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Abstract

We consider whether one can forecast the emergence of variants of concern in the SARS-

CoV-2 outbreak and similar pandemics. We explore methods of population genetics and

identify key relevant principles in both deterministic and stochastic models of spread of

infectious disease. Finally, we demonstrate that fitness variation, defined as a trait for which

an increase in its value is associated with an increase in net Darwinian fitness if the value of

other traits are held constant, is a strong indicator of imminent transition in the viral

population.

Introduction

RNA viruses such as SARS-CoV-2 have high mutation rates, which allows them to rapidly

adapt to changing environments. Fortunately, most mutations are deleterious, and high delete-

rious mutation loads can be limiting even to the point of error catastrophe [1], extinction as a

result of excessive mutations, in the most extreme cases. Even so, antigenic escape is a signifi-

cant concern with rapidly mutating viruses, since such escape could challenge pandemic con-

trol efforts. Some RNA viruses such as influenza A/H3N2 exhibit frequent antigenic escape,

with the most recent common ancestor rarely more than 3-5 years in the past [2]. Other

viruses such as measles, mumps, or HCV may take decades or even centuries to develop signif-

icant antigenic mutations [3]. When, antigenic escape does occur, it can trigger an escalation

of new infections as the novel variant is able to reinfect previously immune hosts. Other effects

of such mutations such as increased transmission rates, when they arise, result in the novel

strain quickly dominating the (antigenically similar) viral population with a speed that is dic-

tated by the magnitude of the relative selective advantage.

Therefore, monitoring for the emergence of antigenic escape or increased transmission rate

within the SARS-CoV-2 population is a capability that is fundamentally important for control-

ling the pandemic. Genetic sequencing of isolates is the primary monitoring framework, but it

requires deciding what proportion of isolates will be sampled from each subpopulation being

monitored. Toward that end, we explore to what degree and how the tools of population genet-

ics can inform monitoring processes. At the heart of this problem lies the key question: Where

and when will the next variant of concern arise?
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On its face, this question seems impossible to answer. Indeed, it is often presumed that evo-

lution, being a complex and random process, is by its nature unpredictable [4, 5]. Yet, it has

been demonstrated that fitness can be forecast for short time horizons [5]. Further, viral popu-

lations are subject to dynamical processes that govern host infection and transmission. These

dynamics, often over-simplified into compartmental Susceptible-Infected-Resistant (SIR)

models [6, 7] and other similar models, can be used to understand the direction of selective

pressure. Thus, there is reason to hope that while one may not be able to know where the next

variant of concern will arise, one could make educated estimations. Aligning genetic monitor-

ing activities with the probability distribution of variant emergence will improve efficiency

and increase chances of identifying novel variants early.

Related work

[8] ran a number of simulations and then trained and evaluated machine learning models

designed to forecast the rise of novel antigenic types. The authors of this study were research-

ing whether having identified a novel antigenic type, one can predict whether it will rise to a

critical relative frequency of infections. This differs from the present work, in which we con-

sider whether we can predict this event without having to first identify a novel strain at all.

That is, we attempt to answer the question: will a novel type arise?

Multi-strain dynamics

Much research focusing on the emergence of novel strains assume the pre-existence of these

strains at very low levels [9–12]. In this setting, models of multi-strain dynamics can predict

where and when these strains may be detected (i.e., reach sufficient levels) as a function of rela-

tive fitness. Similar models can describe the fixation of strains that have higher transmission

rates, longer recovery times, or other competitive advantages. The models can also include

strain-to-strain mutation rates, which serve as additional source/sink terms.

