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Abstract

In order to determine the optimal strategy to run a race on a curved track according to the

lane number, we introduce a model based on differential equations for the velocity, the pro-

pulsive force and the anaerobic energy which takes into account the centrifugal force. This

allows us to analyze numerically the different strategies according to the types of track since

different designs of tracks lead to straights of different lengths. In particular, we find that the

tracks with shorter straights lead to better performances, while the double bend track with

the longest straight leads to the worst performances and the biggest difference between

lanes. Then for a race with two runners, we introduce a psychological interaction: there is an

attraction to follow someone just ahead, but after being overtaken, there is a delay before

any benefit from this interaction occurs. We provide numerical simulations in different

cases. Overall, the results agree with the IAAF rules for lane draws in competition, where

the highest ranked athletes get the center lanes, the next ones the outside lanes, while the

lowest ranked athletes get the inside lanes.

Introduction

In athletics, inside lanes are considered a disadvantage due to curvature, while in outside lanes,

there is no one to chase. The aim of this paper is to understand from a physical and mathemat-

ical point of view the effect of the curved part of a track and of the lane number on the running

performance both for a single runner and for a two-runner race.

To our knowledge, no optimal control problem including these effects has been studied.

There is a huge literature on the way of running on a curved track, see for instance [1–8]. Nev-

ertheless, it is never coupled with the psychological effect to have a neighbor on the next lane,

which is mentioned as important. Furthermore, though the IAAF regulations [9] do not

impose a fixed shape of track, but allow the straights to vary between 80m and 100m, we are

not aware of any study discussing the effect of the the lane and the track coupled with the psy-

chological effect.

In this paper, we will build on a model introduced by Keller [10] and extended by [11, 12],

to investigate how the shape of the track and the centrifugal force change the optimal strategy

in a race: this leads to longer race times for higher curvatures, and therefore favors the outer

lanes. Estimating the performance of champions based on the modeling of Keller [10] has
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been developed by various authors [6, 13–16], but never taking into account so many parame-

ters as in this paper. We will also introduce a model taking into account the psychological

effect between two runners. This is made up of two effects: on the one hand, the attraction by a

runner close ahead, and on the other hand, the delay before any benefit from the interaction

occurs again after being overtaken. This delay model is inspired by a paper on walking [17].

Let us point out that the mathematical problem encompassing delay in the equations is quite

involved. We model the attraction by a runner close ahead as a decreased friction, since

the focus on chasing someone ahead improves the runner’s economy. Due to the staggered

start positions in the curved part of the track, this “rabbit effect” is less favorable on the outer

lanes.

After introducing the model, we perform simulations using the optimal control

toolbox BOCOP [18]. Since the IAAF regulations do not impose a single shape of track, we ana-

lyze the effect of the shape of the track on the optimal velocity profile, as well as the influence

of the various parameters of the runner for a single runner. Then we perform simulations for

two runners and our results show that the combination of the centrifugal force and the two

runners interaction brings a numerical justification to the fact that the central lanes are the

most favorable to win a race.

Race model

Model for a single runner race

Single runner on a straight track. When a runner is running on a straight, as used by

Keller [10], according to Newton’s second law, the acceleration is equal to the sum of forces.

We can list two forces, the propulsive force f(t) in the direction of motion, and the friction

force, that we assume to be linear in velocity. This leads to the first equation of motion for the

velocity v(t) written by unit of mass:

_vðtÞ ¼ f ðtÞ �
vðtÞ
t

ð1Þ

where τ is the friction coefficient. This coefficient models the friction due to various effects

such as joints friction, the runner’s economy and the elasticity of the track. Other friction

effects can be encompassed in the equation such as wind or slopes, that is going upwards or

downwards, or banking. Because the runner has a limited capacity, the propulsive force is

bounded from above by a constant fM, that is

0 � f ðtÞ � fM: ð2Þ

Typical values for fM range from 13 for a sprint at the world level [19] to 5 for a marathon

[20].

The power developed by the propulsive force is f(t) � v(t), which is to be taken into account

in the energy balance. This energy balance leads to the definition of the oxygen uptake σ intro-

duced in [11], which depends on the anaerobic energy e(t). Note that at the beginning of the

race, e(0) = e0, the available energy at initial time, and σ depends on the accumulated oxygen

deficit at time t, that is e0 − e(t). The function σ depends on the length of the race [21]: for

short races (up to 400m), σ is a linear increasing function of e0 − e. When the race gets longer,

σ reaches its maximal value σmax in the central part of the race, but is increasing at the begin-

ning of the race, and decreasing at the end. Note that σ is the energetic equivalent of _VO2, the

volume of oxygen used by a unit of time and σmax is related to _VO2max. For the shorter races
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considered in this paper, we assume a linear function σ and note σf the final value, thus

sðeÞ ¼ sf
e0 � e

e0

: ð3Þ

This leads to the energy model

_eðtÞ ¼ sðeðtÞÞ � f ðtÞvðtÞ; eðtÞ � 0; eð0Þ ¼ e0: ð4Þ

A champion-level runner has a _VO2max about 75ml/mn/kg. Since one liter of oxygen pro-

duces an energy about 21.1kJ via aerobic cellular mechanisms, this provides an estimate of the

available energy per kg per second σmax = 75/60�21.1� 26m2 s−3. Furthermore, on a 200m

race, _VO2 and σ reach only about 75% of their maximal values [21, 22], so we set σf = 20. We

point out that this term is of lower order than _e: we will see below in our simulations that the

anaerobic part is roughly 87% of the total energy, which is perfectly consistent with [23].

For a fixed value of the final distance d, the optimal strategy to run the race is obtained by

solving the control problem (1), (2), (3) and (4) under the constraint:

minimize T; such that
Z T

0

vðtÞ dt ¼ d:

This problem has been studied in [11, 12, 24]. The parameters are matched to reproduce

champions’ races. For a race less than 400m, when the function σ(e) is decreasing, the velocity

is increasing and then decreasing. Indeed, the runner never has enough energy to maintain his

maximal force for the whole duration of the race. Therefore, the optimal strategy is to start at

maximal force, and then the force decreases, and so does the velocity.

