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Deterioration in white-matter health plays a role in cognitive ageing. Our goal was to discern heterogeneity of white-matter tract

vulnerability in ageing using longitudinal imaging data (two to five imaging and cognitive assessments per participant) from a

population-based sample of 553 elderly participants (age �60 years). We found that different clusters (healthy white matter, fast

white-matter decliners and intermediate white-matter group) were heterogeneous in the spatial distribution of white-matter integ-

rity, systemic health and cognitive trajectories. White-matter health of specific tracts (genu of corpus callosum, posterior corona

radiata and anterior internal capsule) informed about cluster assignments. Not surprisingly, brain amyloidosis was not significantly

different between clusters. Clusters had differential white-matter tract vulnerability to ageing (commissural fibres > association/

brainstem fibres). Identification of vulnerable white-matter tracts is a valuable approach to assessing risk for cognitive decline.
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matter; PTR ¼ posterior thalamic radiation; RLIC ¼ retrolenticular part of the internal capsule; RWM ¼ rectus white matter; SCC

¼ splenium of the corpus callosum; SCR ¼ superior corona radiata; SFO ¼ superior fronto-occipital fasciculus; SFWM ¼ superior

frontal white matter; SLF ¼ superior longitudinal fasciculus; SMWM ¼ supramarginal white matter; SOWM ¼ superior occipital

white matter; SPWM ¼ superior parietal white matter; SS ¼ sagittal stratum; STWM ¼ superior temporal white matter; UNC ¼ un-

cinate fasciculus; WM ¼ white matter; WMH ¼ white-matter hyper-intensities

Introduction
White matter (WM) changes are widely found in the eld-

erly as part of the ageing process, as well as pathological

processes. Although white-matter hyper-intensities

(WMH) are often investigated as predictors of poor cog-

nitive and motor function, there is evidence for early

changes in WM even before the appearance of WMH

(Maillard et al., 2012; Wardlaw et al., 2015). These early

changes can be captured by changes in microstructural

integrity assessed using diffusion tensor imaging (DTI)

(Croall et al., 2017) measures such as fractional anisot-

ropy (FA) which allows the estimation of coherence of

WM tracts through the quantification of the water-diffu-

sion properties. The vast literature on DTI has consistent-

ly shown associations between cognitive and motor

function with ageing (Kennedy and Raz, 2009; Madden

et al., 2009). While DTI articles have been focussed on

specific tracts to investigate disease-specific hypotheses,

e.g.—hippocampal DTI signal in vascular dementia in

(Ostojic et al., 2015), there have been other articles that

have broadly investigated regional WM micro-structural

differences with age (Burzynska et al., 2010).

Cohort studies incorporating serial high-quality diffu-

sion MR along with detailed subject-specific disease infor-

mation (brain amyloidosis, health-care records and

cerebrovascular disease) have recently become mature.

This longitudinal imaging data across the age span pro-

vides us with an opportunity to investigate early WM

changes and assesses how different tracts may progress

differentially with ageing in a data-driven manner without

specifically looking at a smaller number of tracts. In the

literature, single tract-based approaches have been used

typically in which each tract is analysed separately

(Barrick et al., 2010; Charlton et al., 2010; Sullivan

et al., 2010; Teipel et al., 2010; Moscufo et al., 2018;

Molloy et al., 2019; Rabin et al., 2019). These studies

provided us with important age-related tract-level infer-

ences. However, understanding of differential ageing of

WM tracts over time has significant biological implica-

tions. This is not feasible with univariate tract-based solu-

tions because they do not consider the correlation

between tracts over time and are unable to completely

detect the multivariate associations. The recent advances

in multivariate unsupervised statistics have made the lon-

gitudinal analysis of WM integrity throughout the brain
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possible. Using these new methods, we are now able to

incorporate longitudinal information from many WM

tracts simultaneously in order to discover and visualize

clusters of individuals, while accounting for confounders

whose effects need to be accounted for.

In this study, we hypothesized that a data-driven inves-

tigation of changes in longitudinal WM integrity through-

out the brain (using multivariate approaches) may

provide unique insights into the ageing process and im-

prove our understanding of the impact of WM integrity

on cognitive outcomes. Here, we leveraged longitudinal

DTI data from the population-based Mayo Clinic Study

of Aging (MCSA), to construct the trajectories of WM

integrity among participants aged 60 years and older. The

specific goals of this article were to discover clusters of

study participants with different WM integrity trajecto-

ries, and to investigate the factors that associate with the

spatial distribution of decline in their WM. We hypothe-

size that the integrity of specific WM tracts may help

separate individuals with diverse profiles of future cogni-

tive decline.

Materials and methods

Selection of participants

The participants of this study were enrolled in the

MCSA. This is a population-based study of Olmsted

County, Minnesota, residents. The Rochester

Epidemiology Project medical records linkage systems

were used for the enumeration of the Olmsted County

population. Details of the MCSA have been described

previously (Petersen et al., 2010). Standard protocol

approvals, registrations and patient consents: The

Institutional Review Boards of the Olmsted Medical

Center and Mayo Clinic approved the study, and written

informed consent was obtained from all participants. We

included all 553 elderly individuals (age, �60 years) with

at least two DTI imaging scans (Supplementary Fig. 1).

