

da
rd

 D
ev

ia
tio

n
St

an
da

rd
 D

ev
ia

tio
n

St
an

da
rd

 D
ev

ia
tio

n

5A 5BPlacebo forecasts Lifestyle-intervention 
forecasts

Placebo Subjects Lifestyle Subjects

25th-75th percentiles25th-75th percentiles

NRMSE (%) NRMSE (%)

NRMSE (%) NRMSE (%)

NRMSE (%) NRMSE (%)

NRMSE (%) NRMSE (%)

N = 315N = 313

Fig 5. One year forecasts of placebo and lifestyle-intervention arm subjects. 5A: Forecast of placebo year three clinical

data (individual errors: green dots, mean population error: green line, standard measurement error (red dashed line);

5B: Forecast of lifestyle-intervention year three clinical data (individual errors: green dots, mean population error: green

line, standard measurement error (red dashed line).

https://doi.org/10.1371/journal.pone.0192472.g005
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Year Three (Y3)Baseline
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mean

Fig 6. Results of the computational experiment on DPP placebo first (Q1) and fourth (Q4) quartiles of change in

HbA1c over first three years. 6A: Distributions of HbA1c for Q1 (blue) and Q4 (green) at DPP baseline study start;

6B: Distributions of HbA1c for Q1 (blue) and Q4 (green) at year three of the DPP study; 6C: Distribution of change in

HbA1c of Q1 subjects data at year three of the DPP study; 6D: Distribution of change in HbA1c of Q4 subjects data at

year three of the DPP study; 6E: Distribution of change in HbA1c of Q1 subjects simulated with the mean Q4 diet at

year three of the DPP study; 6F: Distribution of change in HbA1c of Q4 subjects simulated with the mean Q1 diet at

year three of the DPP study.

https://doi.org/10.1371/journal.pone.0192472.g006
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be different, indicating these groups had similar baseline metabolic demands making the dif-

ferences in diets a direct exogenous driver. Of the endogenous parameters that were signifi-

cantly different, the difference in maximal serum HbA1c concentration indicates the

relationship between plasma glucose and HbA1c were different between Q1 and Q4. The two

pancreatic parameters indicate Q1 and Q4 had different sensitivities to reduction in capacity

of insulin production in response to chronic hyperglycemia, while the parameters related to

insulin resistance were not different.

To measure the relative contributions of exogenous diet versus the endogenous reduction

of insulin production to observed changes in HbA1c, we conducted a computational experi-

ment on the Q1 and Q4 groups. To examine the influence of the endogenous factors, the mean

Q1 diet was fed to the Q4 subjects, and the mean Q4 diet was fed to the Q1 subjects and simu-

lated for the 3 years of the simulated DPP experiment using the placebo arm calibrations of the

Q1 and Q4 subjects. The results of this computational experiment are shown in Fig 6C–6F. In

the Q1 group, all subjects’ HbA1c values either decreased or remained the same with a mean

delta HbA1c of -0.118 (Fig 6C). In the Q4 group, all subjects’ HbA1c increased with a mean

delta HbA1c of 0.470 (Fig 6D). Feeding the Q4 diet to Q1 subjects caused nearly all Q1 sub-

jects’ HbA1c to rise over 3 years with a mean delta HbA1c of 0.264 (Fig 6E). Feeding the Q1

diet to Q4 subjects caused some Q4 subjects’ HbA1c to drop over the 3 years while some still

increased (Fig 6F); the mean delta HbA1c for this group was 0.002. The change in HbA1c

from Q1 on the Q1 diet (Fig 6C) to Q1 on the Q4 diet (Fig 6E) was 0.382, and the change in

HbA1c from Q4 on the Q1 diet (Fig 6D) to Q4 on the Q4 diet (Fig 6F) was 0.468.

The larger increase in HbA1c in the Q4 group in response to the diet switch implies that

people in Q4 have endogenous characteristics that increased their propensity towards higher

HbA1c levels as compared to subgroup Q1. If shifts in HbA1c were purely driven by exoge-

nous factors (i.e., diet), we would expect the difference in HbA1c on the switched diets to be

almost identical for Q1 and Q4. However, the shift for Q4 (0.468) is ~23% higher than that for

Q1 (0.382), implying that endogenous traits of Q4 act together with exogenous factors result-

ing in an increase that is higher than what would be expected based only on diet change. It is

worth noting that while endogenous traits affected HbA1c levels, their contribution was much

smaller than that of diet change. This is in line with the current view that lifestyle has a greater

role to play in diabetes progression than genetic factors [125].

Table 7. Mean values of optimized parameters in groups Q1 and Q4.