Since in the optimal control problem, it is usually the distance which is prescribed, in this

paper, we choose to take the distance s instead of the time t as variable. We define y(s) to be the

time required to run the distance s so that, if x(t) is the distance run in time t, we have

_yðsÞ ¼
1

vðtÞ
since xðyðsÞÞ ¼ s: ð5Þ

We call f(s) the propulsive force needed at distance s and e(s) the energy. This allows us to

derive the equations for y(s), f(s), e(s), from (1)–(4), which are

€yðsÞ ¼ � f ðsÞ _y3ðsÞ þ
1

t
_y2ðsÞ; yð0Þ ¼ 0; and _yð0Þ ¼ 1=v0; ð6Þ

_eðsÞ ¼ sðeðsÞÞ _yðsÞ � f ðsÞ; eðsÞ � 0; and eð0Þ ¼ e0: ð7Þ

This formulation requires an initial velocity v0 which is not zero, but given the effect of the

starting blocks where our dynamical model is not correct, assuming an initial velocity of 3 or

4m/s is quite consistent with the effect of the beginning of the race, 10m from the start [25].

The constraint on the force is

0 � f ðsÞ � fM for 0 � s � d: ð8Þ

The optimal control problem as such would lead to variations of the force which are too

strong. In order to take into account the impossibility for the runner to vary his propulsive

force instantaneously, we instead take df/ds as a bounded control. We seek the optimal race

strategy to minimize T = y(d).

Centrifugal force on a curved track. For races of 200m or more, the track is not straight

but includes one or more bends. While on a bend, the runner has to move against the
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centrifugal force, which, by unit of mass, is fc = v2/R where v is the velocity of the runner and R
the curvature radius. In order to produce a mathematical model for the dynamics in the curved

part, we have to take into account the centrifugal force in Newton’s law of motion and project

this equation on the 3 directions of motion.

Even on straights, there is an equation to be written in the z direction: the reaction of the

ground, N, is equal to the weight. By the principle of action/reaction, the reaction of the

ground is equal to the runner’s propulsive force in the z direction. Note that the runner does

not have his feet on the ground all the time in the stride: he rather pushes (propulsive force)

only for some time in a stride [19]. Some remarks in [26] can be found related to this issue.

We point out that there is an interesting explanation of the effect of arms to counterbalance

the torque, and that since there are two legs, the reaction on each leg is not exactly the same

[1]. In this paper, we do not include these effects as we believe them to be of minor importance.

The specificity of our work is that although we consider a mean force and mean velocity in a

stride, our model allows us to compute an instantaneous force and speed along the race.

On a curve, the runner makes an angle α with the vertical axis to balance the centrifugal

force. The runner is subject to gravity g, to the reaction of the ground N along the angle α, and

to the centrifugal force fc = v2/R (see Fig 1). One has to consider the equations of motion in the

centrifugal direction and the z direction, which lead to

v2

R
¼ N sin a; g ¼ N cosa ð9Þ

which provides the angle according to the velocity and the value of N:

tana ¼
v2

Rg
; N2 ¼ g2 þ

v4

R2
: ð10Þ

By the principle of action/reaction, the propulsive force in the transverse direction is the

opposite of the reaction of the ground in the horizontal direction, hence is equal to N sin α.

Moreover, the propulsive force in the vertical direction is N cos α. The total propulsive force F
is therefore such that F2 = f2 + N2 where we recall that f is in the direction of movement. From

(10), we find

F2 ¼ f 2 þ N2 ¼ f 2 þ g2 þ
v4

R2
: ð11Þ

Since F has to be bounded and g is constant, this leads to the new constraint

f 2 þ
v4

R2
� f 2

M: ð12Þ

We point out that eventually the effect of the centrifugal force is taken into account in the

force constraint. It cannot have an energy effect directly since the centrifugal force does not

produce any work.

Study of the track shape. It is important to know the exact shape of the track since it

influences the runner’s optimal pacing strategy and performance. However, there is no fixed

regulation to build an athletic track. Actually, as indicated in the IAAF manual [9], the length

of the straight part can vary between 80 and 100m, while the curved part can be a half circle

(‘standard’ track) or two different circular sections (‘double bend’ tracks). We choose to study

a standard track with an 84.39m straight part, and then two double bend tracks with straight

parts of 79.996m and 98.52m respectively. The shapes and dimensions of theses tracks are
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detailed in Fig 2 and Table 1. Note that for races longer than 100m, runners start the race in

the curved part. The starting positions are therefore adjusted in order to have the same total

distance for all lanes (‘staggered start’).

Note that each runner is assumed to run at a distance of 30cm from the inner limit of the

lane. This is how the radius for the circular parts is set in order to obtain a 400m distance for

lane 1. Then the width of each lane is 1.22m. This leads to different radii of curvature Rk(s)
depending on the lane k and the distance s run on the lane since the start. On the straight part,

1/Rk(s) = 0. For more details on the value of Rk(s) according to the track, we refer to the

Appendix “Track Shape Details”.

We want to point out that at the junction between the circular and straight parts, the runner

will experience a discontinuity in the centrifugal force. This force is 0 on the straight part and

Fig 1. Illustration of the forces on the runner.

https://doi.org/10.1371/journal.pone.0221572.g001
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can reach a value of the order of 2.5N per kilo on the circular part (since v* 10m/s and

R* 40m), which is about one quarter of the weight.

We will see on the numerical simulations that this may lead to an acceleration of the runner

when reaching the straight part of the track. One could think that it would be better to build a

track where the curvature goes smoothly from 0 to the value of the matched circle so that the

runner experiences a continuous variation of his centrifugal force. This type of curve, known

as a clothoid, is used for instance for railways and roads. The simulations in Section “Numeri-

cal simulations for a single runner” indicate that the final time is actually larger on a clothoid,

because the smooth transition leads to a smaller radius for the circular part, therefore a larger

centrifugal force.