At the time of the baseline scans, 486 were cognitively

unimpaired (CU), 62 had mild cognitive impairment, 4

were diagnosed with a neurodegenerative disorder (3

Alzheimer’s clinical syndrome with dementia and 1 with

vascular dementia) and 1 had a missing clinical diagnosis

due to incomplete data. A strength of the study is the

population-based nature of the cohort. By using a

broader range of individuals with cognitive problems in

the population, we are positioned to detect the most im-

portant WM changes seen in the ageing population. All

participants had at least two imaging visits, 125 had at

least three visits, 11 at least four visits and finally 1 par-

ticipant with five visits. The time between visits/intervals

(Supplementary Table 4) was accounted for in our analy-

ses. Moreover, the characteristics of the patients who

dropped out from the study (only one visit) were not

statistically different from those who were followed up.

However, some cognitive domains and functional abilities

were slightly altered (Supplementary Table 5). Age at the

time of MRI scan, sex and APOE4 genotype were con-

sidered for this study. We also included a summary meas-

ure for cardiovascular and metabolic conditions (CMC)

ascertained from electronic health records in the 5 years

prior to the MRI (Vemuri et al., 2017). The main charac-

teristics are summarized in Table 1.

Diffusion tensor imaging

All DTI images were acquired on three 3T GE MRI scan-

ners (GE Medical Systems, Milwaukee, WI) at Mayo

Clinic, Rochester. The DTI acquisition protocol was a

2.7-mm isotropic resolution spin echo sequence with five

b¼ 0 volumes followed by 41b¼ 1000 s/mm2 diffusion

weighted volumes with directions evenly spread over the

whole sphere. The data was processed as discussed earlier

(Vemuri et al., 2018). After the calculation of the diffu-

sion tensors, FA and mean diffusivity images were com-

puted. Voxels with mean diffusivity of >2� 10�3 or

<7� 10�5 mm2/s were excluded as mostly CSF or non-

brain tissue, respectively. Then an atlas was registered by

warping its template FA image to each participant’s FA

using ANTS software (Avants et al., 2008). The atlas

was a modified version of the Johns Hopkins ‘Eve’ atlas.

The only modification to the atlas was to combine the

left and right halves of structures spanning the medial

plane, such as the genu and pons (Oishi et al., 2009).

Regions of interest with <7 voxels in subject space were

excluded as too small to be reliably registered. Finally,

the median FA and mean diffusivity in each region were

computed. Regions with very small FA values (<0.25)

consisted of mostly grey matter or grey-matter/WM

boundaries (caudate nucleus, amygdala, globus pallidum,

hippocampus, putamen, thalamus, entorhinal area and

lingual WM) and therefore were excluded. Participants

with many missing values were excluded as registration

errors. Because of the greater sensitivity of FA to subtle

microstructural changes in comparison to mean diffusiv-

ity, we focussed on FA in this study (Burzynska et al.,

2010; Molloy et al., 2019). Forty-eight FA measurements

were used in the analysis. Of them, 20 were considered

superficial WM and 28 were deep WM tracts

(Supplementary Table 2). No differences between MRI

scanners were found in the FA metrics (Supplementary

Table 3).

Ascertainment of pathologies from
imaging

Amyloid load from Pittsburg compound B–PET

The acquisition, processing and summary measure details

for amyloid PET on the MCSA study participants have

been discussed previously (Jack et al., 2017). For amyloid

PET, the global amyloid load was computed for each

participant by calculating median uptake in the pre-
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frontal, orbitofrontal, parietal, temporal, anterior cingu-

late and posterior cingulate/precuneus regions of interest

divided by the median uptake in the cerebellar crus grey-

matter regions of interest. The cut point for normal/ab-

normal amyloid PET was considered as defined from

Jack et al. (2017) and was a standardized uptake value

ratio of 1.48 (centiloid 19).

White-matter hyper-intensities from FLAIR–MRI

Brain infarctions were assessed by trained image analysts

and confirmed by a clinician blinded to all clinical

information. WMH were ascertained using an in-house

semi-automated method which is based on clustering via

connected components that are then masked to remove

high likelihood grey-matter voxels as described in detail

by Graff-Radford et al. (2019). These detected WMH

masks were edited for errors by trained image analysts

and infarctions were removed from the WMH estimation.

Cognitive performance

The MCSA neuropsychological battery, as previously

described, covers four cognitive domains with nine tests

(Roberts et al., 2008). In this analysis, we used the four

domain-specific Z-scores: executive function (Trail-

Making Test: Part B, Wechsler Adult Intelligence Scale-R

Digit Symbol); visuospatial performance (WAIS-R Picture

Completion, WAIS-R Block Design); memory [Wechsler

Memory Scale (WMS)-R Visual Reproduction-II (delayed

recall), WMS-R Logical Memory-II (delayed recall) and

Auditory Verbal Learning Test delayed recall]; language

(Boston Naming Test, category fluency) and a global Z-

score which was the average of all domain scores trans-

formed to Z-scores.