Parameter abbreviation Parameter type Q1 parameter values Q2 parameter values K-S test

p-values

CI0 exogenous 111.2 122.1 0.239

FI0 exogenous 42.65 38.43 0.433

CI/CI0 exogenous 1.512 1.444 0.0214

FI/FI0 exogenous 1.166 1.337 5.14e-5

CI2/CI0 exogenous 1.273 1.498 1.14e-5

FI2/FI0 exogenous 1.683 1.050 1.76e-12

CmaxBLDhba1c endogenous 27.43 39.11 1.44e-3

CBLDhba1c endogenous 4.613 4.503 0.816

αdep_ffa endogenous 15.17 12.96 0.556

kdep_ffa endogenous 10.95 18.18 0.326

αbc,s_ros endogenous 5.821 12.68 2.28e-6

KMs,ins_glu endogenous 13.83 9.829 0.0214

https://doi.org/10.1371/journal.pone.0192472.t007
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Discussion

In this study we have described, calibrated and validated a model of the physiological mecha-

nisms of prediabetes development and diabetes onset in an individual. Our model simulates

the dynamics of diabetes progression by mechanistically modeling the complex interactions

between the following diabetes-related metabolic processes: the dynamics of pancreatic insulin

production by beta-cells under normoglycemia and chronic hyperglycemia; pancreatic decom-

pensation by cumulative damage to pancreatic beta cells due to glucotoxicity, and lipotoxicity;

development of insulin resistance as a consequence of inhibition of insulin signaling by FFA

and ROS; expression of insulin resistance through inhibition of translocation of GLUT1 and

GLUT4 receptors in response to plasma insulin; energy production by oxidation of glucose,

FFA, and amino acids; glycogenesis; glycogenolysis; lipolysis; de novo lipogenesis; proteolysis;

protein synthesis; ketogenesis; gluconeogenesis; dynamics of ATP production and conversion

to ADP as function of metabolism and energy expenditure; and hemoglobin glycosylation.

Critically, the model is fit at the individual level and requires only common clinical measure-

ments which allows for its translational use in clinical and public health applications.

We have demonstrated the model’s capabilities to simulate and retrospectively forecast lon-

gitudinal data collected from pre-diabetic subjects in the placebo and lifestyle-intervention

arms of the Diabetes Prevention Program (DPP). The calibration of the model to the two arms

of the DPP study consisted of fitting separate instances of the model to three years of longitudi-

nal data to each of 646 study individuals. The population average error of the simulated bio-

markers of the fitted models over three years, compared to the DPP data, was less than

standard measurement error for weight, HbA1c, fasting insulin, and nearly equal to measure-

ment error for fasting plasma glucose for both the placebo and lifestyle-intervention arms. We

found the distributions of the four simulated biomarkers at year three of the study were not

significantly different than the corresponding distributions of DPP data. Further, the forecast-

ing error of the model was tested by withholding the third year of study data, fitting model to

only the first two years of data, and predicting the third year data. The resulting one year fore-

cast errors were less than or the same order of magnitude as measurement error with popula-

tion average errors less than 10% for weight, HbA1c, and glucose for both the placebo and

lifestyle-intervention arm subjects.

In addition to capturing population level distributions, the model does well at reproducing

the non-linear relationships between the dynamic responses of biomarkers at the individual

subject level. For example, the model was able to capture the increase in weight, HbA1c and

plasma glucose levels even while insulin levels remained relatively constant (Fig 3A). This sug-

gests that the pancreas’ ability to generate insulin had likely been compromised due to pancre-

atic beta-cell damage. This is a dominant feature of T2D progression and the model was able

to recreate this for the particular subject simulated in Fig 3A. In contrast, the subject simulated

in Fig 3B shows a reduction in multiple biomarkers including body weight and HbA1c, which

the model reproduced correctly. This example shows the model’s ability to represent a pre-dia-

betic subject’s movement back towards a healthier state. This is significant because it demon-

strates the model does not deterministically force subjects to progress to a diabetic state but is

also capable of representing healthy metabolisms.

While the model fit well to most individuals, there was a subset of individual dynamics

which the model failed to capture (Fig 3C and 3D). This can be attributed to assumptions

made in the model as well as quality of inputs available to inform the model. As described in

the Model Structure section, we made several simplifying assumptions in the model, e.g., we

have ignored the counter-regulatory hormones of insulin, which could partly be the reason for

the model’s failure to fit to a large number of insulin data points within measurement error.

A mechanistic model of type 2 diabetes onset in humans

PLOS ONE | https://doi.org/10.1371/journal.pone.0192472 February 14, 2018 27 / 37

https://doi.org/10.1371/journal.pone.0192472


Additionally, the data available to inform the model about the subjects’ lifestyle were also quite

limited. For example, we had to assume each subject was on an identical diet throughout the

study period of 3 years, which in many cases is not a reasonable assumption. This could have

contributed to the model’s failure to capture some trends in body weight and other variables.

