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Starting at birth, newborn infants are exposed to numerous microorganisms. Adaptation

of the innate immune system to them is a delicate process, with potentially advantageous

and harmful implications for health development. Cytomegaloviruses (CMVs) are

highly adapted to their specific mammalian hosts, with which they share millions of

years of co-evolution. Throughout the history of mankind, human CMV has infected

most infants in the first months of life without overt implications for health. Thus,

CMV infections are intertwined with normal immune development. Nonetheless, CMV

has retained substantial pathogenicity following infection in utero or in situations of

immunosuppression, leading to pathology in virtually any organ and particularly the

central nervous system (CNS). CMVs enter the host through mucosal interfaces of

the gastrointestinal and respiratory tract, where macrophages (MACs) are the most

abundant immune cell type. Tissue MACs and their potential progenitors, monocytes,

are established target cells of CMVs. Recently, several discoveries have revolutionized

our understanding on the pre- and postnatal development and site-specific adaptation

of tissue MACs. In this review, we explore experimental evidences and concepts

on how CMV infections may impact on MAC development and activation as part

of host-virus co-adaptation.

Keywords: macrophage, monocyte, CMV (cytomegalovirus), innate immunity, pathogen-host coevolution,

mucosal immune barrier, virus-host adaptation, macrophage heterogeneity

INTRODUCTION

The human body harbors diverse communities of microorganisms, in particular bacteria and fungi
colonizing the outer and inner surfaces of the body (microbiome), as well as latently infecting
viruses (virome) (1). This ecosystem is subject to influences, e.g. nutrient supply, interspecies
competition and diffusible immunological effector molecules. At the same time, microbiome and
virome shape host immunity via direct interaction with immune and non-immune cells, and
indirectly, e.g. via secreted metabolites (2). In contrast to extracellular bacteria and fungi, which are
largely controlled on the population level, viruses can be expected to rely on reciprocal adaptations
with the individually infected host cell. The genus of cytomegaloviruses (CMVs), which belong to
the subfamily of betaherpesvirinae, have co-evolved with their mammalian hosts for millions of
years (3). In humans, infection with human CMV (HCMV) usually occurs in the first months of
life, although infection has been pushed toward later life in highly industrialized societies (4–6).
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Therefore, HCMV is part of a “physiological” virome in
immunocompetent individuals. Infants are infected via smear
infections or via HCMV-containing milk as seropositive mothers
reactivate HCMV locally (7) and transmit the virus to their
children in more than 30% of cases (8).

CMVs have co-evolved with their specific hosts. Therefore,
cross species infection models to study virus-host interactions
are not available in vivo. Murine CMV (MCMV) and HCMV
share only 45% of their genes (9), but have many similarities in
cell tropism and immune modulatory properties. Hence, MCMV
infection of mice is regarded as a useful experimental model to
understandHCMVpathology (10). In the subsequent text we will
use the abbreviation “CMV” in the case of general statements and
if features are shared by the CMVs, which were studied.

Intraperitoneal and subcutaneous (foot pad) infections have
provided valuable information on MCMV biology in the
complex in vivo situation. However, since breast milk and
saliva are regarded as important HCMV and MCMV sources,
intragastric and intranasal infections have more recently been
exploited (11). HCMV may infect cells of the mouth/upper
gastro-intestinal tract, or it may reach the intestine. Moreover,
HCMV may infect the respiratory tract via aspiration of
virus containing milk. MACs and their potential progenitors,
circulating monocytes, are well-known target cells for CMV
(12–16). In the barrier tissues of intestinal and respiratory
tracts, MACs represent the most abundant immune cells.
However, tissue resident MACs are highly heterogeneous
and undergo age specific changes during the individual host
development, with respect to their origin and the tissue they
inhere (17). For example, lamina propria MACs (LpMAC)
in the intestine and microglia in the CNS represent two
extremes with and without replenishment by monocytes,
respectively. Models on how the phenotypic and functional MAC
diversity impacts on CMV infections and vice versa are still
in infancy.

In this review we focus on the ability of MACs to recognize
CMV early after infection, and the known cellular consequences
of infected MACs with regard of cytokine production and
polarization. We summarize mechanisms of how CMV exploits
monocyte influx and discuss potential consequences in putative
target tissues. We propose that early CMV infections train the
monocyte-macrophage-axis and are therefore beneficial in the
immunocompetent host. Finally, we highlight the central role
of monocytes and MACs in CMV infection serving as latent
reservoirs and reactivation sites.

CMV RECOGNITION BY MACROPHAGES
AND MONOCYTES

The high frequency of tissue MACs in CMV entry sites,
e.g. the lamina propria (intestinal tract) or alveolar spaces,
allows for a potent response to epithelial barrier disruption
and invasion of microorganisms, such as bacteria, or viruses.
In order to cover a huge variety of pathogens with distinct
extracellular or intracellular lifestyles, MACs and monocytes
are equipped with pattern recognition receptors on plasma

and endosomal membranes and in the cytosol. Together, these
receptors recognize conserved microbial molecules or alterations
in host structures, such as nucleic acids occurring at atypical sites.
The engagement of pattern recognition receptors leads to the
formation of cytokines, which are suited to initiate an appropriate
immune response. During viral infections, type I interferons
(IFN I) play an important role in creating a hostile cellular
environment for viral replication and spread (18). Accordingly,
mice deficient in the IFN I receptor (IFNAR−/−) succumb
to CMV infection (19). Furthermore, inflammasome-dependent
secretion of interleukin 18 (IL-18) augments NK-cell function in
MCMV infections (20).

