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Abstract: The voltage response to pulsed uniform magnetic fields and the accompanying bending de-
formations of laminated cantilever structures are investigated experimentally in detail. The structures
comprise a magnetoactive elastomer (MAE) slab and a commercially available piezoelectric polymer
multilayer. The magnetic field is applied vertically and the laminated structures are customarily
fixed in the horizontal plane or, alternatively, slightly tilted upwards or downwards. Six different
MAE compositions incorporating three concentrations of carbonyl iron particles (70 wt%, 75 wt% and
80 wt%) and two elastomer matrices of different stiffness are used. The dependences of the generated
voltage and the cantilever’s deflection on the composition of the MAE layer and its thickness are
obtained. The appearance of the voltage between the electrodes of a piezoelectric material upon
application of a magnetic field is considered as a manifestation of the direct magnetoelectric (ME)
effect in a composite laminated structure. The ME voltage response increases with the increasing
total quantity of the soft-magnetic filler in the MAE layer. The relationship between the generated
voltage and the cantilever’s deflection is established. The highest observed peak voltage around 5.5 V
is about 8.5-fold higher than previously reported values. The quasi-static ME voltage coefficient for
this type of ME heterostructures is about 50 V/A in the magnetic field of ≈100 kA/m, obtained for
the first time. The results could be useful for the development of magnetic field sensors and energy
harvesting devices relying on these novel polymer composites.

Keywords: magnetoactive elastomer; piezoelectric polymer; laminated structure; cantilever; direct
magnetoelectric effect; magnetic field sensor

1. Introduction

Multiferroic magnetoelectric (ME) composites attract large attention both from academe
and industry due to their applications in sensor technology, high-frequency engineering,
energy harvesting devices, random access memories, etc. [1–6]. Conventional ME layered
composites are built from rigid constitutive materials (Young’s modulus Y ~ 1011 Pa). A
significant reduction of the effective Young’s modulus below 109 Pa would allow one to de-
crease the resonance frequency of a composite layered multiferroic structure (~1–100 kHz
in conventional multilayered composites), where the efficiency of ME coupling is max-
imum, to the low-frequency range of 1 to 100 Hz. This would be advantageous for a
number of applications such as vibration energy harvesting [7] or low-frequency magnetic-
field sensing [8,9]. This justifies the interest in mechanically soft ME materials because
of their absence in nature. At the present state of technology, polymer materials would
be a natural choice. A comprehensive review of piezoelectric (PE) polymer materials is
given in Ref. [10]. Low resonance frequencies (in order of a few hundred Hz) can also be
achieved in compositions of a PE polymer with a ferromagnetic metal if the thickness of
the magnetostrictive (MS) layer is of the order of several micrometers [11].
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Two papers considered theoretically novel concepts on how to design ME soft materi-
als. Alameh et al. [12] proposed an approach that does not require the materials themselves
to be ME, or piezoelectric (PE) or exhibit any exotic atomistic features that conventional
hard crystalline multiferroics do. As long as the magnetic permeability of the soft matter is
larger than that of vacuum, an emergent ME effect should appear due to the interaction of
deformation and a pre-existing electric field. Rambausek and Keip [13] demonstrated that
the strain-mediated ME coupling induced by finite deformations in soft composites could
be of significant magnitude due to the shape effect as a specific non-local phenomenon
in magneto- and electro-elasticity. It was found that, among ellipsoidal bodies, the shape-
influenced ME coupling should be most pronounced for those of spherical to moderately
prolate shape.

Zhang et al. proposed an alternative way to design compliant ME composites and
demonstrated several experimental realizations [14–16]. The idea was to embed a hard-
magnetic material (NdFeB), surrounded by an electrically conductive helix coil, into a soft
silicone matrix. When the resulting material was deformed, e.g., compressed along the coil
axis, an open-circuit output voltage up to ≈100 µV or the short-circuit output current up to
≈60 µA was observed between coil terminals due to electromagnetic induction. Therefore,
the authors observed a direct PE effect and not a ME effect in their material realizations.
It is plausible that such materials may display ME properties due to the interaction of
hard-magnetic filler material with an external magnetic field.

A new, alternative line of research explores the so-called magnetoactive elastomers
(MAEs), in which micrometer-sized ferromagnetic particles are embedded into a soft poly-
mer matrix [17–23]. MAEs are known to possess superior properties as far as the magnitude
of the magneto-mechanical effects is concerned. For example, giant (~10−1) magnetostric-
tion can be observed using compliant MAEs [24]. Relevant results were reported by Sheri-
dan et al. [25] and Kalita et al. [26], who studied the significant bending of MAE cantilevers
in external magnetic fields. To the best of our knowledge, the ME coupling in a layered com-
posite with an MAE layer was first reported by Feng et al. [27] who cured an MAE layer on
a polyvinylidene fluoride (PVDF) film. Makarova et al. published a series of papers [28–30]
devoted to the development of ME polymer-based composite materials using silicone ma-
trices. Initially, they reported multiferroic ferroelectric/ferromagnetic-polymer composite
systems, consisting of ferroelectric lead zirconate titanate (PZT) particles, ferromagnetic
NdFeB (or barium ferrite) particles, and silicone matrix [28]. In the second paper, the
authors fabricated composite materials based on ferroelectric porous structure and either
MAE or magnetic-fluid filler [29]. The maximum value of the coefficient of the converse
ME transformation for the sample with Fe microparticles was found to be ≈36 pT·m/V,
which is three orders of magnitude smaller than can be observed in conventional (stiff)
laminated composites [31]. Very recently, the same group reported the first realization
of layered structures comprising a commercially available PE polymer (PVDF) and MAE
and pointed out their perspectives for sensors and energy harvesting devices [30]. The
direct ME effect was observed as a voltage appearing between the electrodes of the PE
polymer due to the bending of the composite structure in a non-uniform magnetic field.
Unfortunately, the magnetic field gradient was not specified. The amplitude of voltage
oscillations during magnetic-field pulse excitations (pulse duration ~10 ms) reached about
650 mV. The work [30] demonstrated that a significant direct ME effect is feasible in multi-
ferroic composite materials comprising MAE layers. However, further research is required,
because the unconventional experimental configuration in [30] (in particular, the external
magnetic field is non-uniform) did not allow one to determine the ME coupling coefficient.
Additionally, it remains unclear how the physical properties of the MAE layer(s) should be
optimized in order to achieve the maximum ME voltage coefficient.