Statistical clustering

In this study, we aimed to find groups of individuals

with similar longitudinal FA profiles. We applied the lon-

gitudinal cluster analysis framework that we developed

recently for neuroimaging measures (Poulakis et al.,

2020) on the FA measurements of 48 WM regions from

the JHU atlas described in the DTI methods section.

Briefly, our approach is based on generalized mixed-effect

model and Gaussian mixture modelling for clustering. We

estimate each participant’s longitudinal FA trajectory

(intercept and slope) using the mixed-effect model. Then,

we compare the trajectories across all participants and

clustered individuals according to the similarity in inter-

cept and slope using Gaussian mixture model. Our

framework simultaneously accounts for irregular sampling

and an unequal number of images per individual;

accounts for confounding effects; provides cluster visual-

ization and measures clustering uncertainty as described

in detail by Poulakis et al. (2020). The R language imple-

mentation that was used has been explained by Komárek

and Komárková (2014). We controlled for sex and

APOE4 carrier status (six patients were excluded because

of missing data). The random effect (variable to account

for repeated measurements in time in the study) was

years from the age of 60 years (e.g. the variable takes the

value of 5 for a participant who was 65 years old at the

age of the baseline MRI). This time variable is a continu-

ous measure that can help in the interpretation of the

clusters.

Model implementation

The initialization of the algorithm was repeated five times

and for seven different cross-sectional cluster solutions

Table 1 Demographics of the cohort

Age at the baseline scan 60-70 70-80 801

Age group characteristics

N, N (%) 247 (45.00%) 188 (34.00%) 118 (21.00%)

Males, N (%) 128 (51.80%) 98 (52.10%) 74 (62.70%)

Age, median (mad) 65.00 (3.00) 74.90 (3.70) 84.50 (4.10)

Education (years), median (mad) 16.00 (2.97) 14.00 (2.97) 14.50 (3.71)

APOE4 allele carrier, N (%) 71 (28.70%) 59 (31.40%) 32 (27.10%)

APOE2 allele carrier, N (%) 40 (16.2%) 32 (17%) 12 (10.20%)

Health, mean (SD) 2.20 (0.90) 2.10 (0.80) 2.30 (0.90)

Baseline_CMC, mean (SD) 1.70 (1.20) 2.00 (1.30) 2.90 (1.40)

Gait speed, median (mad) 121.00 (15.86) 114.00 (18.09) 100.70 (20.76)

WMH/TIV� 100, median (mad) 0.38% (0.24) 0.82% (0.54) 1.44% (0.91)

SPM12_PIB_RATIO, median (mad) 1.39 (0.09) 1.41 (0.15) 1.56 (0.32)

Diagnosis and cognition

CU, N (%) 230 (93.10%) 161 (85.60%) 95 (80.50%)

Global, median (mad) 0.47 (0.83) 0.05 (0.98) �0.34 (0.94)

Memory, median (mad) 0.45 (0.91) 0.00 (1.15) �0.36 (1.40)

Executive, median (mad) 0.38 (0.77) �0.02 (0.80) �0.50 (0.99)

Language, median (mad) 0.41 (0.90) �0.04 (1.00) �0.25 (0.88)

Visuospatial, median (mad) 0.38 (0.85) 0.12 (0.86) 0.05 (0.93)

Main demographic, clinical and biomarker characteristics of the data set. Health, how healthy the participant feels from 0 to 4 with 4 being worst; CU, cognitively unimpaired;

WMH/TIV� 100, WMH in T2 MRI as a fraction of total intra-cranial volume; SPM12_PIB_RATIO, Pittsburgh compound B (PiB) PET SUVR; mad, median absolute deviation. The last

five domains that start with PZ refer to cognitive functionality; they are normative Z-values and higher values correspond to better cognitive score.
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(two to eight cluster models) to find the most optimal

model and explore the data. More specifically, we

applied random forest clustering and four variants of a

Gaussian mixture model (Bergé et al., 2012) on the base-

line data to find good values for the initialization of the

longitudinal clustering. We selected the best model based

on three criteria of model quality: deviance

[�2� log(model likelihood)] of the model, Markov Chain

Monte Carlo iterations convergence (parameter samples

first lag auto-correlation) and number of participants

with uncertain cluster allocation (based on highest poster-

ior density intervals). In total, we trained 35 models (five

initializations times seven different cluster numbers), for

250 000 Markov Chain Monte Carlo including the burn

in. After the model evaluation, we inspected the classifi-

cation probability matrix. We provide results for the best

model in this article.