CMV and Toll-Like Receptors
Upon ligand binding Toll-like receptors (TLRs) transduce
signals via the cytosolic adapter molecule myeloid differentiation
primary response 88 (MyD88). In this respect, TLR3 is an
exception, since it uses TIR-domain-containing adapter inducing
interferon-β (TRIF) and TRIF-related adaptor molecule (TRAM)
as sole adapters (21). To induce IFN I transcription, dimerization
of transcription factors interferon regulatory factor (IRF) 3
(through TLR3-TRIF) and/or IRF7 (through TLR9-MyD88) is
essential. Accordingly, peritoneal MAC from IRF3 and IRF7
double knockout mice do not produce IFN-β when infected with
MCMV (22). The role of upstream MyD88 in IFN I production
in MCMV infection was confirmed in several studies (23–
25). A loss-of-function frameshift mutation in TRIF increases
susceptibility and diminishes circulating IFN I in MCMV
infection (26). Moreover, bone marrow cells from mice with a
combined deficiency in MyD88 and TRIF, showed an impaired
IFN I formation in MCMV infection in vitro. However, residual
IFN I formation in these cells suggests the existence of a TLR-
independent pathway (27).

The strictly intracellular lifestyle of CMV requires expression
of host cell receptors that provide docking sites for viral ligands
and facilitate cellular entry. Complexes of the CMV glycopoteins
B and H (gB, gH) mediate host cell entry (28). Although,
the entry-mediating host receptors for these protein complexes
are still controversial (29), TLR2, which is expressed on the
cell membrane, is known to interact with gB/ gH (30). TLR2
binding drives HCMV-induced nuclear factor kappa-light-chain-
enhancer of activated B cells (NFκB)-dependent production of
inflammatory cytokines in MACs (31) (Figure 1) and mediates
the control of CMV in immunocompromised humans and mice
(32, 33). Interestingly, TLR2-dependent IFN I production has
been found to be specific for inflammatory monocytes (27)
(Figure 1), while dendritic cells did not mount an IFN I response
through TLR2 (27).

In addition, endosomal TLRs, e.g. TLR 3, 7 and 9, are involved
in MCMV recognition, since a missense mutation in their
adapter UNC-93B leads to substantially decreased formation of
interferon gamma (IFN-γ), IL-12, tumor necrosis factor (TNF)
and IFN I in the plasma of mice after intraperitoneal MCMV
infection (34).

Although the cell specific contribution of individual
TLRs remains unclear, interaction of MCMV with TLR2 on
monocytes and MACs may contribute to the rapid mounting
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FIGURE 1 | HCMV glycoproteins B and H (gB/gH) engange TLR2 of MAC on the surface and activate NFκB and AP-1 mediated transcription of pro-inflammatory

cytokines. The cytosolic sensors cGAS and AIM2 recognize CMV-DNA. cGAS produces the signaling mediator cGAMP, which leads to STING activation and

IRF3-dependent type I IFN transcription. Engagement of DNA by the HIN domain of AIM2 leads to interaction with the adaptor ASC (PYD-PYD) and subsequent

recruitment of pro-caspase 1 via their CARD domains. Activated caspase 1 (Casp1) can cleave the pro-forms of IL-18 and IL-1β converting them into their mature

bioactive forms. Additionally, inflammatory monocytes can uptake DNA viruses into endosomal compartments and induce type I IFN via IRF5 and 7. TRAF-6, TNF

receptor associated factor-6; IKK-complex, IκB kinase-complex; AP-1, Activator protein-1; ER, endoplasmatic reticulum; ASC, Apoptosis-asspciated speck-like

protein containing a CARD; PYD, pyrin domain.
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TABLE 1 | Genes of MCMV and their HCMV homologs in this review.

Gene m129 (Mck2) M36 (vICA) m139, m140,

m141

M35 M45 (vIRA)

MAC specific Partly Yes Yes Partly No

Function Viral CC chemokine

homolog to attract

monocytes; essential for in

vitro infection of MAC in

MCMV

Inhibition of caspase 8

activation (apoptosis);

inhibition of innate immune

response of MAC; essential

for in vitro replication in MAC

Capsid formation

in MAC

Interference with

NFκB-dependent IFN I

transcription; essential for in

vitro replication in MAC

Inhibition of necroptosis

(inhibition of RIP3

activation); activation of

NFκB (early); inhibition of

NFκB essential modulator

(NEMO) (late)

HCMV ortholog/

homolog

Yes (UL128) Yes (UL36) No Yes (UL35) Yes (UL45); not a functional

homolog

Literature (63–65) (66–68) (69, 70) (46) (57, 71, 72)

of inflammatory and antiviral mediators in case of viremia. In
contrast, TLR9 in dendritic cells seems to be crucial for IFN I in
later stages of infection (24, 34–37).