One of the main results of our simulations is that the tracks with shorter straights lead to

better performances (see Section “Effect of different track shapes”).

Final model for a single runner race. The optimal problem is to minimize T = y(d) with

y(s), f(s), e(s) solving (6) and (7), σ being given by (3), with the bounded control

df
ds

�
�
�
�

�
�
�
� � 0:015 ð13Þ

and the force constraint coming from (12)

f 2ðsÞ þ
1

_y4ðsÞR2
kðsÞ
� f 2

M ð14Þ

where the curvature radius Rk(s) is prescribed according to the lane k and the track shape, see

the Appendix “Track shape Details”. We use the convention Rk(s) = +1 on a straight.

Table 1. Track parameters.

Track Straight Circle

Standard 84.39m (36.50m, 180˚)

Track Straight Circle 1 Circle 2

Double Bend 1 79.996m (34.00m, 2 × 70˚) (51.543m, 40˚)

Double Bend 2 98.52m (24.00m, 2 × 60˚) (48.00m, 60˚)

https://doi.org/10.1371/journal.pone.0221572.t001

Fig 2. Shape for standard track (left) and and double bend 2 track (right).

https://doi.org/10.1371/journal.pone.0221572.g002
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Finally, introducing a state variable for the inverse of speed z(s) = 1/v(s), the optimal control

problem for a single runner is

ðOCPÞ
1

min yðdÞ;

_yðsÞ ¼ zðsÞ; s 2 ½0; d�; yð0Þ ¼ 0;

_zðsÞ ¼ z2ðsÞ=t � f ðsÞz3ðsÞ; s 2 ½0; d�; zð0Þ ¼ _yð0Þ ¼ 1=v0;

_eðsÞ ¼ sðeðsÞÞzðsÞ � f ðsÞ; s 2 ½0; d�; eð0Þ ¼ e0;

_f ðsÞ ¼ uðsÞ; s 2 ½0; d�;

juðsÞj � 0:015; s 2 ½0; d�;

eðsÞ � 0; s 2 ½0; d�;

f 2ðsÞ þ
1

z4ðsÞR2
kðsÞ
� f 2

M; s 2 ½0; d�:

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

Model for a two-runner race

When two runners are involved, we label them with i, i = 1, 2 and define yi(s), fi(s), ei(s) respec-

tively the time to reach the distance s, the propulsive force at distance s and the anaerobic

energy left at distance s. We also label by i the parameters of each runner: τi the friction coeffi-

cient, fM,i the maximal force, e0,i the initial energy, v0
i the initial velocity. Finally, we call Ti the

final time to reach the distance d that is Ti = yi(d).

Objective function. We want to solve the race problem where both runners try to obtain

their minimum time and win the race. The issue is to define a good mathematical problem.

Minimizing min(T1, T2) is not enough since it could lead to a situation where one of the run-

ner stops optimizing his race once he knows he will lose. Then, minimizing the sum of the

times T1 + T2 could lead to some cooperative interaction where the faster runner would wait

for the slower one to optimize the global time. This is why we choose to minimize a combina-

tion of these two objectives, namely minimize

minðT1;T2Þ þ kwðT1 þ T2Þ

with kw being a small parameter such that the second term does not modify the value of the

leading order min(T1, T2), but yet does not let max(T1, T2), which is the time of the slower run-

ner, be too big. In our simulations, values of kw ranging from 10−3 to 10−4 provide this kind of

behaviour.

We point out that some authors [27, 28] have tried to settle a stochastic description in the

framework of game theory but they are not able to handle as many parameters as this model.

Also in a short race, we do not believe that there is time to think and adapt one’s strategy on

the course of the race.

Psychological interaction. When two runners race against each other, we introduce an

interaction term which mollifies the friction term of each runner _y2
i =ti. This term is equal to 1

in case of no interaction, and is lower than 1 in case of a beneficial interaction. It models the

psychological benefit that comes from chasing someone just ahead. Note that this interaction

is not an aerodynamic effect (’drafting’) as in bicycle or car racing, because the velocity is too

small. Cognitive effects are known to reduce perceived exertion: shielding has a psychological

Optimizing running a race on a curved track

PLOS ONE | https://doi.org/10.1371/journal.pone.0221572 September 5, 2019 7 / 23

https://doi.org/10.1371/journal.pone.0221572


basis for runners and the focus on chasing produces better running economy [29–31]. This

psychological effect is indeed acknowledged by runners (sometimes called “rabbit effect”) and

can allegedly have an effect as high as 1 second per 400m lap [31].

The differential equations for y1 and y2 are therefore

€y1ðsÞ ¼ � f1ðsÞ _y3
1
ðsÞ þ

1

t1

_y2

1
ðsÞð1 � Fðy1ðsÞ; y2ðsÞÞÞ; ð15Þ

€y2ðsÞ ¼ � f2ðsÞ _y3
2
ðsÞ þ

1

t2

_y2

2
ðsÞð1 � Fðy2ðsÞ; y1ðsÞÞÞ ð16Þ

where F(y1, y2) is to be determined as a function of r(s) which is the distance between the two

runners. The detailed expression of r(s) is presented in the Appendix “Distance gap between

two runners”.

Basic interaction. We choose the function F of r to be equal to 0.04 when r is roughly

between 0 and −2.5m and 0 outside this interval, which corresponds to the distance for which

an effect can be felt. A lot of possible functions can match this goal. We choose for instance the

interaction function illustrated in Fig 3

FðrÞ ¼ gHðr þ a1; b1; �ÞHð� r þ a2; b2; �Þ

where γ = 0.04, H a smoothed Heaviside function defined by

Hðr; k; �Þ ¼ ð1þ e� 2kðrþ�ÞÞ
� 1 ð17Þ

and with the values for the offsets and slopes a1 = 2, b1 = 3, a2 = −0.25, b2 = 10, and � = 10−6.