Very recently, Tan et al. [32] published a new concept for developing soft ME materials,
which they called the magnetoelectric electret (MEE). The key idea was to deposit net
charges on the interface between two layers of materials, which are different in magnetic
properties [12]. One layer was a polytetrafluoroethylene (PTFE) thin film and the other
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layer was an MAE. Before bonding these two layers together, a layer of surface charge
was deposited onto one surface of the PTFE thin film by the corona charging technique.
In a uniform magnetic field, applied perpendicularly to the charged surface, the two-
layered structure deformed asymmetrically, i.e., one layer (MAE) deformed more than
the other layer (PTFE). This magnetic-field-induced asymmetric deformation resulted in
voltage differences between the upper and lower surfaces of the MEE. The theoretical
explanation was based on the concept of a Maxwell stress [33]. The material exhibited a
room temperature ME coefficient of about 0.24 V/A at the magnetic field of ≈48 kA/m
and a low frequency of ≈1 Hz.

Hitherto, the usage of MAEs in mechanically soft ME multiferroic composites is in
the initial stage, although the published results are very promising. The aim of this paper
is to investigate in detail the behavior of laminated structures comprising an isotropic
MAE layer and a commercially available PVDF-based vibration sensor in pulsed uniform
magnetic fields, directed almost perpendicularly to the sample plane. In particular, the
maximum induced voltage exceeds that reported in [30] by more than eight-fold. More-
over, we report the first, to the best of our knowledge, measurement of the magnetically
induced ME coupling coefficient in such a material [34] and its peculiar dependence on
the external magnetic field. The paper is organized as follows: In the following section,
the fabrication methods of composite cantilevers and the experimental setup are described.
In particular, the effect of the fabrication method on the ME response is addressed. In
Section 3, the magnetic properties of employed MAE materials are presented. Dependences
of the induced voltage and the cantilever deflection on the composition of the MAE layer
(volume fraction of the filler and the softness of the elastomer matrix) as well as on its thick-
ness are presented. From these dependencies, the guidelines for designing MAE-PVDF
structures with the maximum response to the (almost) perpendicular magnetic field are
derived. Transient behavior is studied. In Section 4, the underlying physical effects of
the cantilever’s deflection and generated voltage are discussed. Furthermore, we present
the first measurement of the ME coupling coefficient for this novel type of structure and
discuss its physical significance. Conclusions are drawn in Section 5, where also the future
work is discussed.

2. Materials and Methods
2.1. Fabrication of Composite Structures

Planar structures comprised an MAE layer bonded to a commercially available PVDF-
based vibration sensor (LDT0-028K, Measurement Specialties, Hampton, VA, USA) [35].
The latter is a flexible component comprising a 28 µm thick PE PVDF polymer film with
screen-printed silver ink electrodes, laminated to a 0.125 mm polyester substrate, and
fitted with two crimped contacts. The PE film is displaced from the mechanical neutral
axis, therefore bending creates very high strain within the PE polymer and high voltages
are generated. In the following, this electronic component will be denoted as the PE
polymer (PEP).

The synthesis of MAE materials followed the known path [36,37]. The entire techno-
logical process is illustrated in Figure 1. The base polymer VS 100000 (vinyl-functional
polydimethylsiloxane) for addition-curing silicones, the chain extenders Modifier 715
(SiH-terminated polydimethylsiloxane), the reactive diluent polymer MV 2000 (monovinyl
functional polydimethylsiloxane), the crosslinker CL 210 (dimethylsiloxane-methyl hy-
drogen siloxane copolymer), the Pt catalyst 510, and the inhibitor DVS were provided by
Evonik Hanse GmbH, Geesthacht, Germany. The silicone oil AK 10 (linear, nonreactive
polydimethylsiloxane) was purchased from Wacker Chemie AG, Burghausen, Germany. A
carbonyl iron powder (CIP) (type SQ, mean particle size of 3.9–5.0 µm, BASF SE Carbonyl
Iron Powder and Metal Systems, Ludwigshafen, Germany) was used as the ferromagnetic
filling. CIP is fabricated by thermal decomposition of iron pentacarbonyl (Fe(CO)5), which
is previously distilled to high purity [38]. The minimum iron content in SQ particles is
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99.5% [39]. It is well known that CIP particles have a spherical shape, which was obtained
by scanning electron microscopy [40,41].
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Figure 1. Technological process of the fabrication of MAE-PEP layered structures.