CMV and Cytosolic Sensors
The observation that MACs, which accumulate DNA in
phagosomes due to a DNAse II-deficiency, induce interferon-
mediated anemia, which was reversed by deletion of IFNAR
(38), suggested a TLR9-independent DNA sensor in the
cytosol. Moreover, MACs deficient in MyD88, TRIF and
mitochondrial antiviral signaling (MAVS) protein maintained a
IFN I response in MCMV infection (39). The identification of
the stimulator of interferon genes (STING) (40, 41) and cyclic
guanosin monophosphate-adenosine monophosphate synthase
(cGAS) (42), the upstream sensor for cytosolic DNA, provided
mechanisms for the recognition of self and microbial DNA,
e.g. from herpesviruses (43, 44). Tegtmeyer et al. recently
demonstrated the importance of cGAS-STING-signaling in
MCMV infection (45). STING-mediated IFN I was induced as
early as 4 h post infection (hpi) (45). Kupffer cells, the liver
resident MACs, were a main source of STING-dependent IFN
I and restrained viral dissemination to the lymphnodes (45).
These results support data generated in vitro in immortalized
bone marrow-derived MACs, which responded to MCMV
infection with IFN-β in a cGAS-STING-dependent fashion (46).
Accordingly, HCMV induces IFN I in human monocyte-derived
MACs via cGAS and STING (47) (Figure 1).

The DNA-dependent activator of IFN-regulatory factors
(DAI) has been identified as another cytosolic sensor of nucleic
acids (48). DAI interacts with TANK binding kinase 1 (TBK1)
and IRF3, suggesting IRF3-mediated transcription of IFN I
(48). Moreover, DAI can activate NFκB via RHIM/RIP1 and 3
recruitment (49, 50). However, the importance of DAI-mediated
activation of NFκB and IRF3 in the IFN I response to cytosolic
DNA seems marginal (51). Moreover, DAI has been recently
challenged as a specificDNA sensor, since it was shown to interact
with genomic RNA of influenza A virus (52) and with newly
synthesized MCMV RNA (53), ultimately leading to necroptosis
of fibroblasts (52, 53). This is in line with previous studies,
where infection with MCMV, lacking the viral inhibitor of RIP
activation (vIRA/m45) (54–56), induced DAI-RIPK3-dependent

necroptosis in MACs (57). These findings support a role of DAI-
dependent cell death induction in infected cells, rather than in
direct innate immune activation.

The interaction of CMV with intracellular sensors appears to
induce cellular activation beyond IFN I. A prominent example is
the engagement of the absent in melanoma 2 (AIM2) by MCMV
DNA in MACs, which leads to the maturation of IL-1β and IL-18
via caspase 1 cleavage (22) (Figure 1). Inflammasome activation
and IL-18 secretion is essential for NK cell activation, as the
formation of IFN-γ by these cells is reduced in ASC−/− and
AIM2−/− mice (22).

Overall, MACs recognize CMV particles and form IFN I to
restrict viral spread within hours after infections (45, 58). In vitro
data generated in MACs further suggest that they induce NK-cell
recruitment and IFN-γ production via inflammasome activation
during the early response (Figure 1). On the other hand, MCMV
and HCMV have evolved numerous strategies to evade the IFN
I response (59–62). As an example, the MCMV protein M35
antagonizes IFN I induction downstream of STING and TLRs
and thus ensures MCMV replication in MACs (46) (Table 1).

CYTOMEGALOVIRUS AFFECTS
DYNAMICS OF MONOCYTE
RECRUITMENT TO INFECTED TISSUES

As outlined above, MACs can be a major source of IFN I in
CMV infections. IFN I induce CCL2 and, to a lesser extent,
CCL7 and 12 in the liver and the bone-marrow in MCMV
infections (73, 74). A gradient of CCL2, which binds to its
receptor CCR2, facilitates the egress of inflammatory monocytes
from the bone marrow into the blood stream and the entry
into infected tissues (75–79). Notably, all CMV species encode
for viral chemokines located directly downstream to their major
immediate early locus, corresponding to the UL128-UL131A
region in HCMV. In MCMV, the viral chemokine is encoded
by the m131 and m129 ORFs, which are fused by splicing. The
resulting transcript encodes for a single protein called MCK-
2 (80), which cooperates with CCL2 to attract monocytes (63)
(Table 1). In HCMV, the chemokine homolog is encoded by the
UL128 gene. The chemokine function of this gene product has
not been well-studied yet. This may change in the near future by
exploiting primate CMVmodels (81).
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At the site of infection, Ly6Chi inflammatory monocytes can
differentiate into monocyte-derived dendritic cells or MACs,
which express the inducible nitric oxide synthase iNOS (82,
83). Nitric oxide formed by inflammatory monocytes inhibits
CD8+ T-cells and thus modulates adaptive immunity in MCMV
infection (84). Additionally, recruitment of inflammatory
monocytes increases the number of NK-cells via CCL3 in the liver
(85). NK-cells contain the T-cell response by killing of infected
antigen presenting cells (86). This process contributes to MCMV
persistence (86).

In a foot pad infection model with MCMV, a second
subset of monocytes, Ly6Clo CX3CR1hi patrolling monocytes,
are rapidly recruited (64). Intravital microscopy revealed that
patrolling monocytes crawl along the inner lining of blood
vessels (87) to remove particles inside the vessel lumen
(88). Accordingly, patrolling monocytes may acquire MCMV
from Tie2+ endothelial cells (89) and outmatch inflammatory
monocytes as primary targets of MCMV. They harbor viral DNA
and serve as vehicles to disseminate MCMV to the spleen and
salivary gland (64). However, the roles of the chemokine receptor
CX3CR1, which is highly expressed on patrolling monocytes, and
MCK-2, which supports the recruitment of patrollingmonocytes,
are controversial in the context of viral spread (64, 90). In
contrast to an earlier study (64), Farrell et al. did not find
significant differences in MCMV salivary gland titers between
CX3CR1-deficient and control mice after foot pad infection
(90). Furthermore, MCK-2-deficient MCMV spreads in similar
magnitude as wt-MCMV to the salivary gland 5 days after lung
infection. A significant role of MCK-2 in MCMV dissemination
was found only late, i.e. 10 days post infection (90). These
findings highlight the value of kinetic experiments especially in
elaborate in vivo experiments.