Lateral attenuation. It seems reasonable to assume that the positive interaction only

occurs when the two runners are close enough to each other. Thus we introduce a limitation of

the interaction based on the lane gap between the runners. In practice, the interaction is multi-

plied by an attenuation function A(k1, k2)

FðrÞ ¼ gAðk1; k2ÞHðr þ a1; b1; �ÞHð� r þ a2; b2; �Þ ð18Þ

with A defined by

Aðk1; k2Þ ¼ 0 if jk1 � k2j � 4

1 �
jk1 � k2j

10
otherwise:

Inhibition and delay problem. A refinement of the interaction model is that the benefit

should not hold just after being overtaken, since there is a delay in reacting. In order to build a

mathematical model for this, we use the behavior of following in pedestrian traffic introduced

in [17]. The delay is meaningful in terms of human perception: perception of speed actually

comes from successive perceptions of distance over time, and this integration process intro-

duces a delay, while the perception of distances can be considered instantaneous.

We therefore introduce an inhibition formula that suppresses the interaction for a short

duration after being overtaken. Since our model is formulated with distance as the indepen-

dent variable, the delay is also expressed in terms of a distance frame η. The basic idea is to
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multiply the interaction term F by an characteristic function Iη defined by

IZðsÞ ¼ 0 if an overtaking has occured on ½s � Z; s�

1 otherwise:
ð19Þ

For the numerical simulations, Iη is smoothed using the Heaviside approximation H
defined by (17). The detection of an overtaking is performed by checking for sign changes of r
over [s − η, s].

Note that this check relies on past values of the state variables used to compute r, thus lead-

ing to a delay optimal control problem. Delay problems are a quite involved class of optimal

control problems, and we refer the interested readers to [32, 33] for recent theory develop-

ments. A classical way to solve delay problems is to reformulate them as non-delayed prob-

lems, see [34], but the manipulation is rather cumbersome. In our case, we take advantage of

the feature from the toolbox BOCOP to handle delays automatically in the fixed final time case

(which we have since we use distance instead of time as the independent variable).

Fig 3. Illustration of the interaction between two runners (for γ = 1).

https://doi.org/10.1371/journal.pone.0221572.g003
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Final model for a 2-runner race. We define Ti = yi(d) and F from (18). The optimal con-

trol problem becomes:

ðOCPÞ
2

min ðmin ðT1;T2Þ þ kwðT1 þ T2ÞÞ;

_yiðsÞ ¼ ziðsÞ; s 2 ½0; d�; yið0Þ ¼ 0; zð0Þ ¼ _yið0Þ ¼ 1=v0
i ; i ¼ 1; 2;

_eiðsÞ ¼ sðeiðsÞÞziðsÞ � fiðsÞ; s 2 ½0; d�; eið0Þ ¼ e0;i; i ¼ 1; 2;

_f iðsÞ ¼ uiðsÞ; s 2 ½0; d�; i ¼ 1; 2;

_z1ðsÞ ¼ � f1ðsÞz3
1
ðsÞ þ

1

t1

z2

1
ðsÞð1 � IZðsÞFðrðsÞÞÞ; s 2 ½0; d�;

_z2ðsÞ ¼ � f2ðsÞz3
2
ðsÞ þ

1

t2

z2

2
ðsÞð1 � IZðsÞFð� rðsÞÞÞ; s 2 ½0; d�;

eiðsÞ � 0; s 2 ½0; d�; i ¼ 1; 2;

juiðsÞj � 0:015; s 2 ½0; d�; i ¼ 1; 2;

f 2
i ðsÞ þ

1

z4
i ðsÞR2

ki
ðsÞ
� f 2

M;i; s 2 ½0; d�; i ¼ 1; 2:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

It is worth pointing out that this optimal control problem has several families of local solu-

tions, typically with a different number of overtakings. In the numerical simulations, we over-

come this difficulty by trying several initial points and picking the best solutions. Using a

global optimization method would of course solve this problem, however in our case the

dimension of the state variables is too high.

Numerical simulations for a single runner

In the numerical simulations, we chose to study the 200m race. For reference, in 2018, the

world record for 200m is 19.19s (Usain Bolt, Berlin World Championships, 2009). In all the

following, we will simulate races with fictitious runners whose parameters (see Table 2) are

chosen so that their race times are close to 20s. We have chosen the maximal force fM to range

between 6.5 and 13 which is the range in the literature [3, 6–8, 25]. Then τ is chosen so that the

peak velocity which is close to fM τ is roughly 11.1, which is the world’s level. The initial energy

e0 is such that the ratio of the anaerobic contribution to the total contribution is 87% for run-

ner A1, which is consistent with [22, 23], and the final time is around 20 seconds. The initial

velocity is taken to be 1/0.43 to take into account the departure in the starting blocks [25]. The

bound on the maximal variation of f is taken of order σf/τe0, which is close to what we expect

as a singular control [35].

Table 2. Athletes’ parameters. A1 is a good runner, A2 has a very strong propulsive force and A3 is a poor runner.

Runner τ e0 fM 1/v0 |df/ds|max

A1 1.18 1500 9.45 0.43 0.015

A2 0.85 2160 13 0.43 0.015

A3 1.7 1000 6.5 0.43 0.015

https://doi.org/10.1371/journal.pone.0221572.t002
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Single runner on a straight track

We start with a simple straight 200m race to illustrate the effect of parameters fM, τ, and e0. We

take as reference athlete A1 of Table 2. The corresponding speed and force profiles are shown

with black lines in Fig 4. The velocity increases to its peak value vm* fM τ and then decreases.

The runner does not have enough energy to run the whole duration of the race at maximal

force.

The propulsive force starts at its maximal value fM, then decreases at the constant rate

|df/ds|max. The time at which the force begins to decrease depends on the values of fM and

e0. Indeed, increasing e0 does not change the beginning of the race but allows to run longer at

f = fM. On the other hand, increasing fM increases the peak velocity but does not change much

the second part of the race. Finally, increasing τ has a more uniform effect and increases the

velocity for the whole duration of the race.