The polymer VS 100000, the polymer MV 2000, the modifier 715 and the silicone oil
AK 10 were put together and blended with an electric mixer to form an initial compound.
In the next step, the initial compound was mixed together with the CIP particles and the
CL 210. The crosslinking reaction was activated by the Pt-Catalyst 510. For the control
of the Pt-catalyst’s activity, the inhibitor DVS was used. PE substrates were fixed in a
specifically designed plastic mold and their top side was covered with a thin layer of a
silicone adhesive (Permatex® High Temp Red RTV Silicone Gasket Maker, Solon, OH,
USA). The uncured MAE in form of a viscous liquid was poured onto the adhesive layer
to the desired thickness of the MAE layer. The rest of the material was put into another
mold (Petri dish with a diameter of about 33 mm, Greiner Bio-One International GmbH,
Kremsmünster, Austria) for further characterization and quality control. The resulting
structure was cured in a universal oven (Memmert UF30, Memmert GmbH, Schwabach,
Germany) for 24 h at 55 ◦C with air circulation. The curing was performed in the absence of
a magnetic field. Therefore, the MAE material can be considered as random heterogeneous,
i.e., no chain-like aggregates could be formed during crosslinking.

For the purposes of this study, two types of matrix were synthesized. We denote them
as “soft” and “rigid” to emphasize the difference in the elastic moduli of the matrices. The
word “soft” refers to the samples with the lower elastic modulus, while the word “rigid”
refers to the samples with the higher elastic modulus. The variation in the elastic modulus
was achieved by changing the amount of cross-linker added to the initial compound.

Table 1 summarizes typical mechanical properties of the two matrices and the MAE
materials on their basis. The shear storage modulus G′0 was obtained from rheological
measurements as described in Section 2.2 below.

Table 1. Shear storage modulus G′0 of the matrices and the synthesized MAE samples.

Fe Mass Fraction
[wt%]

Fe Volume Fraction
[vol%] G′0 [kPa]—“soft” G′0 [kPa]—“rigid”

0 0 0.5 10.1
70 22 3.9 33.1
75 27 5.2 34.5
80 33 11.6 50.4
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As expected, the effective shear modulus of the MAE material increases with increas-
ing concentration of iron particles and, for the same fraction of the filler, it is higher for
composites with the rigid matrix.

Note that the curing of the MAE layer can be carried out directly on the PEP, i.e., step
(2b) can be skipped. However, as it will be explained below, a thin layer of a silicone glue
improves adhesion between MAE and PEP layers. Consequently, a thin layer of a silicone
glue allows one to enhance the ME response of the composite cantilever.

In the present paper, the results obtained on 19 different cantilevers from 6 different
material combinations are presented.

2.2. Material Characterization

To characterize the MAE materials using rheological measurements, fully cured MAE
samples in the form of disk-shaped plate with a diameter of 20 mm and a thickness of
1 mm were cut from a Petri dish. Magnetorheological measurements were performed using
a commercially available rheometer (Anton Paar, model Physica MCR 301). The angular
oscillation frequencyω was kept constant at 10 rad/s. To avoid slippage, the normal force
of approximately 1 N was applied. The moduli were measured at constant strain amplitude
γ = 0.01%, which corresponds to the linear viscoelastic regime. The measurement time was
20 s per data point.

The MAE samples for magnetic measurements were also cut out of a mold. They were
of cylindrical shape with a diameter of approximately 6 mm and a height of about 1 mm.
Magnetization curves were measured in-plane (perpendicular to the cylinder axis) at room
temperature by varying the external magnetic field µ0H from 1.5 T to −1.5 T and back
again, using a vibrating sample magnetometer (model 7407, Lake Shore Cryotronics, Inc.,
Westerville, OH, USA).

2.3. Experimental Setup

To realize a cantilever, a fabricated structure was clamped at one end (on the side
of electrical connectors) in a specifically designed 3D printed holder from the polylactic
acid (PLA) material. The resulting dimensions of the cantilever are shown in Figure 2a.
The MAE material was always bonded to the “negative” side of the PE element. The side
“polarity” is defined by the PE element manufacturer. On this side, the manufacturer’s
logotype is imprinted, see Figure 1. The cantilever was always clamped in such a way that
the MAE was on its top side.
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The cantilever in the holder was placed between the poles of a large electromagnet
(EM2 model, MAGMESS Magnetmesstechnik Jürgen Ballanyi e.K., Bochum, Germany), cf.
Figure 2b. The pole diameter was 9.2 cm and the vertical distance between the poles was
3.4 cm. The vertical magnetic field of the electromagnet was highly uniform over the entire
space where the cantilever could move. We verified that the uniformity of a magnetic field
was better than 99.9% over the right circular cylinder with a radius of 2 cm and a height
of 3.4 cm, which symmetry axis coincided with the symmetry axes of the magnetic poles.



Sensors 2021, 21, 6390 6 of 19

The electromagnet was powered by a bipolar power supply (FAST-PS 1k5, CAEN ELS
s.r.l., Basovizza, Italy). The deflection of a cantilever was recorded using a CMOS-based
camera (Alvium 1800 U-319 m, Allied Vision Technologies GmbH, Stadtroda, Germany)
with a suitable lens (Edmund Optic Double Gauss Focusable, 25 mm C-mount F4.0 1.3”,
Barrington, New Jersey, NJ, USA) and a backlight LED illumination (LED Illuminant G4
Pen). The generated voltage by a PE element was measured using a data acquisition
board (NI USB-6212, National Instruments, Austin, TX, USA). The generated electrical
charge was obtained by electrical current integration using a charge amplifier (Kistler
5018A, Winterthur, Switzerland). The entire experimental process was automated using
the LabVIEW software.

