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Background: Transient ischemic attack (TIA) is known as “small stroke.” However, the
diagnosis of TIA is currently difficult due to the transient symptoms. Therefore, objective
and reliable biomarkers are urgently needed in clinical practice.

Objective: The purpose of this study was to investigate whether dynamic alterations
in resting-state local metrics could differentiate patients with TIA from healthy controls
(HCs) using the support-vector machine (SVM) classification method.

Methods: By analyzing resting-state functional MRI (rs-fMRI) data from 48 patients
with and 41 demographically matched HCs, we compared the group differences
in three dynamic local metrics: dynamic amplitude of low-frequency fluctuation (d-
ALFF), dynamic fractional amplitude of low-frequency fluctuation (d-fALFF), and dynamic
regional homogeneity (d-ReHo). Furthermore, we selected the observed alterations in
three dynamic local metrics as classification features to distinguish patients with TIA
from HCs through SVM classifier.

Results: We found that TIA was associated with disruptions in dynamic local intrinsic
brain activities. Compared with HCs, the patients with TIA exhibited increased d-fALFF,
d-fALFF, and d-ReHo in vermis, right calcarine, right middle temporal gyrus, opercular
part of right inferior frontal gyrus, left calcarine, left occipital, and left temporal and
cerebellum. These alternations in the dynamic local metrics exhibited an accuracy of
80.90%, sensitivity of 77.08%, specificity of 85.37%, precision of 86.05%, and area
under curve of 0.8501 for distinguishing the patients from HCs.

Conclusion: Our findings may provide important evidence for understanding the
neuropathology underlying TIA and strong support for the hypothesis that these local
metrics have potential value in clinical diagnosis.

Keywords: resting-state fMRI, dynamic local metric, machine learning, support-vector machine, transient
ischemic attack
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INTRODUCTION

Transient ischemic attack (TIA) is a transient neurological
dysfunction triggered by focal brain, medulla spinalis, or retinal
ischemia, also known as “small stroke” (Easton et al., 2009). As
the problem of population aging becomes more and more serious,
the death rate due to stroke is constantly increasing. Preventing
the social harm caused by stroke is very important (On et al.,
2021). Evidence presented in previous studies has demonstrated
a fact that TIA can be regarded as one of the main, under-
recognized, and modifiable risk factors for stroke (Rothwell and
Warlow, 2005; Turner et al., 2019). Given up to 80% of strokes
after TIA are preventable (Coutts, 2017), accurate diagnosis of
TIA is valuable and meaningful from the perspective of offering
the greatest opportunity for the early intervention of stroke.
However, the transient symptoms make the diagnosis of TIA
hard and difficult. Therefore, objective and reliable biomarkers
are urgently needed in clinical practice.

Resting-state functional magnetic resonance imaging (rs-
fMRI), which measures the changes in the blood oxygen level-
dependent (BOLD) signals, is a promising tool to explore the
functional alterations of human brain (Biswal et al., 1995; Fox
and Raichle, 2007). Several methods have been proposed and
proven to be effective in characterizing the local features of
the brain function, such as the amplitude of low-frequency
fluctuations (ALFF), which measures signal strength in low-
frequency oscillations (LFOs) of local spontaneous neural activity
(Zang et al., 2007); fractional ALFF (fALFF), which characterizes
the relative contribution of a specific LFO to the entire frequency
range (Zou et al., 2008); and regional homogeneity (ReHo), which
reflects the coherence of local neural activity among spatially
neighboring regions (Zang et al., 2004). These three methods
can reveal local brain activity from different perspectives and
have been widely applied to localize the functional abnormalities
in brain disorders (Zang et al., 2007; Gupta et al., 2020; Li
et al., 2021). With regard to TIA, it has been shown that TIA is
associated with the reductions of ReHo in the right dorsolateral
prefrontal cortex, inferior prefrontal cortex, ventral anterior
cingulate cortex, and dorsal posterior cingulate cortex (Guo et al.,
2014) and decreased ALFF in the left middle temporal gyrus
(Lv et al., 2019). These studies indicated that local metrics are
promising to locate abnormal brain areas for TIA; however, only
one value for each metric was calculated for the entire rs-fMRI
scan, which ignored the characteristics of the dynamic brain
variation or time-varying process of the BOLD signal along the
course during fMRI scanning (Liao et al., 2015; Deng et al., 2016).
In fact, previous studies have suggested that brain activity exhibits
dynamic characteristics over time-varying process (Sporns, 2011;
Abrams et al., 2013; Yin et al., 2013; Bassett and Sporns, 2017).
Brain dynamics are thought to reflect the functional capacity
of the neural system and could offer physiological neuromarker
in many neurological and psychiatric diseases (Damaraju et al.,
2014; Liao et al., 2014). Thus, it is of great importance to
explore the dynamic changes in these local metrics. Moreover,
the traditional identification of TIA, which was mainly judged
from subjective evaluation of the symptoms, is time-consuming
and labor-intensive with relatively low accuracy rate. Therefore,