Collectively, MCMV infection leads to the recruitment of
inflammatory and patrolling monocytes. While this appears to
assist viral spread during initial infection, the monocyte influx
changes the tissue-specific cell composition and might thus
ultimately affect adaptive immunity and tissue integrity.

MONOCYTE CONTRIBUTION TO TISSUE
MACROPHAGES IN STEADY STATE AND
INFECTIONS

It has been appreciated for a long time that circulating monocytes
can be the direct progenitors of tissue MACs (91). However, in
the last decade, substantial heterogeneity of MACs in different
organs with respect to origin, renewal and immunophenotype
has been uncovered (92–94). Resident MACs are seeded already
in the embryo, either directly from the yolk-sac or via fetal liver-
derived monocytes (17, 95). Postnatally, with increasing age and
adaptation to the outer world, monocytes replenish MACs of the
heart (96), the skin (97) and the intestine (98) even in steady state.
This situation changes during inflammation or infection, when
monocytes are recruited in great numbers also to other tissues
(17, 99).

The depletion of MACs, e.g. via lytic infection of CMV,
opens niches in the resident tissue MAC pool, which may be
filled by invading monocytes (100). In mice, Ly6Chi monocytes

give rise to MACs in the skin (97). Patrolling monocytes, on
the other hand, fail to populate the intestine after depletion
of CD11c+ MACs (101). Accordingly, inflammatory and not
patrolling monocytes are considered to be the source of tissue
MACs under described conditions. However, it seems highly
context and tissue dependent, whether monocyte-derived MACs
fully adapt and turn into long lived resident MACs or act as
“transitory” cells (102). Monocytes cease to engraft into some
tissues once inflammation has resolved (103–105). While they
poorly perform tissue specific functions to prevent pulmonary
alveolar proteinosis in the lung (106), they successfully replace
and functionally restore resident cells in other organs, e.g.
Kupffer cells in the liver (107). Therefore, origin and time
of tissue invasion can impact on MAC function. Interestingly,
monocyte-derived MACs may also show context and tissue-
specific functional properties during inflammation (108, 109).
As examples, monocytes ensure tissue regeneration after skeletal
muscle injury (109), yet they show high inflammatory activity
during DSS-induced colitis (108). This suggests that fine tuning
of MAC function is largely influenced by local cues of the target
tissue (110).

In summary, CMV infections and subsequent monocyte
recruitment most likely have tissue specific consequences for
the resident MAC population and therefore function, which can
be either beneficial or deleterious. Thus, all organs, which are
targeted in CMV infection deserve individual investigation.

MACROPHAGES—A SPECIAL TARGET
FOR CMV?

MACs are defined by morphology, phenotype and function,
i.e. phagocytosis and cytokine secretion (111). Tissue MACs
are terminally differentiated, however they retain plasticity to
react on changing environmental cues, like those induced in
infections (112). Next to their prominent role as a first line of
defense, MACs in barrier tissues also bear central functions to
maintain an anti-inflammatory state in homeostasis. Attempts to
grasp the response capacity of MACs to different stimuli have
led to a conceptionally useful, but oversimplifying view of pro-
inflammatory (M1) and anti-inflammatory, or regulatory (M2)
MAC polarization states (113).

Interestingly, polarization of MACs toward either a pro-
inflammatory or regulatory state before exposure to HCMV
and MCMV alters their susceptibility to infection in vitro (114,
115). With respect to putative MCMV virulence factors, MCK-
2 deficiency limits CMV infectivity of MACs in vitro (65) and
in vivo (116). MCK-2 appears to be incorporated in infectious
particles via binding to virion glycoproteins gH and gL. Since
gH/gL is curtail for cell entry, MCK-2 binding to gH/gL has a
potential to modulate viral tropism (65) (Table 1). In contrast to
the relatively clear in vitro phenotype, MCK-2 deficiency does
not show a strong tropism phenotype in vivo (117). In HCMV,
the MCK-2 homolog UL128 participates in the formation of
the alternative gH/gL envelop glycoprotein complex, which also
appears to influence viral host cell tropism (118).

HCMV can induce inflammatory transcriptional programs in
MACs as soon as 4 hpi, with upregulation of genes of the ontology
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“Anti-viral response” (119). Within 24 hpi inflammatory
cytokines are secreted (114) involving NFκB, phosphoinositide
3-kinase (PI3K) (120) and IRF signal transduction. The interplay
of NFκB and PI3K seems necessary for early transcription of
inflammatory cytokines, e.g. TNFα, but also anti-inflammatory
cytokines, e.g. IL-10 (120). Accordingly, MCMV induces IL-
10 production in peritoneal MACs leading to downregulation
of MHCII (121). HCMV and rhesus CMV encode for a viral
IL-10 homolog, which reduces migration of dendritic cells to
the lymph node, as well as T-cell activation (122, 123). On
the other hand, IL-10 producing CD4+ T-cells are induced via
IFN I signaling in MACs during MCMV infection (124). IL-
10 dampens inflammatory cytokines, such as IFN-γ and IL-6,
attenuates tissue damage after MCMV infection (125, 126) and
promotes persistence of infection in the salivary gland (127).
Finally, TGFβ is secreted by infected human fibroblasts and in
rat splenocytes after infection with the respective CMV species
(128, 129). Thus, there is strong evidence that CMV induces
immunoregulatory cytokines in MACs in addition to viral IL-10,
e.g. in HCMV.