The “negative” side of the PE element was connected electrically to the conducting
shield (“ground”) of the coaxial cable, while the “positive” side was connected to the
core electrode (“signal”). With such a choice of the signal polarity, the first voltage peak
was positive, when the composite cantilever was deflected down upon application of an
external magnetic field. When an external magnetic field was switched off then, the second
voltage peak was negative, see Section 3.1 for details. If the cantilever was deflected up
when a magnetic field was switched on and off, the polarity of two voltage peaks was
changed to the opposite.

2.4. Image Processing

To quantify the deflection of the composite cantilever, image processing was per-
formed. For this purpose, a Python script using the OpenCV library was written. The
cantilever’s deflection h was determined as the vertical displacement of the “mass center”
of the cantilever from its initial position in the absence of a magnetic field as presented in
Figure 3. The “mass center” shown as a colored dot in Figure 3 was defined as the average
pixel coordinate of the cantilever’s contour. We found that such an image analysis works
more reliably than tracking the tip of the cantilever. The deflection of the free tip of the
cantilever is approximately twice larger than the deflection of the “mass center”.
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the cantilever. H denotes the magnetic field strength.

2.5. Measurement Protocol

The experimental setup was calibrated in such a way that the electric current through
the electromagnet coils could be re-calculated into the magnetic field strength. The resulting
magnetic field strength was directly proportional to the excitation current. Pulsed magnetic
field excitations were studied. The magnetic field was first switched on. In general,
the rate of the electrical current change could be set to some value. In the following
experiments, the electrical current ramp rate was set to the highest possible value of 15 A/s,
which corresponded to the magnetic-field ramp rate of approximately 770 kAm−1s−1. The
resulting ramp of the magnetic field was practically linear. The magnetic field was kept



Sensors 2021, 21, 6390 7 of 19

constant for a few seconds and then it was switched off at the same rate. Normally, the
magnetic field remained switched on for 2 s and the switch-off pauses between different
settings of the magnetic field were also 2 s. Only in Section 3.5, where the transient behavior
was studied, the magnetic field remained switched on for 5 s, in order to determine the
time constant more precisely. The duration of the transient process for the electrical current
(~0.1 s) was much less than a few seconds. The excitation current, the cantilever’s deflection
(via image analysis) and the output voltage were measured as functions of time. Figure 4
shows the typical transient behavior of the applied magnetic field and the resulting output
voltage. Two voltage peaks of different polarities were observed, see Figure 4. In the
following, we refer to the measurements of the amplitude of the first voltage peak and
to the maximum deflection of the cantilever in a particular magnetic field, which was
normally reached just before the magnetic field was switched off. To remove some parasitic
noise at mains frequency, a notch peak filtering at 50 Hz with the 3dB bandwidth of 10 Hz
was employed for the output voltage.
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Figure 4. Example of transient behavior of the applied magnetic field and the resulting voltage
response.

Contrary to the results reported in [30], we did not observe pronounced damped
oscillations of the output voltage at a frequency of about 40 Hz, both in unfiltered and
filtered signals, when the magnetic field was switched off. In most cases, we just observed
the monotonic decay of the trailing edges of output voltage pulses. For some samples
with heavier MAE layers (i.e., with the large MAE thickness and higher concentration of
Fe particles), we detected oscillations of the output voltage at roughly 25 Hz overlapping
the decay of the trailing edge. We attributed these oscillations to those at the resonant
frequency of the composite cantilever with added mass, as is described in the datasheet for
this PE element. These oscillations at the resonant frequency seem to be strongly damped
by the presence of a relatively thick viscoelastic MAE layer. However, a possible presence
of the damped oscillations of the composite cantilever does not influence the following
considerations or conclusions.

3. Results
3.1. Magnetic Properties of MAE Materials

The magnetic properties of the six developed MAE materials were investigated. The
results are shown in Figure 5. A typical “pinched” hysteresis loop behavior was observed
as reported and explained in [42] by the restructuring of filler particles in external magnetic
fields and different scenarios of formation and destruction of elongated particle aggregates
in ascending and descending magnetic fields, respectively. The magnetization curves for dif-
ferent MAEs in Figure 5a are shown versus the internal magnetic field Hint = Hext − N‖M,
where the in-plane demagnetizing factor N‖ perpendicular to the cylinder axis was esti-
mated to be about 0.137 using a simplified formula by Sato and Ishii [43]. The estimated
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value of the demagnetizing factor is quite close to the values obtained in the classical
work by Chen et al. [44]. It is a reasonable assumption because the maximum effective
magnetic permeability of the materials is not too large. The magnetization curve for the
CIP is shown against the external magnetic field because the shape of the powder holder is
rather complicated and the demagnetizing factor cannot be estimated. The curve for CIP is
included firstly to demonstrate the negligible hysteresis loop as compared to MAEs and
secondly to estimate the saturation magnetization Ms. The coercive force Hc of CIP was
≈0.5 kA/m and the remanence Br was ≈2 mT. The coercive force and the remanence of the
MAEs were of the same order of magnitude. The remanent magnetization of CIP was less
than 0.23% of the saturation magnetization.
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Figure 5. (a) Magnetization loops of fabricated MAE materials and carbonyl iron powder. The
magnetization curves of MAE are plotted versus the internal magnetic field, while the magnetization
curve for CIP is presented versus the external magnetic field. (b) Dependence of the saturation mag-
netization on the volume fraction of iron particles. The dashed line represents the linear regression
from which the saturation magnetization of CIP particles was calculated (point Fe).