Fig 1 illustrates how this works with a two-strain SIRS model, detailed in Appendix A. Like

an SIR model, SIRS models describe the rates of change of the number of individuals who are

susceptible, infected, or resistant. However, unlike an SIR model, SIRS models include loss of

immunity over time, thus resistant individuals can become susceptible. The solid line shows

the number of active infections for Strain 1 (wild-type). The dashed line shows the number of

active infections for Strain 2 (mutant). The dotted line shows the proportion of infections

caused by the two strains. In this example scenario, Strain 2 has escaped the immune response

elicited by the vaccine (otherwise, Strains 1 and 2 are equivalent and infection by either confers

immunity to the other). Aggressive vaccination of the population leads to the rapid dominance

by Strain 2 and includes an overall reduction in peak infections. A lower vaccine rate delays

the dominance of Strain 2, while no vaccination results in Strain 2 remaining in obscurity.

Fig 1. Example simulation results from a two-strain SIRS model with a vaccinated population, for different

vaccination rates. The solid line shows the number of active infections for Strain 1. The dashed line shows the number

of active infections for Strain 2. The dotted line shows the proportion of the two strains. Vaccine resistant strain

initially present at rate of 10−6. (a) 50% population vaccinated in 100 days. (b) 10% population vaccinated in 100 days.

(c) No vaccination.

https://doi.org/10.1371/journal.pone.0264198.g001

PLOS ONE Forecasting emergence of COVID-19 variants of concern

PLOS ONE | https://doi.org/10.1371/journal.pone.0264198 February 24, 2022 2 / 11

not alter our adherence to all PLOS ONE policies on

sharing data and materials.

https://doi.org/10.1371/journal.pone.0264198.g001
https://doi.org/10.1371/journal.pone.0264198


Here, the initial proportion of Strain 2 is 10−6. Note that under this simple model, vaccination

confers a competitive advantage to Strain 2 and its dominance is inevitable. Different choices

of parameter values only change the timing of this outcome.

A real challenge with these models is that the time at which the mutant strain reaches

detectable levels within the population is very sensitive to its initial population, which cannot

be experimentally measured. If one does not assume pre-existence, then one must describe the

dynamics by which novel strains come into being, i.e. mutation.

A neutral model of genetic diversity

The simplest form of mutation models are models of neutral mutation. Here, it is presumed

that mutations have no effect on fitness. The aim then, is to describe the level of genetic diver-

sity in a population over time. [13] adapt a model of mean number of pairwise differences

between sequences under varying population size first proposed by [14], to estimate genetic

diversity over time during a viral outbreak. This simple model is given as

d
dt
p ¼ 2U � 2pðtÞ

tþ m

IðtÞ
ð1Þ

where π is the mean number of pairwise differences, U is the mutation rate, τ is the recovery

rate, μ is the host population birth rate, and I is the number of infected individuals. This model

can use the retrospective data and forecast numbers of active cases (currently infected individ-

uals) obtained from any relevant case forecasting model, to provide an estimate of within-

strain genetic diversity.

Phylodynamic models

A significant challenge with modeling genetic mutation is that one must also describe how

genotype relates to phenotype. Much is known about the SARS-COV-2 virus genome [15]

including site specific mutation rates [16]. Yet, to model the genotype-phenotype relationship

may require understanding how mutations affect protein folding and resulting protein-protein

interactions. Computational approaches for exploring these factors exist [17], but are likely too

computationally expensive to comprehensively characterize the genetic landscape.

A common alternative approach is to describe the change of fitness directly [5, 18, 19]. Fit-

ness dynamics can be described using the following integrodifference equation

@

@t
u ¼ ðx � �xÞuþ m u � g � uð Þ; ð2Þ

where x is a scalar quantity measuring fitness, u(x, t) is proportion of the population with fit-

ness x at time t, u � g =
R
O u(x − τ, t)g(τ, t)dτ, μ is the mutation rate, and �x ¼

R

� O
xu dx is the

average population fitness. The shape and properties of the mutation likelihood g controls the

properties of the fitness trajectories [18]; either a train of well separated beneficial mutations

rising to fixation or a traveling wave moving in the direction of increasing fitness.