CMV inhibits apoptosis and necroptosis in MACs via its
proteins pM36 (66) and pM45 (57), respectively (Table 1). The
M36 gene is conserved among all CMVs and encodes for a
cytosolic protein, binds to and blocks the activation of caspase-
8 (66). Mutants lacking the M36 gene fail to inhibit apoptosis,
show poor viral growth in MAC cell cultures, and loose in vivo
fitness (67, 130, 131). vIRA/m45 and the cell death regulator
vICA/M36 (66, 132) are essential for CMV replication in MACs.
After intraperitoneal infection F4/80+ MACs seededMCMV into
the blood and brown adipose tissue, while CD11c+ myeloid
cells, which can be expected to comprise dendritic cells, MACs
and monocytes, were necessary for dissemination to the salivary
gland after lung infection (133, 134). These findings indicate a
migratory character of otherwise resident MACs. Interestingly,
MCMV mutants lacking M36 (1M36) cannot disseminate after
peripheral infection (67), and they grow normally in most of
the cell types in vitro except for MACs. The growth impairment
of MCMV mutants lacking M36 in mice with a defect adaptive
immunity was rescued by the depletion of MACs. Accordingly,
activated MACs were sufficient to impair 1M36 growth in
normally permissive MEFs in vitro. This could be reverted by
caspase inhibition. TNFα from activated MAC synergized with
IFN-γ in MEFs to inhibit 1M36 growth. Hence, the altered
1M36 growth in MAC and probably the altered virulence of this
mutant does not reflect a defect in tropism, but rather a defect in
the suppression of innate immune mediators secreted by infected
and/or bystander MACs (67). The vICA in HCMV is encoded by
the UL36 gene. The protein pUL36 also binds to pro-caspase-8,
inhibits apoptosis and allows for viral replication in THP-1 cells
(135). In vivo studies on the function of UL36 are limited due to
the strict host specificity of CMVs. However, the cloning of UL36
into 1M36 MCMV completely rescues the viral function both in
vitro and in vivo (68). This indicates functional conservation of
vICA in MCMV and HCMV.

Similar to M36, the complex of the products of MCMV
genes m139, m140, and m141 is dispensable for the viral growth
in fibroblasts, but it is essential for lytic MAC infection (66,

69) (Table 1). The products of these genes aid efficient capsid
formation, which is apparent only in MACs (70). The underlying
mechanism is not clear. It was proposed that the complex of
pm139/pm140/pm141 influences cell type specific regulation
of transport processes, which are important for assembly of
infectious particles (69).

Together, cytokines formed by CMV-infected MACs, such
as IFN I, TNFα and IFN-γ, help to contain viral infection
(45, 58, 136), while viral and host IL-10 ensure replication
and persistence of CMV. Simultaneously, IL-10 maintains a
tolerogenic environment, which prevents tissue damage and
may benefit the host during CMV infection. Regulatory or
“unprimed” MACs can be considered to be more susceptible
to CMV infections. This and the notion that neonatal
innate immune cells produce lower amounts of IFN I (137),
may explain, why newborn infants shed HCMV in higher
concentrations than adults in primary HCMV infection (138).
Furthermore, CMVs encode viral gene products (Table 1) to
specifically target MACs and modulate their functions. This is
decisive for viral dissemination and confers a central role to
MACs in CMV infections.

CMV INFECTION OF THE RESPIRATORY
TRACT, THE INTESTINE AND THE CNS

In the lung, a potential CMV entry site, two major MAC
types can be discriminated: Alveolar MACs (aMACs), which
reside in the alveolar space to safeguard the lung from inhaled
particles or pathogens (139), and interstitial MACs (iMACs)
(Table 2). Fetal liver-monocytes colonize the lung to differentiate
and mature into aMACs in the first week of life (140). Under
steady state conditions, the aMAC population does not receive
a monocyte influx (140, 157). IMACs are a heterogeneous
population of at least two sub-populations (145–147). One
subset bears significant self-renewal properties, whereas the
other is constantly replenished by patrolling monocytes (146),
which is unique for tissue resident MACs. Under steady state
conditions, iMACs constantly produce IL-10, which alters DC
function and maintains regulatory T-cells (104, 108, 146, 148–
150, 158–160). At the same time, aMAC secrete TGFβ to induce
differentiation of naïve T-cells into FoxP3+ regulatory T-cells
(141, 161, 162). Thus, both aMACs and iMACs contribute to
an anti-inflammatory tolerogenic environment in homeostasis
(141, 142, 148, 149, 161, 162). AMACs are primarily targeted
after intranasal infection with MCMV and their depletion leads
to higher viral burden (163). After infection Ly6Chi monocytes
infiltrate the lung in high numbers and are infected too (163).
However, data to further define the consequences of monocyte
recruitment, i.e. the fate of infected and uninfected monocytes,
in intranasal MCMV infections are missing. Interestingly,
inflammatory monocytes are able to enter the tissue and traffic to
the draining lymph nodes (164), a sequence also described after
intranasal MCMV infection (133).

In MCMV latency, the infection may be reactivated in
immunosuppressive conditions also in the lung (165). Thus,
monocytes (64, 166) could carry CMV to the lung, where
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TABLE 2 | MAC heterogeneity in CMV target tissues (steady state).