Figure 5b depicts the dependence of the saturation magnetization on the concentra-
tion of iron particles. Ms was determined as the magnetization in the maximum external
magnetic field of 1200 kA/m. Figure 5b demonstrates that the saturation magnetization
is indeed proportional to the volume fraction of iron particles, as it should be. The sat-
uration magnetization of carbonyl iron particles was determined to be 1659± 25 kA/m
(µ0Ms ≈ 2.08 T) which agreed well with the literature [45]. It could be expected that
the magnetically induced restructuring of ferromagnetic particles should be pronounced
stronger in MAEs with a softer polymer matrix. This was indeed observed in the results
of Figure 5. The evaluation of the magnetization loops showed that MAEs with the soft
matrix approached the magnetic saturation earlier than MAEs with the rigid matrix. The
magnetic fields, where 90% of the saturation magnetization was achieved, are roughly 50%
lower than for MAEs with soft matrix and the same volume fraction of magnetic particles,
see Figure 6a. Further, each magnetization curve had been normalized on its saturation
magnetization. Then the loop area in the first quadrant was calculated by the following
method. The results between the measured points were first interpolated using splines
with a step of 10 kA/m for both descending and ascending magnetic field branches. Then
the trapezoid rule was used to calculate the integral numerically. It turned out that the
loops for the MAEs with a soft matrix are roughly 40% broader (i.e., their area is larger)
than the loops for the MAEs with a rigid matrix, see Figure 6b. This can be explained by
higher losses in the softer viscoelastic matrix due to the larger displacements of magnetized
particles as compared to the more rigid matrix. We conclude that the mechanical properties
of the elastomer matrix and the volume fraction of the iron particles are visible in the
magnetization curves.
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3.2. Optimization of Fabrication Method

Makarova et al. [30] used either the inherent adhesion of the cured MAE layer to
the PE substrate or cured the MAE layers on the PE substrate. To improve the adhesion
between the MAE layer and PE element, we introduced a silicone glue layer between them.
We verified that this silicone glue was non-magnetic. Without the silicone glue, the MAE
layer may detach from the PE element after several loading cycles or longer exposure
to a magnetic field, as it is illustrated in Figure 7. It was also found that the presence of
an adhesive layer improves the performance characteristics of composite cantilevers, i.e.,
the deflection of the cantilevers with glued MAE layers is larger and the resulting output
voltage is higher in comparison with the cantilevers, where the intermediate adhesive
layer was absent. Figure 8 presents an example of such a comparison. In this and the
following Figures, three consecutive magnetic-field loading cycles are shown. In one cycle,
the amplitude of the magnetic field pulse was first increased from zero to the maximum
value in 2.5 kA/m steps and then decreased from the maximum value to zero in the same
steps. The field pulse length and the pause between the pulses were both equal to 2 s.
If deflection is negative, this means that the cantilever is deflected down. If deflection
is positive, the cantilever is deflected up. It is seen that the presence of a silicone glue
reduces the hysteresis behavior of both the output voltage and the cantilever’s deflection
in dependence on the applied magnetic field. We attributed this enlarged hysteresis to
the creep of the MAE material at the MAE/PEP interface due to losing adhesion. In the
following, the results refer to the MAE layers glued on the PE substrates.
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of the sample: Fe content: 80 wt%, rigid matrix, x = 3 mm. The insets illustrate the direction of field
change for the first loop.

3.3. Direction of Bending

One end of the cantilever was mechanically fixed in a clamp. This clamp was normally
oriented horizontally. The magnetic field was applied in the vertical direction. We were not
able to apply the magnetic field in the horizontal direction and to position the cantilever in
the vertical plane due to the size and the weight of an electromagnet.

Under the effect of its own weight, the cantilever (in particular, the MAE layer) bent
down a little in the absence of a magnetic field as can be seen in Figure 4. As explained
in Ref. [26], the magnetization of a soft-magnetic beam upon its bending in a magnetic
field, which is nominally perpendicular to the initial beam plane, is not co-directional
with the magnetic field. If the magnetization is not collinear with the magnetic field, then
a torque from the magnetic field acts on that beam. The same effect was observed in
our case. We also verified that the bending effect of a soft-magnetic beam can be also
observed in conventional materials without a restructuring of the filler. A thin strip from
the nickel foil (EsportsMJJ 99.96% Pure Nickel Metal Foil, thickness = 0.1 mm) also bent in
vertical magnetic fields, although higher magnetic fields were required to achieve the same
bending magnitude in comparison to the MAE-PEP cantilevers. We concluded that this
is the flexibility of the soft-magnetic layer which is required to realize bending, while the
presence of filler restructuring seems to be not necessary.

By changing the tilting angle of the cantilever’s clamp, it was possible to influence
the direction of deflection as is shown in Figure 9. For example, a cantilever that was
clamped horizontally (clamping angle α = 0◦) deflected down (Figure 9a) and the peak
voltage of the first output pulse had a positive sign (Figure 9b). A cantilever clamped at an
angle of 8◦ up, deflected up (Figure 9a) and the peak voltage of the first output pulse was
negative (Figure 9b). We concluded that the initial tilt of the clamp allows one to affect the
preferential direction of bending. It was also observed that the hysteresis behavior of both
the amplitude of the first voltage peak and the cantilever’s deflection was reduced when
the fixation point was tilted. The majority of the fabricated cantilevers bent down when
they were clamped horizontally, as expected. However, two fabricated cantilevers (70%
and 75%, rigid matrix, x = 1 mm; see Section 3.4 below) bent up when a magnetic field was
applied. An inspection of the PE substrates showed that some of them were not entirely
planar, but they were slightly concave upward so that the upward bending appeared to
be preferential. However, the behavior of these specific samples was not different from
the rest of the fabricated cantilever, except for the direction of bending and the sign of
output pulses.
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Figure 9. Field dependences of the first peak voltage amplitude (a) and the cantilever’s deflection (b) for different tilting
angles of the clamp. Sample parameters: Fe content: 80 wt%, rigid matrix, x = 3 mm.