whether these local abnormalities could serve as objective and
reliable biomarkers for TIA is still need to be clarified.

The support-vector machine (SVM) is a supervised machine
learning algorithm that aims to maximize the margin so as
to classify data points between classes in a high-dimensional
space (Pereira et al., 2009) and has been widely used to assist
diagnosis of neurological disorders. For example, Bu et al. (2019)
selected the optimal features from the ALFF, fALFF, ReHo,
and degree centrality of different brain regions and applied
SVM to differentiate patients with obsessive-compulsive disorder
from healthy controls (HCs). In a previous study, excellent
performance with an accuracy of 95.37% was achieved when
ALFF maps were employed, followed by ReHo, fALFF, and DC.
Ma X. et al. (2020) chose 54 amyotrophic lateral sclerosis
participants and used ALFF and d-ALFF as the SVM classification
feature, and the classification accuracy was 79.63%. From what
have been listed above, a reliable conclusion can be drawn that
SVM has relatively high accuracy compared with traditional
methods to differentiate the patients from healthy subjects.
Hence, we used SVM to examine whether local abnormalities can
be used as diagnostic and prognostic indicators for TIA.

In this study, we first employed sliding window approaches
(Chen et al., 2018; Duncan and Small, 2018) to investigate
the dynamic changes of three resting-state local metrics:
dynamic ALFF (d-ALFF), dynamic fALFF (d-fALFF), and
dynamic ReHo (d-ReHo) in patients with TIA. By using
the SVM classification method, we further examined whether
these dynamic local abnormalities could differentiate patients
from HCs. We used two hypotheses in this study: (i)
patients with TIA would exhibit significant temporal variability
compared with HCs and (ii) the d-ALFF, d-fALFF, and d-ReHo
values could be sensitive biomarkers to distinguish patients
with TIA from HCs.

MATERIALS AND METHODS

Participants
Data were obtained from 51 suspected patients with TIA from
the Department of Neurology, Anshan Changda Hospital from
April 2015 to June 2016. The patients with transient neurological
symptoms had been evaluated to have a possible vascular etiology
judged by recruited clinical neurologists. Patients who have
history of hemorrhage, leukoaraiosis, migraine, epilepsy, or
psychiatric diseases were excluded in this study. Information
about each participant was recorded as follows: (Easton et al.,
2009) history of TIA and stroke; (On et al., 2021) previous risk
factors, such as hypertension, diabetes mellitus, coronary artery
disease, current smoking, and drinking behavior; (Turner et al.,
2019) medications used ahead of the MRI scanning; (Qiu and Xu,
2020) in hospital evaluation of arterial stenosis (carotid duplex
ultrasound and MR angiography), atrial fibrillation (ECG), and
brain infarcts (diffusion-weighted imaging and T2-FLAIR); and
(Rothwell and Warlow, 2005) 1-year telephone follow-up of
stroke and/or TIA attack. In addition, four patients dropped out
during the 1-year follow-up period. The risk of each patient for
subsequent stroke was evaluated by age, blood pressure, clinical
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features, duration of symptoms, and history of diabetes (ABCD2)
(Johnston et al., 2007) score.