It is encouraging that despite the severe limitations of precise inputs to the model, a large

majority of data points were appropriately reproduced and predicted by the model. We also

limited the number of parameters that were varied on an individual basis to 12, as described in

Methods: Individual model calibration. It is possible that using more parameters to calibrate to

individual data would have improved the fits.

Having established the model’s skill at simulating the dynamics of the placebo and lifestyle-

intervention arm DPP subjects, we investigated its ability to predict the effects of a lifestyle

intervention on placebo subjects. The diet and exercise schedules of a random subsample of

lifestyle-intervention subjects was computationally applied to placebo subjects with similar

biomarkers at the start of the study and simulated over three years of the study. A comparison

of the population of placebo subjects that had undergone a computational lifestyle-interven-

tion to the out-of-sample lifestyle-intervention subjects’ data were not found to be significantly

different over the four simulated biomarkers.

Finally, we conducted a computational experiment by examining the placebo subjects

whose HbA1c increased the most (Q4) and those who’s changed the least (Q1) over the three

years of the study. We found these two groups had significantly different diets both before and

during the study but did not have different baseline metabolisms. By analyzing parameters fit

to these subjects, we found they had significant differences in the values of some parameters;

for instance, the pancreatic insulin production characteristics differed significantly between

the groups even while insulin resistance progression sensitivities were similar. This indicates

there could be endogenous differences, possibly genetic, between people who progressed

toward becoming diabetic in comparison to similar subjects who did not, in the dynamics of

their insulin production but not in their insulin sensitivity. This is consistent with genome-

wide association studies (GWAS) that have found genetic drivers of diabetes that effect insulin

production but not insulin resistance [125]. To test the contribution of these exogenous and

endogenous factors to the observed Q4 group’s increase in HbA1c, we conducted a computa-

tional experiment that switched the average diets of these two groups and simulated them for

the three years of the DPP study. The results indicated that endogenous factors led to a 23%

increase in Q4 group’s HbA1c over the Q1 group during the three years of the DPP study data

analyzed here.

While our model builds significantly on previous models, there are several limitations that

need to be addressed in future iterations. The metabolic fluxes of nutrients are abstracted at

the organ level, so cellular level regulation of fluxes through various anabolic and catabolic

pathways are not simulated for the sake of parsimony. This limits the model’s ability to repre-

sent phenomena such as nutrient selection and regulation by subcellular enzymatic processes

with mechanistic accuracy. The adaptation of energy metabolism to exercise by reducing the

perturbation of homeostasis in response to similar levels of physical activity is not represented

in the model [126,127]. The modification of protein synthesis and breakdown rates by resis-

tance training [128] are not represented in the model. Additionally, sarcopenia, the loss of

muscle mass as a consequence of aging is also not simulated in the model. These protein-

related processes are important because of the important role played by skeletal muscle mass

in resting energy expenditure [129]. Our model does not explicitly represent glucagon and the

net effect of the balance between glucagon and insulin is abstracted into insulin dynamics. Fur-

thermore, the multiple steps involved in the synthesis of the insulin peptide are abstracted into

a single step. Of the various molecular mechanisms thought to be involved in development of
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insulin resistance, we chose to include the effects of FFA, ROS mediated inhibition of insulin

signaling, and degradation of mitochondrial function [53,130–132]. The role of other mecha-

nisms such as adipokines, dynamic regulation of phosphatase and kinase activity were not rep-

resented [133]. All of these assumptions and approximations are likely to impact the outcomes

of the simulations and could at least in part be the reason for the inability of the model to fit to

or predict the data of some individuals in our analysis.

The model described here may also be useful in broader public health scenarios for studying

populations at risk for developing diabetes. The model could be used to computationally test

proposed lifestyle interventions or, in an optimization framework, search for an optimal inter-

vention that would maximize a population’s change in health given the limitations of interven-

tions under consideration. These translational uses of the model were intended during its

development and are possible because the data requirements are commonly tracked clinical

biomarkers. Because the model represents health trajectories at the individual level, it could

potentially be used by pre-diabetic subjects to synthesize their clinical measurements with

activity and dietary data they collect through wearable and mobile devices to generate a more

holistic view of how their lifestyle guides their risk of diabetes at a personalized level. In this

scenario, the model could be fit to the individual subject as new clinical and wearable data are

collected. When used in this manner, a subject could conduct computational experiments on

themselves to see how their health may change in the future to aid and motivate making deci-

sions about implementing changes in their lifestyle to improve their risk for diabetes. Future

development of the model include expansion of the physiological scope to enable the study of

comorbidities associated with diabetes, as described by metabolic syndrome, and the mecha-

nistic modeling of the action of pharmaceutical drugs focused on metabolism to aid in clinical

trial design and better understanding of the interaction between lifestyle and drug efficacy.
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