MAC Alveolar MACs Interstitial MACs Lamina propria

MACs

Microglia CNS-associated MACs

Localization Lung: Inside alveoli Lung interstitium:

1. Alveolar interstitium/

nerves

2. Bronchial

interstitium/

blood vessels

Intestine: Lamina

propria

Brain parenchyma CNS-interfaces:

1. Meninges,

2. Perivascular space,

3. Choroid plexus

Immunophenotypic

markers

F4/80+ CD64+

CX3CR1− MerTK+

CD11blo CD11c+

SiglecF+

1. F4/80+ CD64+

CX3CR1++

CD206− Lyve-1lo

CD11c+ MCHIIhi

2. F4/80+ CD64+

CX3CR1+ CD206+

Lyve-1hi CD11clo

MHCIIlo

F4/80+ CD64+

CX3CR1+ MHCII+
F4/80+ CD64+

CX3CR1+ MerTK+

CD206− CD45lo Iba1+

F4/80+ CD64+ CX3CR1+

MerTK+ CD206+ Lyve-1+

(1., 2.) CD45lo/hi CD36+ (2.)

Iba1+

Ontogeny Embryonic (fetal liver) Definitive

hematopoiesis

Definitive

hematopoiesis and

embryonic (yolk sac)

Embryonic (yolk sac) Embryonic (yolk sac, fetal

liver) and definitive

hematopoiesis

Monocyte

replenishment

No Yes; inflammatory and

patrolling monocytes

Yes; microbiota

dependent

No Partial turnover (choroid

plexus)

Function Phagocytosis of

surfactant, apoptotic

cells and inhaled

particles; TGFβ

production;

maintenance of

tolerance against

allergens

IL-10 formation;

prevention of type 2

response to inhaled

allergens; antigen

presentation, regulation

of T-cell response

Phagocytosis;

maintenance of

regulatory T cells;

epithelial cell renewal;

Phagocytosis; supply

of neurotrophic factors;

synaptic pruning;

guidance of developing

vasculature

Filtering of cerebrospinal

fluid; immune surveillance;

regulation of blood-brain

barrier permeability

Literature (105, 139–144) (145–149) (98, 104, 108, 150, 151) (152, 153) (154–156)

they can reactivate the virus upon differentiation into iMACs.
Accordingly, CMV may exploit the physiological recruitment
of patrolling monocytes (167–169), which serve as vehicles in
MCMV infections (64).

Intestinal LpMACs represent the largest MAC subset in the
mouse (170) (Table 2). They form a dense network close to
the basal site of epithelial cells. Moreover, LpMACs directly
reach into the intestinal lumen with their protrusions (171). The
majority of LpMACs are constantly replenished by circulating
inflammatory monocytes (Ly6Chi) after week 3 of life, i.e. starting
with weaning (98). Accordingly, CCR2-deficient mice, which
are impaired in monocyte egress from the bone-marrow, are
deficient in LpMACs (98, 108). This process is dependent on the
microbiota (98).

Once monocytes enter the lamina propria they differentiate
and mature into LpMACs, which are characterized by a site
specific response program to TLR-stimuli (172). Moreover,
maturation of intestinal tolerogenic LpMACs and subsequent
tolerance of the gut, similar to the lung, depends on IL-10
and TGFβ signaling (104, 108, 150, 158, 173). Inflammation
interferes with this maturation process and leads to the formation
of inflammatory effector cells (174), which control neutrophil
activation and limit commensal-mediated tissue damage (175).
In neonatal mice, an enteral challenge with MCMV-containing
milk leads to viral dissemination (176). Yet, adult mice seem
largely resistant to this infection mode (11). In HCMV associated

intestinal inflammation, CD14+ monocytes, the putative human
analog of mouse Ly6Chi monocytes (177), upregulate the TGFβ
antagonist Smad7, which leads to the acquisition of inflammatory
properties of intestinal MACs (178). It is tempting to speculate
that early postnatal infections with CMV promote the monocyte
influx into the intestine and thus protect against the invasion of
commensals and opportunistic pathogens (179).

CMV-infections in fetuses cause severe symptoms and
can lead to permanent damage of the CNS with immediate
consequences and late sequelae, such as hearing loss. Microglia,
the resident MACs of the brain parenchyma, are yolk
sac-derived and maintain their population size exclusively
via self-renewal (180) (Table 2). Monocyte-derived MACs
only populate the brain after blood-brain-barrier disruption
(181). In contrast to microglia, CNS-associated MACs include
resident tissue MACs of barriers and interfaces of the CNS
parenchyma and the periphery, such as perivascular space,
meninges and the choroid plexus (154) (Table 2). They are
also predominantly embryonically seeded and mainly self-renew
(155, 182). Congenital transmission of CMV is best modeled
by early postnatal intraperitoneal infection of mice (PND0-2),
because a cell-free or cell-associated viremia is preceding focal
encephalitis (183, 184) similar to the situation in humans (185).
Thus, regions around blood vessels are infected first, including
the choroid plexus of the periventricular region (186) and the
meninges (187). In these regions MACs identified via F4/80+

Frontiers in Immunology | www.frontiersin.org 7 May 2020 | Volume 11 | Article 793

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Baasch et al. Cytomegaloviruses, Monocytes, Macrophages

(186) and Iba1+ (ionized calcium-binding adaptor molecule 1)
(187) are infected or activated, respectively. In human brain
aggregate culture systems, microglia or monocyte-derived MACs
also appear to be initially infected (188). From the periventricular
region, the meningoencephalitis caused by MCMV spreads to
the hippocampus and cortex (186). In mice, MCMV-encephalitis
leads to monocyte recruitment, diapedesis and subsequent
differentiation into monocyte-derived MACs (189), which were
also found to be infected. Thereby, monocyte-derived MACs
might represent a potential way of viral dissemination from CNS
interfaces into the brain parenchyma (186, 190). Accordingly,
infection of MACs in the CNS may lead to heavy reorganization
of otherwise tightly regulated immune cell populations, which
may contribute to different pathologies (191–193).