Besides, the study involves forty-one age- and sex-
matched HCs with no physical diseases or history of
psychiatric or neurological disorders from local community
through advertising.

Finally, three patients were excluded because of unacceptable
image quality of multimodal MRI data (incomplete coverage of
the whole brain in rs-fMRI scan or missing 3D T1 image), leaving
48 patients with TIA and 41 HCs in the final analysis. Of the
48 patients, 25 patients suffered TIA (not first-time attack) and
4 patients suffered stroke. Detailed demographic and clinical
information of all participants are displayed in Table 1.

Physiological and Biochemical Tests
All participants completed blood systolic pressure, blood diastolic
pressure, blood sugar level, total cholesterol, triglycerides,
high-density lipoprotein cholesterol (HDL-C), and low-density
lipoprotein cholesterol (LDL-C) physiological/biochemical tests
within 24 h before the MRI data acquisition. Additionally,
all participants underwent the mini-mental state examination
(MMSE) (Mingyuan, 1998) to evaluate global cognition.

Data Acquisition
GE MR-750 3.0 T scanner (GE Medical Systems, Inc., Waukesha,
WI, United States) was used. The time interval between the latest
TIA attack and subsequent MRI scanning was 0.25–16 days for
the patients. During the resting state scanning, all participants
were instructed to refrain from any cognitive task (Biswal et al.,
1995). Specifically, all participants were required to keep relaxed,
to close their eyes but not fall asleep, not to think systematically,
and to remain motionless.

BOLD-fMRI EPI (echo planar imaging) scan parameters
included TE (echo time) = 30 ms, TR (repetition

TABLE 1 | Demographic and clinical information.

TIA (n = 48) HCs (n = 41) p value

Age (year, mean ± SD) 57.6 ± 9.8 55.0 ± 8.0 0.182t

Gender (male/female) 37/11 30/11 0.670χ

FD (mean ± SD) 0.06 ± 0.03 0.06 ± 0.05 0.961t

MMSE (mean ± SD) 29.2 ± 2.6 28.6 ± 1.7 0.222t

Blood systolic pressure (mmHg,
mean ± SD)

145.5 ± 20.8 126.9 ± 19.8a <0.001t

Blood diastolic pressure (mmHg,
mean ± SD)

86.7 ± 10.4 80.0 ± 10.9a 0.007t

Blood sugar level (mmol/L,
mean ± SD)

6.3 ± 2.1 5.2 ± 0.7a <0.001t

Total cholesterol (mmol/L,
mean ± SD)

5.3 ± 1.2 4.8 ± 1.0a 0.037t

Triglycerides (mmol/L, mean ± SD) 1.6 ± 0.9 1.9 ± 1.3a 0.234t

HDL-C (mmol/L, mean ± SD) 1.1 ± 0.2 1.1 ± 0.3a 0.311t

LDL-C (mmol/L, mean ± SD) 3.3 ± 1.0 2.7 ± 0.9a 0.004t

ABCD2 scores (median) 4 (2–6)

tData were obtained using two-sample two-side t-tests; χ Data were obtained
using Pearson’s chi-square tests; aData were missing for 6 controls; TIA, transient
ischemic attack; HCs, healthy controls; MMSE, mini-mental state examination;
HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein
cholesterol; DWI, diffusion-weighted imaging; FD, frame-wise displacement.

time) = 2,000 ms, FA (flip angle) = 60◦, matrix size = 64 × 64,
thickness/gap = 3.2/0 mm, slices = 43, time = 8 min. A total of
240 scans were collected.

The high-resolution anatomic 3D T1 sequence
had the following parameters: 176 sagittal slice,
TR = 8,100 ms, TE = 3.1 ms, matrix = 256 × 256, voxel
size = 1 mm × 1 mm × 1 mm, thickness/gap = 1/0 mm. This
session lasted for about 5 min.