Single runner on a standard curved track

We simulate the same runner on the so-called standard track, i.e. 115.61m half circle of radius

36.80m followed by a 84.39m straight. Fig 4 shows the race profiles obtained for the inner and

outer lanes (respectively 1 and 8), and the straight race. The time splits for 50–100m, 100–

150m and 150–200m are indicated in the figure: we have chosen the parameters for A1 so that

they match the order of magnitude of time splits for athletes in World Championships. The

velocity profiles of the curved track are quite different from the straight track:

1. the runner starts slower because of the curvature: even though he puts his maximal propul-

sive force at the start, part of it is used to counterbalance the centrifugal force, resulting into

a lower effective force and a lower velocity

f 2
M � f 2

init þ
ðv0Þ

4

R2
k
:

Fig 4. Single runner A1 on a standard track, lanes 1 and 8, and straight track. Force in N/kg vs distance on the right graph. Speed vs distance on the left graph, with

the constant speeds given by Eq (21) in dashed lines. Time splits for 50–100m, 100–150m and 150–200m are indicated.

https://doi.org/10.1371/journal.pone.0221572.g004
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2. in the middle part of the race, the maximal propulsive force is reached and we can derive

from (1) and (12) the relation between f and v:

v ¼ f t and f 2
M ¼ f 2 þ

f 4t4

R2
k

ð20Þ

with Rk the curvature radius on lane k. We can compare this formula with our simulations:

on the straight vs = fM τ, while from (20), the velocity in the middle of the race on lane k is

v2
s ¼ v2

k þ
v4

kt
2

R2
k
; that is v2

k ¼
� R2

k þ Rk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

k þ 4v2
s t

2
p

2t2
ð21Þ

The numerical simulations indicate an extremely good consistency with this expression: in

this case Eq (21) yields vs = 11.15, v8 = 10.74, and v1 = 10.56, which are drawn as dashed

lines in Fig 4.

3. after the curved part, there is no more centrifugal force so that the runner can increase both

his propulsive force and velocity.

4. finally, at the end, the runner slows down again, because he does not have enough energy

left to sustain his maximal force.

If we compare lane 1 and lane 8, on lane 1 the runner starts slower since the centrifugal

force is stronger due to larger curvature. On the other hand, he puts a slightly larger force in

the second part of the race, having more energy left, yet he is slower overall. Final times are:

20.43 for the straight track, 20.46 for lane 8, and 20.48 for lane 1. Let us point out that our sim-

ulations are consistent with the experiments in [3], where runners are asked to run 60m on a

straight path and on a curved path. The authors observe the existence of two groups, one

“good” group who manages to reach the same velocity in the curved path as in the straight

path and the other “poor” group who is strongly affected by the curve. Our parameters values

of runner A1 corresponds to a runner of the “good” group.

Now we simulate several runners (see Table 2 for parameters) in order to assess the influ-

ence of the maximal force fM.

Runner with large maximal force fM. We want to point out that due to the way the curva-

ture is taken into account in the model, see (12), a runner with a greater maximal force fM will

be less sensitive to the curvature of the track. We illustrate this with the runner A2 defined in

Table 2 whose fM = 13; final times are: 20.31s for straight track, 20.32s for lane 8 and 1. In this

extreme case, the runner is basically unaffected by the curvature of the track, that is the curves

of velocity and force versus distance are almost the same for straights, line 1 and 8.

Runner with small maximal force fM. With a low maximal force fM = 6.5, the runner A3

of Table 2 can increase his force and velocity when he reaches the straight part of the track,

since he has not spent as much energy as the others at the beginning, yet he is slower overall.

This is illustrated in Fig 5. Final times are: 20.32s for straights, 20.54s for lane 8, and 20.72s for

lane 1. This runner A3 corresponds to a runner of the “poor” group of [3], with as much as 0.2s
gap between extreme lanes. It is also consistent with performances for runners in [6–8, 36].

Let us point out that for these three runners, we have computed the ratio of the anaerobic

energy versus the total energy and find: 87% for A1, 90% for A2 and 82% for A3, which is quite

consistent with [23].
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Effect of different track shapes

Now we study the effect of different track shapes defined in Fig 2: standard with 84.39m
straight (STD), double bend 1 with 80m straight (DB1), double bend 2 with 100m straight

(DB2), and two modified standard tracks with smoothed curvature, including clothoid junc-

tions of 10m (CL1) and 30m (CL2). For the clothoid tracks, we choose a straight of 84.39m as

the standard track. As explained in the Appendix, the length of the junctions provides the

radius of the circle and the angle, which are respectively 33.32m and 164˚ for (CL1) and

29.95m and 118˚ for (CL2).

For each track shape, we simulate the race on the inner and outer lanes (1 and 8). The

results are summarized in Table 3, with the races for runner A1 (on lane 5) shown in Fig 6. Ref-

erence athlete A1 has a difference of 0.17s between the best (DB1 track, lane 8) and worst

(DB2, lane 1) case. As mentioned previously, runner A2 with a very high force fM = 13 is almost

unaffected by the curvature, with times varying only between 20.32s and 20.36s. Yet, the DB2

track is still worse than the others. Conversely, athlete A3, with a lower force fM = 6.5, is more

affected, with 1.01s between the best and worst cases. The DB2 is his worst track and his best

performance is on the standard track.

Our results show a time difference between inner and outer lanes ranging from 0.02s for

the standard track to 0.15s for the worst double bend track. This is consistent with [6] who also

finds the double bend track to be the worst, using a simplified model based on constant mean

Fig 5. Single runner A3 on a standard track, lanes 1 and 8, and straight track. Force in N/kg vs distance on the right graph. Speed vs distance on the left graph, with

the constant speeds given by Eq (21) in dashed lines. Force and velocity increase when the centrifugal force disappears.

https://doi.org/10.1371/journal.pone.0221572.g005

Table 3. Times for different runners and track shapes.

runner shape: STD DB1 DB2 CL1 CL2 Straight

A1 lane 1 20.48 20.49 20.62 20.50 20.56 20.43

A1 lane 8 20.46 20.45 20.47 20.46 20.49 20.43

A2 lane 1 20.32 20.33 20.36 20.33 20.34 20.31

A2 lane 8 20.32 20.32 20.32 20.32 20.33 20.31

A3 lane 1 20.72 20.80 21.55 20.80 21.03 20.32

A3 lane 8 20.54 20.55 20.66 20.57 20.63 20.32

https://doi.org/10.1371/journal.pone.0221572.t003
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velocity and curvature. Let us point out that in the next section, we will study a two-runner

race where the effect of the lane becomes more pronounced: we find a larger difference

between the best and worst mean time per lane.