Compartmental models can be combined with fitness evolution relatively easily, under the

assumption of a single antigenic cluster. For example, an SIR model with mutation is given

below. However, modeling multiple antigenic clusters requires model extensions [20] which

are not easily handled by deterministic frameworks. Instead, stochastic [21] and deterministic-

stochastic hybrid [2] methods are used.
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Empirical data

Resources such as GISAID [22] and Nextstrain [23] have made phylogenetic analysis of tens of

thousands of SARS-CoV-2 isolates available. The observed phylogeny show contemporary

clades displacing earlier ones. The turn over in clades shows ongoing fitness evolution. Some

clades including 20H/501Y.V2, 20C/S:452R, and 20J/501Y.V3 show growing antigenic

distances.

Methods & results

An important design choice in modeling variant emergence is whether to consider antigenic

mutation. In the absence of antigenic mutation, the models simplify and are more readily

treated with deterministic systems. Including antigenic mutation is most readily handled using

agent based stochastic models.

Viral phylodynamics in the absence of antigenic mutation

In the absence of antigenic mutation, the phylodynamics of a viral population can be captured

by a small modification to common compartmental models. By considering infections I(β, γ, t)
to be a function of both time t and phenotype β, γ one arrives at a familiar compartmental for-

mulation in the population totals and one additional equation describing the proportion of

infections u ¼ I=�I .

d
dt

S ¼ � �b�I
S
S0

; ð3Þ

d
dt

�I ¼ �b�I
S
S0

� �g�I ; ð4Þ

@

@t
u ¼ b

S
S0

� g � �b
S
S0

þ �g

� �

uþ m u � g � uð Þ: ð5Þ

Here, S is the size of susceptible population, �I ¼
R

O
I dbdg is the total number of infections. �b

and �g are the population averaged transmission and recovery rates, and g is the mutation ker-

nel. A derivation of the above can be found in the Appendix B. Note that (5) describes continu-

ous mutation and naturally re-derives (2) in the infectious disease context. The equation can

be modified to describe mutation only at the time of transmission, as in [21], resulting in the

last term changing to μS[(βu) � g − βu]. Both forms are approximations, allowing one to avoid

modeling within host dynamics.

From Eq (5) one can see that fitness is defined by the scalar quantity b S
S0
� g and that fitness

is maximally increased in the direction hS=S0; � 1i. This model does not explicitly include

immune escape. The selective pressure in favor of immune escape can be characterized, how-

ever. If a genotype with parameters β and γ mutates in a way to achieve partial immune escape,

parameterized by δ 2 [0, 1], then its instantaneous fitness will be bðdðS0 � SÞ þ SÞ=S0 � g. The

fitness gradient then becomes

r ¼ S
S0
; � 1; b 1 � S

S0

. �E
; ð6Þ

�.D

where the last position represents immune escape. Eq (6) makes it clear that selective pressure

changes over the course of an outbreak and can be described in roughly three phases. Initially,

susceptible hosts are plentiful and fitness is conferred by both increasing β and decreasing γ
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which describes the length of time a host spreads the virus. As host availability decreases selec-

tive pressure favors variants that are able to spread longer (lower γ), but transmissibility

becomes less important. With yet further reduction in available hosts, pressure begins to

strongly favor immune escape which would increase the number of available of hosts.

Fig 2 shows simulation results from system (3)–(5) using a Gaussian mutation kernel g.

Fig 2a shows the mean transmission rate β and recovery rate γ over the course of a simulated

outbreak. The arrows indicate the direction hS=S0; � 1i of maximal selective pressure in the

(β, γ) plane. This figure demonstrates that the gradient in (6) agrees with simulation with iso-

tropic mutation kernels and no small-population effects (see [18]). Fig 2b shows the magnitude

of selective pressure given by (6) assuming that no immune escape variant has emerged. This

figure illustrates the three phases of pressure direction described above.