Data Preprocessing
Resting-state fMRI images and structural images were
preprocessed using the Temporal Dynamic Analysis (TDA)
toolbox based on RESTplus version 1.24 (Jia et al., 2019)1 running
on Matlab2014a (MathWorks, Natick, MA, United States) and
included the following steps: (Easton et al., 2009) the first
10 time points were removed to make the initial MRI signal
reach steady state and to permit the participants to adapt to
the scanning environment, and the remaining 230 consecutive
volumes were used for data analyses; (On et al., 2021) slice
timing and head motion were done in the left volumes of
images, and no participant had a head movement bigger than
3 mm or rotation larger than 3◦; (Turner et al., 2019) spatial
normalization to the Montreal Neurological Institute space
via the deformation fields derived from tissue segmentation
of structural images was performed, and all images were then
resampled into 3 mm × 3 mm × 3 mm voxels; (Qiu and Xu,
2020) for the dynamic ALFF and fALFF calculations, spatial
smoothing (4 mm isotropic Gaussian kernel) was performed;
(Rothwell and Warlow, 2005) detrending was used to correct
the signal drift in real time; (Coutts, 2017) nuisance covariate
regression (head motion effect using Friston 24 parameter
model) from fMRI data (Friston et al., 1996) was calculated;
and (Biswal et al., 1995) for the dynamic ReHo calculations,
band-pass filtering (0.01–0.08 Hz) was applied to reduce low-
frequency drift and high-frequency noise. The band-pass filter
was applied only in ReHo.

Dynamic Measurements
Dynamic local metrics analysis was performed using TDA
toolkits based on RESTplus (Jia et al., 2019) (see text footnote
1). The dynamic metrics was calculated using a sliding window
method, and it is sensitive in detecting time-dependent variations
and examining metrics variability over the whole brain (Hindriks
et al., 2016; Yan et al., 2017; Fu et al., 2018; Ma M. et al., 2020). The
most important parameter in resting-state dynamic computation
is window length. Previous studies have demonstrated that the
minimum window length should be larger than 1/fmin (where
fmin is the minimum frequency of time series) so that the
spurious fluctuations could be excluded (Leonardi and Van De
Ville, 2015). Therefore, we applied a sliding window length of 50
TR (100 s) and a shifting step size of 1 TR (2 s). This procedure
produced a total of 180 windows for each participant. Based on
these sliding windows, we proposed three local metrics, namely,
d-ALFF, d-fALFF, and d-ReHo (Liao et al., 2018; Yu et al., 2019;
Tian et al., 2021).

1http://www.restfmri.net
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d-ALFF Calculation
The time courses for each individual voxel were subject to a fast
Fourier transformation to the frequency domain, and the power
spectrum was determined. The square root of this spectrum was
calculated for each frequency and then averaged across 0.01–
0.08 Hz. This averaged square root was used as an ALFF index
(Zang et al., 2007). After calculating ALFF of all voxels in time
windows, each participant will get several window-based ALFF
maps. Then, we computed the mean and SD of each voxel in all
window-based ALFF maps for each participant and further got
the corresponding coefficient of variation (CV = SD/mean). The
CV maps were prepared for further statistical analysis.

d-fALFF Calculation
The fALFF was calculated as the ratio of the amplitude within
the low-frequency range (0.01–0.08 Hz) to the total amplitude
over the full frequency range (0–0.25 Hz). It indicates the relative
contribution of oscillations in the low-frequency range to the
signal variations over the whole frequency range (Zou et al.,
2008). Then, we computed the CV of each voxel in all window-
based fALFF maps for each participant. The CV maps were used
for further statistical analysis.

d-ReHo Calculation
Individual ReHo maps were generated by calculating the Kendall
coefficient of concordance (KCC) of the time courses of a
given voxel with those of its neighbors (26 voxels) in a voxel-
wise manner (Zang et al., 2004). Then, we computed the
CV of each voxel in all window-based ReHo maps for each
participant. Finally, the CV maps were spatially smoothed with an
isotropic Gaussian kernel of 4 mm full-width-at-half-maximum
(FWHM). The spatially smoothed CV maps were used for further
statistical analyses.