Focusing on runner A1 in Fig 6, we analyze more closely the effect of the track shape and

lane:

• DB1 is the quickest track for the outside lane, though it is very close to STD.

• The standard track has the smallest difference between lanes.

• DB2 is the slowest track, from 0.01s on the outside lane to 0.14s on the inner lane. When on

the outer radius of curvature 24m, the velocity significantly decreases.

• CL1 is quite close to DB1 and STD, though a little slower. CL2 is slower than DB2 on the

outer lanes, although not as bad in terms of difference between lanes.

It may seem surprising that the tracks with smoothed curvature do not perform better than

the ones with a discontinuous curvature. This comes from the fact that the clothoid junction

actually results in a smaller radius for the circular part, and thus a greater curvature. The lon-

ger the clothoid junction, the more pronounced the effect, and the slower the times.

To conclude the single runner races, it appears that the track with the shortest straight is the

quickest track for strong athletes in outer lanes. The standard track shape is the one with the

best race times overall, and also the smallest time gap between the inner and outer lanes. On

the opposite, the double bend with the long 100m straight (DB2) yields the worst times overall,

and the highest gap between the inner and outer lanes. These conclusions seem consistent

with runners’ feelings though there is no study yet of what the ideal shape of track would be

for a specific runner.

Numerical simulations for two runners

We move to the simulations for two-runner races, combining the interaction effect with the

curvature effect previously studied for the single runner case. Firstly, we study races with two

runners competing in adjacent lanes, to see the effect of the interaction. Then we compute the

mean times corresponding to all possible races of a runner versus himself and find that the

best lanes are indeed the center ones.

Races on different lanes and illustration of the interaction effect

We perform simulations for the optimal control problem (OCP2) for two runners, combining

the interaction effect with the centrifugal force. We first set A1 to be the runner on each lane 1

and 2.

Fig 6. Effect of the track shape on the race time for Runner A1 vs lane number (left graph). Speed profile for lane 5 (right graph)

with zoom. The tracks are standard (STD), double bend 1 (DB1) with short straights, double bend2 with long straights (DB2), and

curves with short and long clothoid junctions (CL1 and CL2).

https://doi.org/10.1371/journal.pone.0221572.g006
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We recall that if A1 runs alone, his time on lane 1 is 20.485s and on lane 2 20.480s, so of

course because of the centrifugal effect, lane 2 is quicker. Due to staggered starts, as soon as we

set the interaction, the runner on lane 1 benefits from the interaction at the beginning of the

race. First, we set the interaction term γ = 0.04 but with no inhibition η = 0. The results are

illustrated in Fig 7, with the velocity profile in lane 1 on the left and the interaction for each

runner and relative distance on the right. When the relative distance is negative, the runner in

lane 1 is behind. So in this case, the runner in lane 2 wins the race and they overtake each

other twice: lane 1 starts behind because of the staggered starts, benefits from interaction and

overtakes at 50m; then lane 2 benefits from interaction right away and is able to overtake again

at 150m. Then they are on the straight, very close to each other, lane 1 benefits from interaction

and is ready to overtake again but loses in the end by 0.04s.
Then in Fig 8, the interaction term is set at γ = 0.04, and the inhibition frame is η = 20m.

This means that the positive interaction is disabled when a runner is overtaken in the previous

20m of race. Fig 8 shows the speed profile (left graph) and interaction / inhibition terms (right

Fig 7. Race A1 vs himself at lanes 1-2, with interaction γ = 0.04 and a frame η = 0 that is no inhibition. Left graph: speed profile

and time splits of the runner at lane 1. Right graph: distance gap and interaction term for both runners. The sign change of the

distance gap corresponds to the overtaking. Lane 2 wins by 0.04s.

https://doi.org/10.1371/journal.pone.0221572.g007

Fig 8. Race A1 vs himself at lanes 1-2, with interaction γ = 0.04 and a frame η = 20m for the inhibition. Left graph: speed profile

and time splits of the runner at lane 1. Right graph: distance gap and interaction term for both runners. The sign change of the

distance gap corresponds to the overtaking. Lane 1 wins by 0.27s.

https://doi.org/10.1371/journal.pone.0221572.g008
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graph). Compared to the race without inhibition in Fig 9, we observe a different behaviour

with only one overtaking and the runner on the inside winning by 0.27s. Note that since we

optimize the whole race, there is no reason for the race with inhibition to coincide with the

race without inhibition, even before any overtaking occurs. We observe that the inhibition (on

the right graph) correctly detects the overtaking and suppresses the interaction accordingly.

This prevents the overtaken runner at lane 2 to keep up (and eventually catch up) with the one

at lane 1, as we see that the distance gap increases after the overtaking. In the race without inhi-

bition, the overtaken runner was benefiting from the interaction right away, which allowed

him to catch up and take the lead back. With inhibition, the runner on lane 1 manages to win

the race, though he is on a disadvantageous lane. In the full race, of course, the runner in lane

2 has a neighbour on the other side which changes the total result.

There are cases where, though the inhibition η = 20, there are still two overtakings. We

study for instance the 5-4 race, with the speed and force profile of the runner at lane 5 shown

in Fig 9. Without interaction (γ = 0), lane 5 wins without any overtakings, with final time

22.47s. With interaction (γ = 0.04 and η = 20), lane 5 still wins after 2 overtakings, with final

time 22.23s. At the start, the runner on lane 4 benefits from the interaction due to the runner

at lane 5 being ahead (staggered start). He catches up then overtakes the outer runner, who in

turn gains the interaction, catches up and overtakes the inner runner again. At the end the

inner runner, being behind, has the interaction again and is catching up with the outer runner,

but too late.