Relationship between WM tracts

and cluster characteristics

After cluster identification, our goal was to examine the

regions that discriminated between clusters of the model

output. We used two different methods to aid in the pro-

cess. First, we estimated the cluster/region mean intercept

(age, 60 years) and slope (presented as annual change) for

the different types of fibre tracts. This provided us with a

straightforward visual method to extract discriminative

features between clusters of WM integrity. Second, we

also employed generalized linear mixed-effect models

(number of clusters � 1 logit models) with shrinkage pri-

ors (Piironen and Vehtari, 2017; van Erp et al., 2019) to

investigate which regions were most discriminative be-

tween all the identified cluster combinations. Those

regions were defined with a ranking system of odd-ratio

probabilities. For each of the models, we selected regions

that separated pairs of clusters (at the baseline and/or

over time) with at least 60% of probability. In this way,

we sorted out the most irrelevant regions. Then we com-

bined the results of all models (number of clusters � 1

logit; e.g. three clusters produce two models) and selected

the final set of discriminant regions based on the regions

that were common between models or very important for

the separation between a pair of clusters. Based on this

technique, we identified discriminant regions that are im-

portant for capturing both heterogeneity between WM in-

tegrity clusters and also those WM tracts that deteriorate

with ageing in the study population. Regional FA was

used as input and cluster allocation as output and there-

fore a logit link represented the categorical cluster alloca-

tion. These two different methods allowed us to confirm

the results of the visual approach (clustering output)

agreed with those from the supervised approach (post-

clustering comparison).

Features that differentiate

participants of FA clusters

After extracting the regions that were highly discrimina-

tive between clusters, we added a final supervised model

in our analysis to assess the regional WM integrity—clus-

ter relationship with other factors. We trained a multi-

variate multi-output mixed-effect linear regression. Cluster

allocation as well as demographic characteristics and bio-

marker values were used as input and the regional FA

discriminant variables as output. This model estimated

the extent to which clusters may differ in characteristics

other than WM integrity distribution trajectories.

Data availability

Data that supports the findings of this study is available

upon reasonable request from the MCSA investigators.

Results
The characteristics at the time of the baseline MRI scan

are summarized in Table 1 as a function of age decades.

As expected, we found that increasing age was associated

with worse cognition and gait speed, greater amyloid

burden, WMH and a greater number of CMC.

Statistical clustering and

classification of subjects

We evaluated models by the number of total clusters.

The model assessment showed that for each number of

clusters, one model was clearly better than the rest with

similar parameters but different initial parameter values.

While the optimized model with two clusters received the

highest quality scores (lowest model deviance, fewer sub-

jects with uncertain classification and fewer Markov

Chain Monte Carlo chains with poor mixing), it sepa-

rated only the participants with high FA values from par-

ticipants with low FA values, which was not informative.

We did not choose this model, because it separates the

sample by means of progression which does not add any

new information and was not considerably different from

the next solution (four clusters) in terms of quality

(Supplementary Table 1). We include the solution for

two clusters in Supplementary Tables 6 and 7 and

Supplementary Fig. 3. The next best solution was the one

with four clusters, which was chosen for interpretation.

This model had four FA components and the participants

who were clustered together in each cluster were decided

based on the estimated highest posterior density intervals

(Fig. 1). A highest posterior density interval is interpreted

as the Bayesian modelling equivalent to confidence inter-

val in cases where samples from posterior distributions

exist to estimate parameter error. The clustering based on
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the maximum probability of each participant belonging

to any cluster is shown in Fig. 1 (left).

A low representation (first three principal components of

the multi0dimensional scaling plot for the component–sub-

ject probabilities) of the cluster allocations shows that clus-

ter 1 and cluster 4 are very different, whereas clusters 2

and 3 are more similar to each other (Fig. 1, left). The

cyan colour data points shown in Fig. 1 (right) represent

participants who were not clustered to any of the cluster/

components with high certainty. A total of 143 participants

were excluded from the cluster demographics table since

they were not grouped to only one cluster with high cer-

tainty (intermediate) and add noise to the interpretation of

the four distinct groups of clusters. However, the contribu-

tion of the intermediate participants was crucial to under-

stand which clusters are similar in terms of WM integrity.

Interpretation of the clusters

As shown in Fig. 2, we provide the model-fitted values

for the clusters of four different FA profiles over time

and for fixed effects (sex ¼ male and APOE4¼ negative).

We have ordered the cluster numbers based on WM

health at baseline and the rate of WM declines. Cluster 1

had the highest baseline FA overall in all types of fibres

followed by clusters 2 and 3. Cluster 4 had the lowest

FA levels among the clusters at the baseline estimation

(Fig. 2; age, 60 years). Cluster 1 showed a stable decline

in WM integrity over time, which was much slower than

for the rest of the clusters. Cluster 4 shows a stable de-

terioration for some fibres and very steep decline for

some others, reaching the lower end of the FA values

observed in the data set (Fig. 2, red colour in legend).

Clusters 2 and 3 have some similarities in the baseline-

estimated FA values, whereas they have very different

progressions over time. Cluster 2 has lower FA values

than cluster 3 for most fibres, since at baseline cluster 3

starts with high FA values for some association fibres

while cluster 2 does not. However, with time cluster 3

quickly approaches the WM integrity of cluster 2 for all

fibres, if not lower FA in some regions.

Regarding the proportions of participants in the clus-

ters, cluster 1 has the highest number (n¼ 186, 45.4%)

in the sample, followed by cluster 4 (n¼ 87, 21%), clus-

ter 3 (n¼ 74, 18%) and finally cluster 2 (n¼ 63, 15.5%).