Statistical Analyses
To detect the group differences in demographic variables
between patients with TIA and HCs, two-sample t-tests and
chi-square analyses were performed using Statistical Package
for the Social Sciences (SPSS) software (SPSS Inc., Chicago,
IL, United States). Age and clinical/physiological/biochemical
characteristics between patients with TIA and HCs were
compared using two-sample t-test. Sex difference was obtained
with the Pearson’s chi-square test.

The dynamic metrics (d-ALFF, d-fALFF, and d-ReHo) of
regional brain activity between patients with TIA and HCs were
compared using two-sample t-tests on each voxel to examine
the between-group differences in RESTplus software (Jia et al.,
2019) (see text footnote 1). Multiple comparison correction was
performed based on Gaussian random field theory (GRF, voxel-
wise p < 0.005, cluster-wise p < 0.05, two-tailed).

Feature Extraction and SVM Model
Training
To evaluate whether the alterations of three dynamic metrics
could serve as potential diagnostic indices for TIA, we performed
machine learning analyses using SVM algorithm with the average

dynamic metric values of all clusters showing significant among-
group differences as the features.

Mapping non-linear data to a high dimensional feature
space and finding a linear separating hyperplane to separate
the two-group data are the core idea of the SVM algorithm.
In this study, we used the Gaussian radial basis function
kernel SVMs (RBF-SVM) (Cristianini and Shawe-Taylor, 2000),
a implement in the LIBSVM software package (Pereira et al.,
2009)2, to investigate the potential diagnostic indices of the
dynamic metrics. We used gird search optimization algorithm
to obtain the parameters that enable SVM to achieve optimal
performance. The grid search method is the most basic parameter
optimization algorithm. In essence, it divides the parameters to
be searched into a grid of the same length in a certain space
range according to the proposed coordinate system. Each point
in the coordinate system represents a set of parameters. The
C (last parameter C = 1) in the SVM was set to 2N (N from
−4 to 4), and radial basis function kernel parameter γ (last
parameter γ = 0.125) was optimized among the values of 2N
(N from −4 to 4). These points are brought into the SVM
system to verify its performance, and the point that makes
the performance of the entire system the best is called the
optimal parameter. In addition, a leave-one-out cross-validation
(LOOCV) was applied to validate the performance of our
proposed approach. It involved excluding a participant from each
group for test and training the classifier using the remaining
participants. This procedure was repeated for each participant
to assess the overall accuracy of the SVM. To quantify the
performance of classification methods, accuracy, sensitivity, and
specificity were reported.

Validation Analysis
To further test the reliability of our results for three dynamic local
metrics, we reanalyzed the rs-fMRI data with three additional
window lengths (25, 32, and 75 TRs) and 6 mm isotropic
Gaussian kernel for spatial smoothing.

To explore the effects of head motion, we reanalyzed between-
group differences of three dynamic metrics by treating mean
framewise displacement (FD) (Jenkinson et al., 2002) as a
covariate of no interest. To further test the effects of age
and gender on our results, we also reanalyzed between-group
differences with regressing age and gender out.

Correlation Between Local Metrics and
Clinical/Physiological/Biochemical
Characteristics
Relationships with symptom severity were examined by
extracting d-ALFF, d-fALFF, and d-ReHo values from the
regions showing group differences and by correlating these
values with blood systolic pressure, blood diastolic pressure,
blood sugar level, total cholesterol, triglycerides HDL-C, LDL-C,
MMSE, and duration time from the last TIA to MRI scanning.
The correlations were considered significant at a threshold of
p < 0.05.