We have also made simulations with runner A1 vs runner A2, and though runner A2 is

stronger in force, on some lanes, runner A1 can benefit from interaction to be able to win.

We point out that the interaction parameters can be runner dependent since some may be

very sensitive to this effect and others much less.

Mean time per lane

In a real race, there are eight runners, however our model is only for two. Therefore, we simu-

late a set of races with two identical runners, the first on a fixed lane, the second on each possi-

ble other lane. We define Tk1 ;k2
1 to be the time for the winner in the race between two identical

runners A1 in lanes k1 and k2. We want to compute the average performance at lane i as the

Fig 9. Race A1 vs himself at lanes 5-4, with interaction γ = 0.04 and inhibition η = 20m. Left graph: speed profile and time

splits of the runner at lane 5. Right graph: distance gap and interaction term for both runners. The sign changes of the distance gap

correspond to the 2 overtakings.

https://doi.org/10.1371/journal.pone.0221572.g009
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mean time

�Ti ¼
1

7

X

j¼1::8;j6¼i

Tk1¼i;k2¼j
1 :

First, we compute the times Ti;j
1 : the best times in j for each i are indicated in Table 4. In Fig

10, we have plotted the times for i = 1, 5, and 8. The best times are obtained for the maximal

interaction, namely with the second runner on an adjacent lane. For runner A1 on lane 5, his

Table 4. Athlete A1 at lane k running against himself at lane k − 1. Interaction γ = 0.04 with inhibition η = 20m. Race time and gain with respect to solo race time.

lane 2 3 4 5 6 7 8

solo time 20.480 20.475 20.471 20.467 20.464 20.461 20.459

2-runner time 20.300 20.292 20.283 20.276 20.270 20.264 20.259

time gain 0.180 0.183 0.1880 0.191 0.194 0.197 0.200

https://doi.org/10.1371/journal.pone.0221572.t004

Fig 10. Times for athlete A1 at lanes 1,5,8, running against himself.

https://doi.org/10.1371/journal.pone.0221572.g010
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best performance is obtained with a neighbor on lane 4 rather than 6. We recall that the model

includes a lateral attenuation for the interaction, which is 0 when runners are more than 3

lanes apart. If we compare the best time for each case, it is decreasing with the lane.

We show in Fig 11 the mean times �Ti obtained for runner A1 against himself, with an inter-

action weight γ = 0.04 and η = 20 when he runs on each lane i. If we look at the overall perfor-

mance then lane 5 is the best, followed by lane 6, 4, 7, 3, 8, 2 and lane 1 is by far the worst. We

compare with the solo case (γ = 0) where of course the outside lane is the quickest.

The results are nicely consistent with the IAAF rules for the lane drawn. Indeed, according

to the IAAF rules [9], starting lanes are drawn in three lots:

• a first draw is made for the four best runners in the center lanes 3, 4, 5 and 6.

• a second draw is made for the next two runners between the outer lanes 7 and 8.

• a last draw is made between the runners with the lowest performance to get the inside lanes

1 and 2.

Fig 11. Mean times per lane for runner A1 when in lane i vs himself in all other lanes. Without interaction (γ = 0), and with interaction γ = 0.04, η = 20. Lane

performance (sorted by mean time): �T 5 <
�T 6 <

�T 4 <
�T 7 <

�T 3 <
�T 8 <

�T 2 <
�T 1. Gap �T 1 �

�T 8 ¼ 0:050859.

https://doi.org/10.1371/journal.pone.0221572.g011
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Nevertheless, we find that the inside lanes 1,2 are a real disadvantage, the more so as if the

runners are not as strong.

In [4] the authors recall some average time data for Olympics 1996 and 2000, and World

Championship 2001: they indicate an average time gap of 0.16s between inside lanes 1 and 2

and outside lanes 7 and 8. We obtain a smaller gap of 0.047s, which may be due to the fact that

we consider identical runners in our simulations, while in actual races the athletes in the out-

side lanes were supposedly stronger than those in the inside lanes.

Conclusion

In this paper, we have studied how the geometry of the track and the psychological interaction

between runners affect performances. We have introduced an optimal control model taking

into account the centrifugal force as a limiting factor for the maximal propulsive force. We

couple this with a new model describing the positive interaction exerted by a runner close

ahead and the delay to benefit from it after being overtaken. We carry out numerical simula-

tions for several runner profiles on different track shapes. The results indicate that the track

with the shortest straights is the quickest for strong athletes in outside lanes. The so-called

standard track (two straights and half circles) yields the best performances overall. The double

bend tracks with longer straights (DB2) are significantly slower. In particular running on lane

1 on the DB2 track appears to be an overwhelming disadvantage.

Furthermore, the combination of the centrifugal and interaction effects leads to the center

lanes being the most favorable, followed by the outside lanes, with the inside lanes being the

worst. These results fit very well with the IAAF rules for lane draws, which follow this prefer-

ence order.

Appendix: Track shape details

Note that each runner is assumed to run at a distance of 30cm from the inner limit of the lane.

This is how the radius of the circular parts is set in order to obtain a 400m distance on lane 1.

Standard track

The standard track is made up of a circular half-circle of length lc = 115.61m followed by a

straight of 84.39m, for a total distance of 200m, which yields

R1 ¼ lc=p ¼ 36:80:

Since the runner is assumed to be 30cm away from the boundary of the lane, the radius of

construction is R1 − 0.3.