Since resident MACs ensure the structural and functional
integrity of their respective tissue (194), an exchange with
monocyte-derived MACs after postnatal CMV infection bears
opportunities, but also risks. On the one hand, tissue resident
MACs are terminally differentiated and less plastic compared
to monocytes (106). Postnatal infection could induce an early
turnover of MACs in tissues like the intestine (98) and more
distal, the skin (97). Thereby monocyte-derived MAC may
foster maturation of the immune system and change the Th2-
biased immune state (138) to a more inflammatory state, which
may promote resistance to future infections. On the other
hand, in organs, where MACs are largely maintained through
self-renewal, invasion of monocytes could lead to exaggerated
inflammation and subsequently tissue damage.

DO CMV INFECTIONS PROTECT AGAINST
CONSECUTIVE CHALLENGES OR
ALLERGY?—IMMUNOMODULATION OF
THE INNATE IMMUNE SYSTEM

Individual immune memory is conventionally attributed to the
adaptive immune system. However, it has been known for
decades that innate immune cells can be primed by infection for
long-lasting alterations in the response to subsequent challenges.
These changes in activation programs were variably coined
immune priming, immune tolerance, and most recently trained
immunity (195–197). As an example for the latter, Rag1−/−

mice without T- and B-cells, but not CCR2−/− mice, which
are deficient in circulating monocytes, survived a lethal dose
of Candida albicans, when they had been subjected to a low
dose fungal infection one week before (198). Human monocyte
and MAC training have been found to involve altered cytokine
formation and epigenetic changes (198, 199).

In case of herpesvirus infection models, latent murid
herpesvirus 4 (MuHV4) infection leads to the replacement
of aMACs with regulatory monocyte-derived MACs,
which generate tolerance to house dust mite extracts (200).
Furthermore, peritoneal MACs of latently (>28 days) MCMV or
mouse gamma-herpesvirus 68 infected mice showed an activated
phenotype with increasedMHC II expression and a higher killing
capacity when re-infected with Listeria monocytogenes ex vivo.
Latently infected mice were protected against infections with a

lethal dose of L. monocytogenes. This mode of host resistance was
dependent on IFN-γ, but differed from classical IFN-γ-induced
protection with respect to both, duration and quality (201).

The fetal and neonatal immune systems have been suggested
to be polarized toward protection against extracellular pathogens,
which may render them especially vulnerable to viral infections,
e.g. by HCMV (138). In contrast, postnatal HCMV infections
often pass without overt symptoms and lead to a latent infection
with sporadic viral reactivation. It constitutes an attractive model
that reactivation occurs, when cues (e.g. interferons) from initial
postnatal CMV infection wear off allowing for viral replication
(202, 203). In other words, immune priming and recruitment of
regulatory myeloid cells may quite rapidly fade. Subsequently,
CMV reactivation and containment may induce a further wave of
protection/tolerance by innate immune cells without provoking
overt disease in immunocompetent individuals. Therefore,
infection with CMV may keep the immune system in an alert
state, which allows for a rapid response against potentially
harmful agents. At the same time, recruitment of regulatory
monocytes may maintain tissue integrity and tolerance at
mucocutaneous surfaces.

MYELOPOIESIS, LATENCY, AND
REACTIVATION IN CMV INFECTIONS

The development along the monocyte-macrophage-axis may be
involved in lifelong persistence of CMV (Figure 2). Human
CD34+ hematopoietic stem and progenitor cells (HSPC) and
CD14+ monocytes can be latently infected without ongoing
replication and virus release (166, 205–209). The proportion
of mononuclear cells carrying HCMV genome in latently
infected individuals is rather low (1:104-105) (210). Yet, CD14+

CD74lo MHCIIlo monocytes contain more virus genomes as
compared to CD14+ CD74+ and MHCII+ cells (211) (Figure 2).
Furthermore, new techniques have allowed for the enrichment
and characterization of latency-associated transcripts (212).
Expression of US28 and UL138 in HCMV is important to
establish latency in HSPC (213–215). Notably, in vitro infected
HSPC and peripheral blood mononuclear cells (PBMC) from
clinical samples showed similar HCMV transcriptome profiles
(212), pointing to a potent antiviral program already in
immature cells.

The HCMV protein pUL7 binds to the Fms-like tyrosine
kinase 3 receptor (Flt3R) and further steers HSPC toward
myeloid monocyte commitment (216). Moreover, pUL111A, a
viral IL-10 analog, impairs HSPC differentiation into dendritic
cells (217) (Figure 2). This is in line with recent single cell
sequencing data, where HCMV-infected HSPC predominantly
differentiated into monocytes (211). Thus, during the course of
infection, viral IL-10 ensures a supply of monocytes, which may
aid in HCMV dissemination.

In the absence of acute inflammation, inflammatory
monocytes recirculate to the bone marrow (101), where they
differentiate into patrolling monocytes (218, 219). Interestingly,
inflammatory monocytes are short lived (half-life: 20h in mice;
∼1d in humans), yet they control the lifespan of patrolling
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FIGURE 2 | HCMV-derived transcripts (US28 and UL138) are needed to

establish latency in CD34+ HSPC and CD14+ monocytes. HCMV gene

products (pUL7, pUL111A) promote preferential differentiation of HSPC into

monocytes. CD14+ inflammatory monocytes can be subdivided into CD74hi

and CD74lo cells, which differ in latent HCMV content and reactivation.