No substantial differences were observed in sex between

the clusters, whereas females had systematically lower FA

values in a number of regions. Differences were not

observed in APOE2 or APOE4 carriership status across

the clusters. Approximately, 90% of individuals in clus-

ters 1 and 3 were CU at baseline, cluster 2 follows with

84% and cluster 4 has the lowest percentage (82%) of

CU individuals (Table 2). Gait speed was not consider-

ably different among clusters, but cluster 4 had lower

Figure 1 Cluster–subject probability classification. The subject–cluster allocation matrix is visualized with the help of multidimensional

scaling. The closer a subject (dot) is to one of the pyramid corners the higher is the chance that the participant belongs to the cluster expressed

by that figure side. The classification of subjects is based on the maximum probability rule (left figure) and HPD intervals (right figure) to assess

uncertainty in the classification. The two figures differ only in the colouring of the uncertainly classified subjects (cyan blue colour). We observe

that (i) most of the participants are on the base of the pyramid, (ii) between clusters 1 and 4 there are few cases, whereas (iii) between clusters

1–2 and 1–3 more cases exist. This translates to the similarities between clusters in terms of WM integrity.
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gait speed and higher median absolute deviation. Cluster

4 has the lowest estimated FA values at the intercept

(age, 60 years), followed by cluster 2 with similar or bet-

ter values among the sum of fibre tracts. Cluster 3 fol-

lows with higher estimated values in commissural fibres,

similar in association fibres to cluster 2 and finally differ-

ent in projection fibres compared to both clusters 2 and

4. Finally, cluster 1 presents with the highest estimated

values among all fibre categories apart from those that

are connected to the brainstem. The slopes of FA over

time show a different classification of clusters than the

intercepts. Clusters 3 and 4 are more similar to each

other, while cluster 1 is more similar to cluster 2.

Commissural fibres and superficial WM regions show the

steepest decline in FA among all the clusters (Fig. 2, fit-

ted FA value maps; Fig. 3, mean FA slopes).

Figure 2 Cluster-specific WM integrity profiles at different ages. Clustering model-fitted values controlled by sex and APOE4

carriership. Fitted values were calculated for the age of 60 years (model intercept), 75 and 90 years. The red colour at the left of the colour

legend shows lower FA in comparison to yellow colour. The data is Z-value transformed. The colour scale legend includes five colours ordered

by increasing FA (red, yellow, green, blue and purple). Clusters are sorted in terms of WM integrity severity trajectories, whereas other

trajectories exist too.

Longitudinal white-matter clustering BRAIN COMMUNICATIONS 2021: Page 7 of 15 | 7
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The four clusters do not differ in terms of amyloid

beta load. All clusters have intercepts around 1.42 PiB

standardized uptake value ratio and 0.02 units increase

per year (Table 2). WMH as percentage of intracranial

volume at baseline were different between the four clus-

ters. However, the mixed-effect model that was used to

assess differences between WMH of the four groups

revealed that clusters 1–3 have similar intercepts at the

age of 60 years and cluster 4 has the highest WMH load,

but this estimation was not significant. Regarding the an-

nual increase in WMH, cluster 1 has the lowest rate of

WMH accumulation (0.04%), whereas clusters 3 and 4

have significantly higher rate of WMH accumulation

(0.1%).

The differences in cognitive profiles between the clus-

ters, expressed in Z-values showed that the group of CU

subjects, all clusters have similar global cognition inter-

cepts (estimated at the age of 60 years). Males had slight-

ly higher values (Table 2 and Supplementary Fig. 2).

Larger differences in global cognition were observed be-

tween MCI participants of the four clusters. In cluster 3,

males had higher global cognitive intercepts but much

steeper decline (0.28 per year) than the other clusters.

The steepest decline in memory performance was

observed in cluster 3 for MCI (0.21 for males and 0.01

for females per year) compared to the other clusters,

whereas sex differences were significant. Executive per-

formance intercepts were similar between clusters for the

CU individuals. MCI females of cluster 4 had a higher

intercept in executive function. CU males of cluster 2 had

lower intercept in language performance. CU males of all

clusters had worse decline in language performance than

CU females. MCI individuals declined in language per-

formance more than CU individuals in all clusters and

MCI males also declined more than females. More specif-

ically, males of cluster 2 started out with worse language

performance and males of cluster 3 had very steep esti-

mated decline rates (�0.16 per year). Finally, visuospatial

performance did not differ between clusters in estimated

intercepts or slopes.

Relationship between WM tracts

and cluster characteristics

The different variables that separated the four clusters

can also be visualized with the help of heat-maps

(Fig. 3). In terms of intercepts of FA values, cluster 1

was more similar to cluster 3, whereas cluster 2 was

more similar to cluster 4. Regarding the slopes of FA

over time, the longitudinal information showed that clus-

ters 1 and 2 were more similar to each other and cluster

3 was more similar to cluster 4. There is a distinct differ-

ence in the behaviour of WM integrity intercepts in com-

parison with the grouping of the slopes. The regions that

were mostly informative in the discrimination between

the clusters included the corpus callosum, the external

and internal capsule, uncinate, posterior corona radiata,

cingulum (cingulate gyrus), inferior fronto-occipital fascic-

ulus, superior longitudinal fasciculus, medulla and mid-

Figure 4 Cluster WM integrity characteristics. Cluster WM-specific characteristics are described. (A) Cluster intercepts and slopes that

were computed by the clustering model. The vertical axis of this figure describes the differences in FA progress over time for the clusters,

whereas the horizontal axis describes the intercept differences between them. (B) Regions that differ in WM integrity between pairs of clusters.