We denote by Rk the radius for the runner on lane k. Since the width of a lane is 1.22m, the

radius at lane k is

Rk ¼ R1 þ 1:22ðk � 1Þ:

Therefore, on a standard track, the radius is given by the expression

RkðsÞ ¼ Rk 8s 2 ½0; lc�; RkðsÞ ¼ þ1 8s � lc:

We denote by θk(s) 2 [0, π] the angular position of the runner on the curved part on lane k,

with convention θk(s) = π on the straight part. The staggered start design ensures all lanes have
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the same total distance. This yields the starting angle

y
0

k ¼
1:22ðk � 1Þp

Rk
:

This goes from 0 for lane 1 to 0.6rad for lane 8. On the curved part, the angular position of

the runner on lane k varies in ½y
0

k; p� according to

ykðsÞ ¼ y
0

k þ
s
Rk
:

Double bend track

As for the standard track, let us denote by lc the length of the curved part, and k the lane num-

ber. Let Ro and ϕo be the radius and angular width of the outer (smaller) circles, and similarly

Ri, ϕi for the inner circle. Going from the starting position, we denote by C1 the first circular

part (‘outer circle’), C2 the second one (‘inner circle’), C3 the second ‘outer circle’, and S the

straight part. With μk = 1.22(k − 1) the radius adjustment for each lane, the abscissa limits for

C1 and C2 are

s1 ¼ lc � ðRo þ mkÞ�o � ðRi þ mkÞ�i; s2 ¼ lc � ðRo þ mkÞ�o:

Finally we have the radius expression

RkðsÞ ¼ Ro þ mk; s 2 C1 ¼ ½0; s1�;

RkðsÞ ¼ Ri þ mk; s 2 C2 ¼ ½s1; s2�;

RkðsÞ ¼ Ro þ mk; s 2 C3 ¼ ½s2; lc�;

RkðsÞ ¼ þ1; s 2 S ¼ ½lc; d�:

8
>>>>>>><

>>>>>>>:

Denoting by y
0

k ¼
mkp

Ro
the starting angular position, the angle after running s meters is

ykðsÞ ¼ y
0

k þ s=ðRo þ mkÞ; s 2 C1

ykðsÞ ¼ �o þ ðs � soÞ=ðRi þ mkÞ; s 2 C2

ykðsÞ ¼ p � ðlc � sÞ=ðRo þ mkÞ; s 2 C3

8
>>><

>>>:

Clothoid track

Let us study the design of a modified standard track in which the circular part of radius R is

bracketed by two smoother junctions of length �l with continuous curvature. We choose to use

a junction whose curvature is linear with respect to the distance, called a clothoid (also known

as Euler curve or Cornu spiral). The angle with the tangent φ is

φðsÞ ¼
scðsÞ

2

where c(s) is the curvature at distance s. Then, since the total angle for the circular part and the

two clothoid junctions is π, and using the same notations as before that is ls is the length of the
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straight part and lc the length on the circle, we find

lc
R
þ 2φð�lÞ ¼ p:

Since the total angle for one clothoid is 2φð�lÞ ¼ �l=R, this equation leads to lc þ�l ¼ Rp.

Moreover ls þ lc þ 2�l ¼ d where d is the distance of the race, that is 200m in our case, thus

Rp ¼ d � ls � �l. We find therefore that when there is a junction with a clothoid, the radius of

the circular part gets smaller than in the case of a full half circle.

On the clothoid, for s 2 [sbegin, send], the expression of the curvature is linear:

cðsÞ ¼ cbegin
send � s

send � sbegin
þ cend

s � sbegin
send � sbegin

:

In our case the clothoids will join the straight part (curvature 0) and circular part (curvature

1/R).

Similarly to the double bend track, we denote by C1, C2, C3, S respectively the first clothoid,

circular, second clothoid, and straight parts. We denote by ls the straight length, R, lc the radius

and length of the circular part, and�l1;2 the length of the two clothoid junctions. As before, we

call Rk ¼
lcþ�l
p
þ 1:22 k � 1ð Þ and lc,k = lc(1 + 1.22(k − 1)/R) the radius and length of the circular

part at lane k. On lane 1, both clothoids have same length�l, while for k> 1 the first clothoid

is shorter in order to keep the same total length. The second clothoid has full length

�lk;2 ¼ �lk ¼ �lð1þ 1:22ðk � 1Þ=RÞ. Thus the first clothoid has length�lk;1 ¼ d=2 � ls � lc � �lk;2.

Taking these variable lengths into account, the curvature at lane k after running s meters is

ckðsÞ ¼
1

Rk

sþ�lk � �lk;1
�lk

; s 2 C1 ¼ ½0;
�lk;1�;

ckðsÞ ¼ 1=Rk; s 2 C2 ¼ ½
�lk;1;�lk;1 þ lc;k�;

ckðsÞ ¼
1

Rk

�lk;1 þ lc;k þ�lk;2 � s
�lk;2

; s 2 C3 ¼ ½
�lk;1 þ lc;k;�lk;1 þ lc;k þ�lk;2�;

ckðsÞ ¼ 0; s 2 S ¼ ½�lk;1 þ lc;k þ�lk;2; d�:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

Distance gap between two runners

For the interaction term, we need to define the relative distance between the runner on lane 1

and on lane 2, taken by convention at time y1(s):

rðsÞ ¼ x1ðy1ðsÞÞ � x2ðy1ðsÞÞ ¼ s � x2ðy1ðsÞÞ:

Thus, runner 1 is ahead of runner 2 at time y1(s) when ρ(s)> 0, and behind otherwise.

However the term x2(y1(s) (of derivative _x2ðy1ðsÞÞ ¼ 1= _y2ðy� 1
2
ðy1ðsÞÞ) is rather difficult to han-

dle numerically. Therefore, we replace ρ(s) with a more handy approximation of the distance

between runners, namely the mean velocity multiplied by the times difference

rðsÞ ¼ ðy2ðsÞ � y1ðsÞÞ
v1ðsÞ þ v2ðsÞ

2
:
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On a curved track, this approximation is adjusted by projecting the two runners on a

median circle, while also taking into account the staggered start on different lanes:

rðsÞ ¼ ðy2ðsÞ � y1ðsÞÞ
v1ðsÞ þ v2ðsÞ

2
þ ðy1ðsÞ � y2ðsÞÞ

2

c1ðsÞ þ c2ðsÞ
;

where ci(s) = 1/Ri(s) is the curvature at distance s.
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