In [26], a beam from an MAE filled with nickel particles was used; the direction of the
beam’s deflection changed with the change in the polarity of the applied magnetic field.
This was explained by the presence of residual magnetization. In our control experiment,
we clamped an MAE-PEP cantilever horizontally (α = 0◦) and the polarity of the applied
magnetic field was changed in a square-wave fashion, see Figure 10. It is seen that the
deflection direction did not change, i.e., the MAE material seemed to behave as the particles
would be ideally soft magnetic [26]. This result agreed with the measurements of magnetic
properties. There was no significant remanent magnetization, which was able to change the
direction of bending against the gravity force. Another difference of our polarity change
experiment in comparison with that of [26] is the much higher ramp rate of the magnetic
field. An MAE-PEP cantilever had a relatively large magneto-mechanical time constant
with respect to the magnetic-field step excitation (see Section 3.6 below). Under presented
experimental conditions the behavior of the MAE material with regard to the direction of
bending seems to be reasonably considered as that of an ideally soft-magnetic material.
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Figure 10. Comparison of the deflection and the direction of an applied square-wave magnetic field.
Sample parameters: Fe content: 80 wt%, rigid matrix, x = 3 mm.

In higher magnetic fields, the deflection of a cantilever may become so large, that
it will touch the bottom or top of the holder. This naturally limits the magnitude of the
output voltage. This effect can appear as the “saturation” of the peak voltage, as it can be
seen for the 23◦ and −23◦ curves in Figure 9. In what follows, the MAE cantilevers were
clamped horizontally (α = 0◦).
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3.4. Comparison of Soft and Rigid Matrices

The effect of matrix stiffness was investigated on samples with 70, 75 and 80 wt% of
CIP and a thickness x of the MAE layer of 1 mm. The results are summarized in Figure 11.
As described above the samples denoted with (−1) defected upward. For comparison, the
first peak voltage and the deflection were multiplied with −1.
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Figure 11. Field dependences of the first peak voltage amplitude (a) and the cantilever’s deflection (b)
for two different matrices and three different iron contents. Parameters of MAE materials correspond
to those of Table 1, x = 1 mm.

No obvious dependence on the MAE stiffness is observed. Both the first peak voltage
amplitude and the cantilever deflection have similar values for structures with different
matrices but otherwise the same parameters. The ME and mechanical responses seem to
be primarily determined by the iron content. This can be explained by the much higher
elastic modulus of the PE substrate than of the MAE material (at least three orders of
magnitude), even in a magnetic field. Therefore, the presence of MAE materials with
slightly different elastic moduli (with respect to the elastic modulus of the PEP) may not
significantly influence the mechanical behavior of a composite cantilever. However, it is
clearly seen from Figure 11 that the peak voltage and the cantilever’s deflection tend to
increase with the increasing concentration of iron particles. We speculate some differences
in the voltage response of MAE-PEP cantilevers with different matrices but otherwise,
identical parameters are due to some variations of the properties of PE substrates and
fabrication uncertainties.

3.5. Effect of MAE Thickness

The effect of MAE thickness is shown in Figure 12 on samples comprising MAE
layers with an iron content of 80 wt% and a rigid matrix. Five different thicknesses were
implemented: 0.5, 1, 2, 3, and 4 mm. Results are given in Figure 12. It is observed that
both the deflection and the voltage response increase with the increasing thickness of the
MAE layer. We believe that this is primarily due to the higher magnetic moment of the
thicker samples and secondly because of the smaller demagnetizing factor of the thicker
slab perpendicular to its surface. It can be also seen that the initial (magnetic field increase)
curve significantly differs from the subsequent cycles. It can be expected that during
the first cycle major restructuring of the filler takes place, whereas further changes are
minor [46].
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3.6. Transient Behavior

The deflection of a composite cantilever did not follow the magnetic field instanta-
neously. Such a retarded behavior to magnetic-field step-like excitations was observed
before for rheological [47] and dielectric properties of MAEs [46]. The explanation was that
the particles can move and rearrange themselves within a compliant elastomeric matrix [48].
Moreover, since MAE is a viscoelastic material, it is natural to expect transient behavior
upon its loading.

Figure 13 presents the measured deflection upon application of a magnetic field pulse
with a length of 5 s. The time dependence upon both magnetic-field loading and unloading
was very well described by a single exponential function. Table 2 shows the determined
time constants τon/o f f and the coefficient of determination R2. When the magnetic field
is switched on, the time constant decreases with the increasing iron content. This can be
explained by spatial limitations for particle rearrangements in higher filled samples. For
samples with 70 wt% of iron, the time constant τon is about 30% larger in the sample with a
softer matrix, which can be explained by the higher mobility of filler particles in a softer
matrix. The difference between time constants τon in samples with 75 and 80 wt% of iron
is not so clearly pronounced, they are more similar τon is about 20% larger in 75% (rigid
sample) than in 75% (soft sample). For 80% (rigid and soft samples), τon is the same within
the accuracy of measurements. When the magnetic field is switched off, the time constants
τo f f are much smaller and similar, they have the order of magnitude of the time scale of
the magnetic field ramp: 103 kAm−1/770 kAm−1s−1 ≈ 0.13 s. When the magnetic field is
turned on, the elastic force from the matrix resists the rearrangement of filler particles and
it accelerates the relaxation process when the magnetic field is turned off, by forcing the
particles towards their initial positions.
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Table 2. Time constants and determination coefficients for switching magnetic fields on and off.