These are the important regions of WM integrity calculated by a post-clustering comparison between clusters of WM integrity. The superscripts

i and s correspond to specific WM tract intercepts and slopes; Slope, a pair of clusters have different slopes. The circle that describes the clusters

is proportional to its prevalence in the samples.
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brain WM tracts. For ease of interpretation, we show

these findings using Fig. 4B.

Finally, Fig. 5 shows the results of the statistical analysis

to identify the most discriminative features of the clustering

which was used as an output. We used the cluster number

as well as some cluster additional characteristics as the in-

put with cluster 1 as the reference group here. We observed

similar differences in FA between clusters 1 and 2 as shown

in Figs 2 and 3. Sex was associated with FA deterioration

in some regions as well as amyloid accumulation. Gait

speed showed strong associations with many regional FA

values at baseline. Though we did not observe differences

in amyloid at the group level, some differences between

clusters and amyloid accumulation were observed for a

small set of WM tracts FA at baseline (Fig. 5).

Longitudinal data showed subtle associations between clus-

ter 4 and amyloid accumulation for two WM tracts (genu

of the corpus callosum and anterior limb of internal cap-

sule) in comparison to cluster 1.

Discussion
The interplay between WM microstructural integrity

changes and ageing has been shown to impact cognitive

and motor functions. However, most of the conclusions

about these relationships are drawn from population level

inferences. Investigating whether groups of individuals

have different relationships between cognition and WM

integrity is of great importance. To enable early preven-

tion of declines in cognition and motor function, it is im-

portant to identify individuals who may be vulnerable to

WM damage early by studying the deterioration of WM

across the population. Capitalizing on (i) unsupervised

statistics, (ii) longitudinal WM integrity and (iii) wide

range of clinical characteristics, we found groups of indi-

viduals who have distinct clinical and WM characteristics

and estimated the evolution of the WM integrity trajecto-

ries during ageing.

Our main findings were (i) there was differential ageing

between fibre classes. The association/brainstem fibres in

contrast to commissural fibres were less likely to decline

as a function of ageing across all clusters, whereas pro-

jection fibres declined more heterogeneously. (ii) We

found that the integrity of specific WM fibres (genu of

the corpus callosum, anterior limb of internal capsule

and posterior corona radiata) can be useful in identifying

individuals at risk of future cognitive decline. (iii) We dis-

covered a group (cluster 1) of healthy WM agers who

had higher commissural, association and projection fibre

Figure 5 Relationship between the most discriminant WM integrity fibre tracts and the cluster characteristics. The colours

here show the estimated coefficient of a multivariate multi-output mixed-effect linear regression where WM bundles are output and the

different characteristics of the model are used as input. A random intercept was used to account for repeated measures. The asterisk (*) in the

cells shows which effects had 95% posterior density intervals that did not include 0, which makes them significant. Reference category is cluster

1, male, non-e4 carrier at baseline. The colours in the colour bar go from red (s.d., �3) to white (s.d., þ3).
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FA (at intercept and over time) accompanied by only

subtle changes in cognition and WMH with age. (iv) We

also found two groups of individuals with initially inter-

mediate WM integrity: a slow decliners group with low

initial global FA values but stable over time both in FA

and in cognition (cluster 2), and a rapid decliners group

that started with spared FA but declined steeply in many

fibres as well as in cognition (cluster 3). (v) Finally, we

discovered a rapid WM decliners group (cluster 4) with

individuals who presented with low overall WM FA and

had substantially greater decline in WM integrity, cogni-

tion and WMH with age than the other groups.

Our observations about the differential ageing of WM

tracts as well as clusters of individuals have provided us

with several important insights. Furthermore, the estima-

tion of intercept and slope of WM integrity profiles for

the four clusters helped us understand the effect of ageing

in WM clusters while considering the initial cluster differ-

ences. We have organized the discussion as follows: we

begin with the discussion of WM integrity per fibre class

to compare our results with existing literature and then

discuss cluster-specific WM and cognitive characteristics,

which has not been well described to date.

Projection, commissural, brainstem
and association fibres are impacted
differentially by ageing

The fibre tracts in the brainstem had low initial FA val-

ues for all four clusters in comparison to other fibre

types and did not decline significantly with ageing. Our

finding is in line with the previous cross-sectional studies

that investigated WM degeneration in relation to cogni-

tion and found no associations with ageing of brainstem

fibres (De Groot et al., 2015; Cremers et al., 2016). The

second class of WM fibres that showed marginal decline

with ageing were the association fibres. Initial severity

differences were observed between clusters, whereas the

healthy agers (cluster 1) were relatively unaffected. In

comparison to other studies that report FA decreases

with ageing in association fibres (Ito et al., 2015;

Rieckmann et al., 2016) as well as a correlation between

those fibres and cognition (Cremers et al., 2016), we

found that these tracts do deteriorate but not as much as

other fibre types.