Viral phylodynamics in the presence of antigenic mutation

Antigenic mutations are simpler to simulate using stochastic agent based models and similar

techniques, as compared to deterministic compartmental models. We therefore adapted an

existing agent based model for influenza A/H3N2 which includes mutation in both transmis-

sion rate and the antigenic space [21]. We sampled key model parameters independently and

uniformly over a range of plausible values, with the exception of population size for which

log10 population size was sampled uniformly. These key parameters, their descriptions, and

range of values are given in Table 1. Using default parameters, this model shows spindly phy-

logeny, with novel antigenic variants rising to fixation approximately every three years. For the

purpose of illustration, Fig 3 shows an example simulation representing a year period. Fig 3a

shows weekly infections colored by antigenic type. Note that colors for different types may

Fig 2. Mean phenotype and selective pressure over the course of a simulated outbreak using (3)–(5). (a) �b and �g over the course of a simulated

outbreak. Arrows indicate the direction of hS=S0; � 1i. (b) Magnitude of selective pressure using (6) assuming that no immune escape variant has

emerged.

https://doi.org/10.1371/journal.pone.0264198.g002

Table 1. Range of perturbed simulation parameters. Each parameter was sampled uniformly over the indicated range.

Parameter Description Range

log10(initialNs) log Population size [4, 8]

initialPrR Initial strain resistance [0, 0.5]

beta Base transmission rate [0.3, 0.6]

nu Recovery rate [0.15, 0.25]

lambda Non-antigenic mutation rate (mean number of mutations per transmission event) [0.05, 0.25]

mutCost Base transmission rate cost for deleterious non-antigenic mutations [0.006, 0.01]

epsilon Probability of beneficial non-antigenic mutation [0.1, 0.2]

lambdaAntigenic Antigenic mutation rate (mean number of mutations per transmission event) [0.00075, 0.001]

https://doi.org/10.1371/journal.pone.0264198.t001
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appear similar and the contribution of each type is separated by black lines. Fig 3b shows the

proportion of infections caused by each type over time. Fig 3c shows the variance of key fitness

measures over time. These are the proportion of the population that is susceptible (susc.), the

transmission rate which includes the effects of deleterious mutation load (beta), and the repro-

duction value (R). Note that there are three periods of transition of dominant antigenic type

which correspond to three periods of increased variance in fitness.

Similarly to [8], we ran a number of simulations and then trained and evaluated machine

learning models designed to forecast the rise of novel antigenic types. We ran 2,000 simula-

tions, each simulating a 3 year period. Fig 4 includes a single example, showing infections by

antigenic type, proportion of types, and variance of fitness measures as in Fig 3. The third year

in each simulation was discarded, only being used to determine whether an antigenic type

would reach 5% relative infection frequency. We refer to antigenic types reaching 5% relative

frequency as novel variants. Other types that do not reach this threshold are out competed and

not considered novel variants. For each simulation, the weeks between origination and the

time at which a novel variant first reaches 5% relative frequency are labeled as ‘positive’, indi-

cating the presence of a latent novel variant. The weeks after a novel variant attains 5% relative

frequency are discarded. All other weeks are labeled as ‘negative’.

Simulations in which no antigenic types originate beyond the initial type were discarded,

leaving 1,510 simulations. This was done because when no novel antigenic types originate, sus-

ceptibility variance is identically zero. Exactly zero variance has two consequences. First, vari-

ance becomes incredibly informative resulting in prediction performance significantly higher

than reported below (AUC 0.933), since the resulting negative samples fall below any nonzero

threshold. Second, determining that the true variance is truly zero in real-world applications is

problematic. This issue is further explored in the discussion below.

Each week is then featurized by the current number of infections, cumulative infections,

total number of susceptible hosts, population size, and the means and variances of susceptible

host proportion (susc.), the transmission rate (beta), and the reproduction value (R). Finally,

Fig 3. Example simulation representing a 10 yr period. Antigenic types are separated by both line and color, though many colors appear similar.