τon [s] R2 τoff [s] R2

70%—soft 0.73 ± 0.05 0.96 0.23 ± 0.02 0.88

75%—soft 0.41 ± 0.02 0.98 0.11 ± 0.01 0.96

80%—soft 0.24 ± 0.02 0.94 0.20 ± 0.01 0.96

70%—rigid 0.55 ± 0.05 0.93 0.10 ± 0.01 0.94

75%—rigid 0.50 ± 0.02 0.98 0.09 ± 0.01 0.97

80%—rigid 0.22 ± 0.02 0.94 0.14 ± 0.01 0.97

4. Discussion

The bending mechanism of the composite MAE–PEP cantilever is described in Ref. [26].
If a soft-magnetic planar MAE cantilever would be directed perpendicular to the uniform
magnetic field, it would not be bent. A slight inclination of the normal to the MAE plane
with respect to the external magnetic field leads to the torque acting on the MAE layer by
the magnetic forces, because the magnetization of the MAE layer and the external magnetic
field are not collinear. This torque tries to align the MAE slab parallel to the external
magnetic field, in order to minimize its demagnetizing factor. Because the MAE layer is
mechanically coupled to a flexible PE substrate, the entire structure is bent. The composite
structure is made from flexible materials, therefore, the resulting deformation of the PE
material is high, which leads to high output voltages. The maximum amplitude of the first
voltage peak in the present work is 5.5 V, which is about 8.5-fold larger than the maximum
voltage reported in [30]. It is observed on the sample with 80 wt% of Fe, rigid matrix
and a thickness x of 4 mm sample in a magnetic field H = 73 kA/m. The appearance of
the electrical voltage between the electrodes of the PE material as a result of an applied
magnetic field can be considered as the manifestation of the direct ME effect in an MAE-
PEP structure. It is the mechanical strain that mediates the ME coupling in our case like
in traditional (layered) ME heterostructures. In traditional layered heterostructures, the
application of an external magnetic field perpendicular to the sample’s plane is not efficient,
because of the large demagnetizing factor. In our case, the magnetostrictive material (MAE)
is extremely soft (Young’s modulus ~10–100 kPa), while the PEP is flexible. This leads to
large deformations and large output voltages.

The main factor affecting the amplitude of the output voltage and the cantilever’s
deflection seems to be the total quantity of iron in the MAE layer, because of the total
magnetic moment induced in it and the resulting torque on the composite structure, see
Figures 11 and 12. A larger amount of iron filler leads to a higher magneto-mechanical
response of the cantilever and to more efficient ME coupling. MAE layers with soft and
rigid matrices give similar results because the difference in their stiffness can be neglected
in comparison with the stiffness of the PEP.

The usage of an additional adhesive layer between the MAE and PEP provides im-
provements to the composite structures, not only as far as the structure mechanical stability
(avoiding delamination) is concerned, but also increases the output voltage and reduces
the hysteresis.

The direction of deflection can be efficiently controlled by the initial tilt of the clamping
point in order to compensate for the effect of gravity. However, if the MAE-PEP cantilever
is fixed horizontally, such a position is unstable in a magnetic field and depends on the
geometrical details, such as the deviation of the PE substrate from the planarity.

It is found that the output voltage can be reasonably described as proportional to the
first-time derivative of the cantilever’s deflection, see Figure 14. This can be explained by a
simple model. Assume that the generated charge is linearly proportional to the deflection h:
Q = kh, where k is some constant. The simplified equivalent circuit of the PE transducer is
a current source with the source current Iq = kdh/dt and a capacitor Ceq and a resistor Req
connected in parallel. The values of concentrated elements Ceq and Req are determined by
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the PE element and the measurement circuit, e.g., the connecting cable. The corresponding
time constant of the equivalent circuit is τeq = ReqCeq. The time dependence of the voltage
U is described by the following inhomogeneous differential equation of the first order:

U(t) + τeq
dU
dt

= kReq
dh
dt

. (1)
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the cantilever’s deflection h (dots) for three different magnetic field pulses. Sample parameters: Fe
content: 80 wt%, rigid matrix, x = 3 mm.