Two association fibre tracts that deteriorate over time

for all four clusters are the sagittal stratum and the para-

hippocampal part of cingulum which are significantly

impacted in ageing. Sagittal stratum is an important WM

hub (includes the inferior longitudinal and fronto-occipi-

tal fascicles) and associations between decline in ageing

and amnestic mild cognitive impairment were reported

previously in a cross-sectional study by Liu et al. (2013).

In another study, the para-hippocampal part of the cingu-

lum showed accelerated longitudinal decline in partici-

pants at risk of Alzheimer’s type dementia (Rieckmann

et al., 2016) and associations with cognitive memory defi-

cits were also reported (Wang et al., 2012; Ito et al.,

2015). We hypothesize that the differences we observed

in cognitive decline between clusters may be associated

with the decline in these association fibres because WM

integrity for these fibres was distinct across clusters.

Projection fibres were one of the two types of fibre

tracts that showed strong correlations with ageing inde-

pendent of cluster allocation. Anterior corona radiata,

fornix stria and posterior thalamic radiation declined

with ageing for all clusters, even if some of them had ini-

tially lower FA values. However, the main exception of

no age-related (after 60 years) reduction in WM integrity

but low FA values for all clusters was the posterior limb

of the internal capsule. These projection fibre-related find-

ings (i.e. lower FA at the age of 60 years and faster

declines in specific projection fibres) support the age-

related alterations in top-down modulation suggested in

the literature (Gazzaley and D’Esposito, 2007; Gazzaley

et al., 2008) and may partially explain cognitive decline

in memory, language and visuospatial function between

all clusters at 60 years and onwards.

Finally, commissural fibres showed systematic declines

in FA with ageing for all clusters. This agrees with our

literature in WM ageing, where correlations between cog-

nitive decline and frontal/commissural WM integrity de-

terioration as a function of ageing have been reported

(Kennedy and Raz, 2009; Bennett and Madden, 2014;

Cremers et al., 2016; Vemuri et al., 2019). Specific focal

injury is often seen in the smaller diameter fibres of the

corpus callosum. This extent of regional distribution of

commissural WM integrity decline was different between

the clusters, suggesting that distinct systemic health

parameters such as vascular risk factors probably contrib-

ute to this heterogeneity.

Identified clusters have distinct WM
spatial trajectories and cognitive
decline profiles

Cluster 1 had the highest prevalence in the studied popu-

lation (45%) and presented with the highest WM FA in

most tracts at the baseline observations. Interestingly, not

all tracts had high FA at the estimated cluster intercept

(60 years old). More specifically, the posterior limb of the

internal capsule fibres and the cortico-spinal tract had

low FA values (as they were present in other clusters). It

is important to note here that reduced intercept WM in-

tegrity over all clusters in these fibres may be associated

with ageing (reference point, 60 years old), reduced motor

and executive abilities as well as worse vascular health in

the elderly. Djuleji�c et al. (2016) provide a detailed de-

scription of the perforating vasculature to this region and

it has been generally understood that the perforating vas-

culature is more vulnerable to age-related changes (also

see Importance of anterior WM structures in cognitive
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ageing section). We believe that the WM profile of this

cluster of individuals (WM per tract mean value) is of

great importance. In future applications, we can compare

it to the WM integrity profile of any individual at the

age span of our data set (60þ years old) and calculate

the probability of following the same cognitive trajectory

as cluster 1.

The cluster 2 that we discovered differed from cluster 1

in WM intercept. This cluster had much lower prevalence

and had a greater number of cognitively impaired partici-

pants. Differences between clusters 1 and 2 WM inter-

cepts may be explained by greater initial load of WMH

and CMC that can gradually worsen WM integrity over

time (Vemuri et al., 2015, 2018; Fuhrmann et al., 2019).

Slopes of the clusters 1 and 2 were not very different as

shown in Fig. 3. This provides evidence that cluster-2

individuals have worse WM health than cluster 1 and

possibly are shifted earlier in brain WM ageing but stable

over time. This is in line with the similarities that we

found between the two clusters in the cognitive-decline

domains assessed (memory, executive, language and

visuospatial).

Cluster 4 is a distinct rapid WM decliners group that

presented with the highest prevalence of cognitively

impaired participants among clusters. CU participants in

this group are at risk of declining in cognition. The pat-

terns of WM integrity, WMH and cognitive function of

this cluster can be well contrasted with cluster 1 and pro-

vide us with the two extremes in terms of WM integrity

and its correlate with cognition. Finally, cluster 3 is an

intermediate group of individuals with WM profiles be-

tween clusters 2 and 4. Interestingly, this group presented

with similarities in FA (superficial, commissural, projec-

tion and association WM tracts) with cluster 1 at the

intercept of the model. However, the rapid decline in

WM integrity and cognitive function after the age of

60 years of this cluster makes it comparable to cluster 4.