(a) Infections by antigenic type. (b) Antigenic type proportions. (c) Variance of fitness parameters.

https://doi.org/10.1371/journal.pone.0264198.g003

Fig 4. Example sample simulation, showing fixation of a novel variant. Antigenic types are separated by both line and color, though many

colors appear similar. (a) Infections by antigenic type. (b) Antigenic type proportions. (c) Variance of fitness parameters.

https://doi.org/10.1371/journal.pone.0264198.g004
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we append the previous week’s values as additional features. We trained and evaluated a Ran-

dom Forest using blocked 10 fold cross-validation, wherein weeks from the same simulation

where not allowed to be split across multiple folds.

Fig 5 shows Reciever Operator Characteristic (ROC) curves for Random Forests trained

using all features (red, solid) and using only case count based features (i.e. no fitness features)

(blue, dashed). The black dash-dot line indicates the random line. Using all features the model

achieves an area under the ROC curve (AUC) of 0.731, while using only case count based fea-

tures the model achieves an AUC of 0.606. Using only the variance of susceptible host propor-

tion for the current and previous week is sufficient to achieve an AUC of 0.716, indicating that

antigenic variation is a leading indicator of novel strain emergence.

Conclusion

We have demonstrated that systematic properties of population dynamics in infectious dis-

eases can inform the likelihood of the random process of mutation. When mutation is strong,

the traveling wave of the fitness distribution tends to move in the direction of the fitness gradi-

ent. When mutation is weak, the fitness dynamics are characterized by periodic substitution

events [18]. In this case, variation in population fitness is a strong indicator that such an event

is imminent. Our simulation results support these conclusions.

In order to apply these findings to the SARS-CoV-2 pandemic, we must be able to measure

variation within the viral population. In the absence of this capability, our results indicate that

one would suffer a significant decrease in predictive power. As mentioned above, while isolates

can increasingly be sequenced and their genetic sequences analyzed, one must be able to link

genotype to the relevant aspects of phenotype or fitness. Certain types of mutations, those

located in the spike protein for example are more likely to have an impact on fitness, but quan-

tifying that impact may be difficult. Neutralizing monoclonal antibody testing [24] may serve

as a suitable proxy. In addition, increased variation in antibody response to collected isolates

may well indicated increased antigenic variation. However, more study is required to quantify

these relationships.

We expected the gradient in Eq (6) to be much more informative of outcomes of the sto-

chastic agent based simulations. This proved not to be the case. Mutations arise at a rate pro-

portional to the number of transmission events and as the fitness gradient changes, the fate of

a mutant may become favorable. While this fitness gradient can inform these changes, the

range of parameter values chosen created such large variation in susceptible host proportion,

as well as trajectories of the same, that the relationship between susceptible host proportion

Fig 5. ROC curves of model predicting the emergence of a novel variant. The dotted black line indicates random

performance. (a) Log scale. (b) Linear scale.

https://doi.org/10.1371/journal.pone.0264198.g005
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and probability of a novel variant emerging was overwhelmed. This may be appropriate how-

ever, since considerable uncertainty continues to remain concerning the most appropriate

models and parameter values to describe the SARS-CoV-2 outbreak. This will likely be the

case in future outbreaks as well.

Appendices

A Two-strain SIRS model with vaccination

A sample two-strain competitive SIRS model with vaccination. Vaccination is assumed to con-

fer permanent immunity against strain 1 but none against strain 2. Infection by either strain

confers temporary immunity to both. Table 2 summarizes model variables, parameters, and

parameter values.

d
dt

S ¼ mN � vsðSÞ � b1SI1 � b2SðI2;S þ I2;VÞ � mSþ gR1 þ gR2;S ð7Þ

d
dt

V ¼ vsðSÞ � b2VðI2;S þ I2;VÞ � mV þ gR2;V ð8Þ

d
dt

I1 ¼ b1SI1 � ðtþ mÞI1 ð9Þ

d
dt

I2;S ¼ b2SðI2;S þ I2;VÞ � ðtþ mÞI2;S ð10Þ

d
dt

I2;V ¼ b2VðI2;S þ I2;VÞ � ðtþ mÞI2;V ð11Þ

d
dt

R1 ¼ tI1 � ðgþ mÞR1 ð12Þ

Table 2. Two-strain SIRS model variables and parameters used in simulations.