Inflammatory monocytes can differentiate into patrolling monocytes. Patrolling

monocytes may transfer CMV to uninfected endothelial cells or acquire

infection from previously infected endothelial cells [as shown for human

CD14+ monocytes in vitro (204)]. Upon tissue entry and differentiation into

monocyte-derived MACs reactivation and lytic replication occurs, once MIEP

is activated. IFN-γ and NFκB are central in this process. In contrast, IFN I and

IFN-γ protect against active/lytic replication of MCMV in differentiated MACs,

which may explain viral latent states observed in MACs. Bold letters, CMV

transcripts/genes; italic, mouse data; non-italic, human data; consistent arrow,

differentiation; dashed arrow, CMV transmission.

monocytes (half-life: ∼2.2d in mice; ∼7.5d in humans) via M-
CSF consumption in mice (219, 220). Thus, it seems conceivable
that inflammatory monocytes can be infected, harbor CMV
and continue to differentiate into patrolling monocytes. This
may lead to complex changes in the composition of circulating
monocytes. Moreover, infected monocytes could pass CMV on
to endothelial cells (204), another cell type discussed for life-
long latency in mice (221) and persistent infection in humans

(222) (Figure 2). In a mouse model of latency, IFN-β prevents
immediate early (IE) gene expression, which confers protection
of lytic MCMV replication in endothelial cells. Reactivation of
lytic infection occurred, once the effect of IFN-β wore off (203).

Upon activation and differentiation of monocytes into MACs,
viral replication can restart (223, 224). Ex vivo infection and
culturing of primary human CD34+ cells until differentiation
into MACs, resembling the sequence of myelopoiesis and
MAC determination, was associated with HCMV reactivation
(225). Transcriptional activation of the major immediate
early promoter (MIEP) and subsequent expression of IE1,
IE2 (HCMV) or ie1, ie3 (MCMV) genes is a key switch
to lytic infection. The enhancer of the MIE locus contains
binding sites for NFκB (226). Hence, inflammation and
cytokine production, e.g. TNF, may lead to reactivation,
which is controlled in immunocompetent individuals. However,
in case of an impaired inflammation control, reactivation
causes complications as seen in the gut, lung or skin (227–
230). Interestingly, in HCMV seropositive individuals IFN-γ
producing T-cells appear to be more frequent as in seronegative
individuals (231). IFN-γ represents a crucial factor for viral
reactivation during the differentiation of human monocyte-
derived MACs (224) (Figure 2). However, the presence of IFN-
γ also leads to MAC activation and confers protection against
lytic MCMV infection in already differentiated MACs (202)
(Figure 2).

Early studies suggested that MACs are also a cellular reservoir
for viral latency. After administering MCMV into the abdominal
cavity, peritoneal MACs were found to bear MCMV DNA 3–9
months after infection. Furthermore, co-culturing with mouse
embryonic fibroblasts resulted in reactivation of lytic viral
replication, arguing for latently infected MACs (232). Another
study used PCR in situ hybridization (PISH) to label viral
DNA in tissue sections 6 months after peritoneal infection
with MCMV. LAMP-2+ (CD107b+/Mac-3+) bona fide lung
MACs were found to carry MCMV genome. However, the
association of MCMV PISH- and LAMP-2-positivity were based
on colocalisation in interalveolar tissue and not determined on
the single cell level, which hampers the interpretation of these
data (233).

In summary, CMV latency in myeloid cells may provide
solutions for several puzzles in CMV disease progression and
control, yet further data are required to robustly establish
this scenario. In particular the discrimination between human
inflammatory/classical and patrolling/non-classical monocytes
could serve well to translate murine in vivo models into the
human system.

CONCLUSIONS

In CMV infection, barrier tissue MACs are both targets and
effector cells. The early formation of antiviral IFNs, which control
several thousand of genes (234), is essential for regulating the
immune response. The expression of numerous IFN inhibitory
proteins by both HCMV and MCMV (235) is in full support of
a model, where the armament of host and virus ultimately serves
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both sides. Subsequent signaling events, including the formation
of IL-10, impact on restricting CMV-induced immunopathology
and antiviral immunity, thus allowing for reestablishment of
tissue immune homeostasis, as well as viral latency for years.
When CMV infection occurs very early in life, as it has in
most of human history, antiviral immunity and individual
development of myeloid cells are intertwined. This is particular
true for organs with high turnover of MACs, since monocytes
as MAC progenitors integrate cues from CMV into the site
specific differentiation program. Accordingly, in the case of an
immunocompetent host, CMV and tissue MACs are primarily
not foes. On the contrary, given the ancient CMV adaptation
to mammalian hosts, it is a relationship with reciprocal benefits,
e.g. the tuning of basal activation for a better response against
more harmful microbial invaders, the renewal of tissue resident
cells and modulation of autoimmunity (as it has been shown for
gamma herpesviruses). At the same time, CMV has developed
strategies to manipulate host immunity for lifelong persistence
and inter-individual spread. Therefore, adverse consequences of

CMV in the elderly, e.g. T-cell inflation (236) may be due to a
CMV-human co-evolution tailored for a shorter host lifespan.
Currently, direct evidence for such “mutual friendship” is just
emerging. Yet, a scenario, where the benefits and harms of CMV
infection are tissue and context specific, is highly attractive.
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