We speculate that this cluster consists of participants

who were affected by WM pathology �15 years later

(Fig. 2) than cluster 4 (i.e. shifted in time) and then pre-

sented with more rapid decline in cognition and WMH

accumulation. Such differences may be caused by normal

vasculature variation (Djuleji�c et al., 2016) and also se-

lective WM vascular pathology that may not be amyloid

specific (Vemuri et al., 2015).

We did not observe amyloid accumulation at the group

level, though we did observe subtle correlations between

amyloidosis and specific WM tract declines in certain

clusters. The lack of differences at the population level is

in line with our earlier observation that WM changes

may be less influenced in pre-clinical stages of amyloid-

osis (majority of our population is CU) (Vemuri et al.,
2019). We hypothesize that WM health is not affected by

amyloidosis in the population but will decline substantial-

ly after significant neuro-degeneration is seen in MCI/de-

mentia participants (who were not a large part of this

investigation).

Importance of anterior WM
structures in cognitive ageing

Consistent with the literature, we found an anterior–pos-

terior gradient with greater declines in the FA of the an-

terior WM tracts (anterior corona radiata, genu of the

corpus callosum and frontal WM) (Grieve et al., 2007;

Gunning-Dixon et al., 2009) across all clusters. This is

also supported by the WM retrogenesis hypothesis in

cognitive ageing, that late myelinated WM fibres are

most vulnerable to age- and disease-related damage

(Brickman et al., 2012). This is likely driven by greater

sclerotic changes of the frontal lobe medullary arteries

seen with ageing and dementia (Furuta et al., 1991).

However, there were added variations to the underlying

anterior WM deterioration seen across clusters.

Specifically by comparing all the cluster differences, clus-

ter 3 was more similar to cluster 1 for commissural and

superficial WM FA values (age, 60 years) and also had

an anterior WM deterioration trend as other clusters did.

However, cluster 3 had significantly greater declines in

posterior projection and brainstem fibres, similar to that

seen in cluster 4 but not present in clusters 1 and 2. On

the other hand, cluster 4 had significant declines both in

anterior and in posterior WM. This observation points to

a significant feature of ageing—the anterior–posterior

WM gradient hypothesis in cognitive ageing, and the pos-

sible variation between individuals in the population

based on pathological profiles.

Effectiveness of Bayesian cluster
optimization for identifying
biologically plausible clusters

The model optimization was achieved quickly due to the

large amount of information that balanced well with the

number of fixed and random effect parameters in the

model. A cohort-based sample with mixed or non-existing

pathologies was expected to produce more than one FA

components that can be expressed with high probability

for the same subject. This is a key strength of the ana-

lysis to estimate soft clustering allocations that allow for

uncertainty estimation. In this way, we were able to

understand the heterogeneity in the data set more accur-

ately, because we do not constrain the algorithm to as-

sign each participant in one cluster even if the individual

has a mixture of components’ expression. Although a

uni-dimensional result with groups of different stages of

FA decline could be expected, the selected model revealed

four different patterns of FA values with various slopes

over time. All patterns are not completely unrelated with

each other since some subjects were classified between

two clusters and therefore were excluded from Table 2.

Interestingly, these subjects are clustered between clusters

1 and 2 as well as clusters 1 and 3. Almost no subjects

fall between very dissimilar clusters (in terms of WH
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integrity), which means that heterogeneity in the data set

was well captured by the model definition. This result

points to more sophisticated FA profiles, the study of

which can only be revealed with track-specific effects and

longitudinal data.

Limitations, strengths and future

work

Though we used a large longitudinal imaging data set for

this study, we took a simplistic but robust approach by

limiting to linear modelling and excluded individuals who

did not tightly belong to a cluster. These excluded individu-

als from the final clusters described from a central compo-

nent of defining boundaries and help us delineate the

similarities and dissimilarities between clusters. However,

the exclusion of a large number of individuals is a limita-

tion for the final interpretation of the clusters since it

reduces the statistical power of the between-cluster compari-

sons. A key strength is the population-based sample of indi-

viduals (both cognitively impaired and unimpaired) who

allowed the modelling of realistic WM trajectories.

However, the longitudinal design of the study allowed for

more CU subjects to be included since they had a longer

follow-up. Future studies will focus on specific tracts identi-

fied in this study and their importance in the development

of WM pathologies and cognitive decline.

Conclusion
Using longitudinal WM microstructural integrity data of

553 participants, we have identified four distinct WM pat-

terns in the population. The mapping of these patterns in

our sample provided us with insights about the differential

ageing of WM integrity. At the age of 60 years, some indi-

viduals may have worse WM health (clusters 2 and 4),

whereas other individuals may have greater WM integrity

(clusters 1 and 3). Each of these clusters also decline at a

different rate than others. This type of classification of indi-

viduals has not been reported before in the literature. WM

health is informative about future declines in cognition as

well as development of WMH burden. Furthermore, we

identified key WM tracts that may be important to meas-

ure. We believe that current WM health in key WM tracts

provides important information that can be utilized to iden-

tify older individuals at risk of cognitive decline and pre-

vent WM deterioration in the ageing population.
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Supplementary material is available at Brain

Communications online.
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