Variable Description

S; S(0) = N − I1(0) − I2,S(0) Susceptible but unvaccinated population

V; V(0) = 0 Vaccinated and susceptible population

I1; I1(0) = 100 Individuals infected by Strain 1

I2,S; I2,S(0) = 10−4 Unvaccinated individuals infected by Strain 2

I2,V; I2,V(0) = 0 Vaccinated individuals infected by Strain 2

R1; R1(0) = 0 Individuals recovered from Strain 1

R2,S; R2,S(0) = 0 Unvaccinated individuals recovered from Strain 2

R2,V; R2,V(0) = 0 Vaccinated individuals recovered from Strain 2

N = 106 Total population size

μ = 3 � 10−3 Population birth and death rate

v = 5000, 1000, 0 Vaccination rate

σ(S) 1-Sigmoid function to stabilize system:
expð0:25S� 25Þ

1þexpð0:25S� 25Þ
1S>0

β1 = 2.5 � 10−7 Transmission rate for Strain 1

β2 = 2.5 � 10−7 Transmission rate for Strain 2

g ¼ 1
365= Loss of immunity rate

t ¼ 1
10= Recovery rate

https://doi.org/10.1371/journal.pone.0264198.t002
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d
dt

R2;S ¼ tI2;S � ðgþ mÞR2;S ð13Þ

d
dt

R2;V ¼ tI2;V � ðgþ mÞR2;V ð14Þ

B SIR model with mutation

Let I(β, γ, t) be the number of infections by a pathogen with transmission rate β and recovery

rate γ at time t. Let S(t) be the number of susceptible individuals in the population.

The total number of infections is given by �IðtÞ ¼
R

O
I dA. The proportion of infections with

a given value of β and γ is uðb; g; tÞ ¼ I
�I= .

Susceptible individuals are infected at a rate of

d
dt

SðtÞ ¼
Z

O

� bIðb; g; tÞ
SðtÞ
S0

dA: ð15Þ

Similarly, the number of infections changes at a rate of

d
dt

Iðb; g; tÞ ¼ bIðb; g; tÞ
SðtÞ
S0

� gIðb; g; tÞ þ m I b; g; tð Þ � g � I b; g; tð Þð Þ; ð16Þ

where I � g ¼
R1

0

R1
0
Iðb � t; g � Z; tÞgðt; Z; tÞ dbdg is the convolution of the infected popula-

tion with the mutation kernel g. This assumes that mutation of the pathogen changes the status

of entire host. In reality, deleterious mutations within a host will be out-competed and will not

fix within the host. This can be addressed by choice of g.

Let �b ¼
R

O
bu dA and �g ¼

R

O
gu dA. Then,

d
dt

S ¼
Z

O

� bI
S
S0

dA ¼ �
S
S0

�I
Z

O

b
I
�I
dA ¼ �

S
S0

�I
Z

O

bu dA ¼ � �b�I
S
S0

: ð17Þ

Similarly,

d
dt

�I ¼

Z

O

bI
S
S0

� gI þ m I � g � Ið Þ dA ¼ �I
Z

O

b
I
�I
S
S0

� g
I
�I
þ m

I
�I
� g �

I
�I

� �

dA

¼ �I
Z

O
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S
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S
S0

� �g�I :
ð18Þ

Finally,
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I
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I
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S
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� �g

� �

¼ b
S
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S
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þ �g

� �

uþ m u � g � uð Þ:

ð19Þ
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