2http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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RESULTS

Clinical Data
Demographic and clinical information for the final 48 patients
with TIA and 41 HCs is summarized in Table 1. The patients with
TIA and HCs were matched in age (p = 0.182) and sex (p = 0.670).
Compared with HCs, patients with TIA showed significantly
higher systolic pressure (p< 0.001), diastolic pressure (p = 0.007),
blood sugar level (p < 0.001), total cholesterol (p = 0.037),
and LDL-C (p = 0.004). The median ABCD2 score for the
patients with TIA was 4 (Coutts, 2017; On et al., 2021). Detailed
demographics and the psychological characteristics of the two
groups are shown in Table 1.

Differences in d-ALFF, d-fALFF, and
d-ReHo
As shown in Figure 1A, for d-ALFF, TIA increased in
vermis, right calcarine, and right middle temporal gyrus.
The significant differences in d-ALFF between the two
groups are shown in Table 2 and Figure 1A. Compared
with HCs, the patients with TIA exhibited increased d-fALFF
in the opercular part of right inferior frontal gyrus and
left calcarine as shown in Table 2 and Figure 1B. The
cerebellum, left inferior occipital gyrus, and left inferior
temporal gyrus showed increased d-ReHo in patients

with TIA compared with HCs described in Table 2 and
Figure 1C.

Classification Accuracy
To evaluate the classification ability of the SVM model, the
accuracy, sensitivity, specificity and precision were calculated,
and the receiver operating characteristic (ROC) curve of the
classifier is shown in Figure 2. The curve was drawn using
Receiver Operating Characteristic Assistant software (Wang
et al., 2021). The performance of the classifier achieved an
accuracy of 80.90%, sensitivity of 77.08%, specificity of 85.37%,
precision of 86.05%, and area under curve (AUC) of 0.8501
for TIA vs. HCs.

Validation Results
The validation analyses indicated that the TIA-related dynamic
alterations in the three local metrics were consistent with the
main results when using different window lengths and smooth
kernels. From this perspective, smooth kernels and window
lengths in our study have changed, respectively, under the
condition of keeping the other calculation parameters the same,
so as to fairly compare all the results and to enrich our data
analysis. When the smooth kernel is 4 mm, the results of different
window lengths are shown in Supplementary Tables 1–3 and
Supplementary Figures 1–3, respectively. When the smooth

FIGURE 1 | Brain regions with significant differences in d-ALFF (A), d-fALFF (B), and d-ReHo (C) between the TIA group and the HC group (after GRF correction;
voxel-wise p < 0.005, cluster-wise p < 0.05, two-tailed). The color bar indicates the T-value. L, left; R, right; d-ALFF, dynamic amplitude of low-frequency
fluctuations; d-fALFF, dynamic fractional amplitude of low-frequency fluctuations; d-ReHo, dynamic regional homogeneity.

TABLE 2 | Regions showing abnormal d-ALFF, d-fALFF, and d-ReHo in patients with TIA compared with HCs.

Metrics Voxels Peak MNI Coordinate (mm) Peak T value Effect size Brian Regions (AAL)

x y z

d-ALFF 12 3 −78 −15 3.4067 0.7328 Cerebelum Vermis_6

56 6 −75 15 4.4887 0.9655 Calcarine_R

11 48 −66 21 4.2192 0.9075 Temporal_Middle_R

d-fALFF 12 60 12 12 4.8197 1.0367 Frontal_Inferior_Opercular_R

47 −3 −75 9 4.3218 0.9296 Calcarine_L

d-ReHo 265 −33 −81 −30 4.0296 0.8661 Cerebellum-crus1_L

Occipital_Inf_L

Temporal_Inf_L

d-ALFF, dynamic amplitude of low-frequency fluctuations; d-fALFF, dynamic fractional amplitude of low-frequency fluctuations; d-ReHo, dynamic regional homogeneity;
MNI, Montreal Neurological Institute; AAL, Anatomical Automatic Labeling; L, left; R, right.
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FIGURE 2 | The receiver operating characteristic curve of dynamic metrics.
The image of ROC was displayed using MATLAB software. FPR, false
positivity rate; TPR, true positivity rate; AUC, area under the receiver operating
characteristic curve.

kernel is 6 mm, the results of different window lengths are shown
in Supplementary Tables 4–6 and Supplementary Figures 4–6,
respectively. They are provided in the Supplementary Material.