If U(0) = 0, the solution to Equation (1) can be written as:

U(t) = e
−t
τeq

 kReq

Teq

t∫
0

e
t′

τeq

(
dh
dt′

)
dt′

. (2)

The voltage U(t) is proportional to dh/dt, if the time constant τeq is small enough,

that can be also seen from Equation (1) when |U| �
∣∣∣τeq

dU
dt

∣∣∣.
Let us estimate the magnetically induced ME coupling coefficient:

αH =
∂P
∂H

, (3)

for a particular MAE-PEP heterostructure with 80 wt% of Fe, rigid matrix and x = 1 mm.
This sample is selected among others for demonstration because it has a high ME re-
sponse and the largest working range of H. In (3) the external magnetic field H is di-
rected vertically and P is the resulting electrical polarization. From the material equation
D = ε0εrE = ε0E + P, we obtain that P = D

(
1− ε−1

r
)−1

= σ
(
1− ε−1

r
)−1, where E is the

induced electric field, D is the electric displacement, ε0 is the vacuum permittivity, εr is the
relative permittivity of PE material, and σ is the surface charge density on the electrodes
of PE material. The surface charge density is measured by integration of the output cur-
rent iout by a charge amplifier, divided by the area A of the PE layer from the datasheet:
σ = Q/A, where Q =

∫
ioutdt is the generated electric charge. The material constant εr is

assumed to have the value εr ≈ 15 [49]. Figure 15 presents the results of the measurements.
A slow decline of the induced electrical charge in the constant magnetic field is attributed
to the non-perfect characteristics (leakage) of the charge amplifier. We did not use this
part of the transient behavior of the charge Q(t) for the calculation of the ME coupling
coefficient. In Figure 15a the measuring rate for H is 20 pts/s and 1000 pts/s for the
charge Q. Therefore, a cubic spline algorithm was used to interpolate between measured
points of H. As described above, the deflection of the MAE-PEP cantilever is delayed with
respect to the applied magnetic field. Therefore, a clear hysteresis behavior of the electrical
polarization with respect to the applied magnetic field is observed in Figure 15b.
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Figure 15. (a) Time dependences of the external magnetic field H and the magnetically induced
charge Q. (b) Calculated dependence of the electrical polarization P on the magnetic field strength H.
Green dots on the H-field time dependence are given to illustrate the corresponding magnetic fields
in both diagrams.

To determine the ME coupling coefficient αH , the derivatives in (1) have to be calcu-
lated numerically from experimental data with some noise, which generally results in the
scattering of calculated values. The dots in Figure 16 represent the numerical first deriva-
tives between the neighboring points and subsequent usage of the running average over
five points. The continuous lines show the first derivatives of the fitted analytical functions.
For the increasing magnetic field, the following empirical dependence of the polarization P
on the magnetic field H is used: P(H) = (c + bH)eaH . For the decreasing magnetic field, a
polynomial dependence is used: P(H) = a0 + a1H + a2H2 + a3H3 + a4H4. The derivatives
are then calculated analytically. We also recalculated the ME coupling coefficient αH into
the magnetically induced voltage ME coefficient αH

V = αH(ε0εr)
−1 [34,50].
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It is seen in Figure 16 that the field behavior of the ME coupling coefficient differs
strongly for the ascending and descending magnetic fields. There is a monotonic increase in
αH with the increasing magnetic field and a local maximum in the decreasing magnetic field.
We are not aware of any similar behavior observed in traditional (metal/ceramics) layered
heterostructures. Of course, the observed hysteresis is related to the delayed response
between the applied magnetic field and the induced electrical polarization. It is seen from
Figure 15, that the electric charge continues to grow even when that magnetic field reached
the steady-state. This is because the cantilever’s deflection still takes place. Formally, such
behavior would result in an infinite ME coupling coefficient, which is non-physical and,
hence not shown in Figure 16. The reason is that Equation (3) implies the instantaneous
ME response, which is not the case in our paper. We intended to investigate the field
dependence of the ME coupling coefficient and its transient behavior in more detail in
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the following works. The maximum value of the ME voltage coefficient is about 50 V/A
(≈40 V/(cm Oe) in cgs units). It compares well with conventional layered heterostructures,
in particular taking into account that it was obtained in a quasi-static magnetic field on the
non-optimized structure. The ME coefficient can be increased by using thicker MAE layers,
optimized PE substrates with large PE coefficients and flexibility and, likely, by operation
at the resonant frequency of the resulting heterostructure. Further research is required on
whether it is possible to significantly reduce the time constant for the ME response and to
minimize hysteresis.

5. Conclusions

Detailed systematic investigations of the magnetically induced bending and the gener-
ated voltage are performed on the new type of ME heterostructures in quasi-static pulsed
magnetic fields. In comparison with a previously published work [30], ME structures are
exposed to uniform magnetic fields. The magnitude of the voltage response increases with
the increasing total amount of soft magnetic filler in the MAE layer. Application of a homo-
geneous magnetic field to our MAE-PEP heterostructures results in an 8.5 higher-generated
voltage than previously reported. We attribute this enhancement of the response to the
improved fabrication procedure using an adhesive layer between the MAE and the PEP.
The general relationship between the cantilever’s deflection and the generated voltage is
established. The application of a uniform magnetic field allowed us to estimate the ME
coupling coefficient from the measurement of the generated electric charge in these types
of layered composites for the first time. Under quasi-static conditions, the magnetically
induced ME voltage coefficient can be as high as ≈50 V/A in the measurement range of
100 kA/m. Obtained results confirm the previously put proposal in [30] that these novel
structures are promising for sensors and energy harvesting devices.

Further research is required to understand the unconventional field behavior of the ME
coupling coefficient in MAE-PEP heterostructures and to find the conditions for eliminating
the observed hysteresis of the generated voltage in the applied magnetic field while keeping
the high responsivity to magnetic fields. It would be interesting to miniaturize investigated
magneto-sensitive elements, e.g., by microsystem technology, and to characterize them by
the method of harmonic field modulation. We believe that the employment of mechanically
soft ME composite structures may lead to the change in the design paradigm for highly
sensitive ME sensors and energy harvesting devices. Furthermore, the electrical voltage
generated in such structures can be utilized for self-sensing in magnetically controlled
actuators or grippers as was proposed in Ref. [27].
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