Transient ischemic attack-related alterations in the dynamic
local metrics were consistent with the main results after
correcting for head motion (FD), age, and gender (refer to
Supplementary Figures 7–12).

To reveal the stability of the results, SVM was also performed
based on the three datasets: training set, validation set, and test set
to distinguish TIA from HCs (refer to Supplementary Figure 13).

Correlational Analysis
To avoid the influence of extreme value (value beyond 3 SD),
all the correlation analyses were conducted after removing the
extreme values from our data. No correlations between d-ALFF
and d-fALFF different region values and clinical measures
reached significance (uncorrected p < 0.05). The d-ReHo
variability in the cerebellum was negatively correlated with the
triglycerides scores of the patients with TIA (r = − 0.2931,
p = 0.0432, uncorrected p < 0.05, Figure 3). All results of
correlation between dynamic local values and clinical data are
described in Supplementary Tables 7–9, and they are provided in
the Supplementary Material. Here only shows the significantly
related ones. There was no correlation between brain dynamic
values and duration time from the last attack to scanning (refer
to Supplementary Table 10 for details).

DISCUSSION

In this study, we used three rs-fMRI local dynamic metrics
to investigate the alterations of intrinsic brain activity in
patients with TIA. Compared with the HCs, the patients
with TIA showed increased d-ALFF value in the cerebellum,
right calcarine, and right middle temporal gyrus. Patients

FIGURE 3 | Correlation between d-ReHo variability of the
Cerebelum_Crus1_L and the triglycerides score.

with TIA also exhibited increased d-fALFF value in the
opercular part of the right inferior frontal gyrus and left
calcarine. In addition, an increased d-ReHo value was
observed in the cerebellum, left inferior occipital gyrus,
and left inferior temporal gyrus. The values of d-ALFF,
d-fALFF, and d-ReHo in regions that showed abnormal
brain dynamics served as classification features, and the
SVM classification achieved a total accuracy of 80.90%,
sensitivity of 77.08%, specificity of 85.37%, precision of
86.05%, and AUC of 0.8501. Overall, these findings provide
evidence for the local abnormalities in TIA, which may help
to understand the neurophysiological basis and to establish
objective biomarkers for TIA.

The ALFF reflects the power within the effective frequency
range (0.01–0.08 Hz) and is considered as an dependable
approach to detect the regional intensity of spontaneous
fluctuations and to present spontaneous brain activity of the
brain (Zang et al., 2007), and d-ALFF characterizes the dynamic
alterations of ALFF over time (Chen et al., 2018). In this
study, we found increased d-ALFF in cerebellar vermis, right
calcarine, and right middle temporal gyrus in patients with
TIA. Growing evidence indicates that the cerebellar vermis
may contribute significantly to cognitive and global functioning
in clinical populations (Steinlin, 2007; Bernard et al., 2015).
Middle temporal gyrus plays an essential role in language,
semantic memory processing, along with visual perception
(Soderfeldt et al., 1997; Bonilha et al., 2017). The calcarine
is connected with blurred visual (Yu et al., 2020). Thus, we
speculated that the increased d-ALFF in these three regions
was associated with the difficulties in language processing,
disturbance of consciousness, and vision in patients with TIA
(Lavallee and Amarenco, 2007). Notably, the abnormalities were
also observed in stroke patients. For example, Chen et al.
(2015) found that stroke patients exhibited larger ALFF in
the right middle temporal gyrus. Jiang et al. (2019) reported
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decreased degree centrality in the calcarine in stroke patients.
Being important risk factors for stroke, these TIA-related
abnormalities already existed in the early stage of stroke
according to our study.

The fALFF measures the relative spontaneous neural activity
within the effective frequency range to the whole detectable
frequency range, and it is calculated as the ratio of the power
spectrum of the low-frequency range to that of the entire
frequency range (Zou et al., 2008). Compared with ALFF, it
could effectively suppress the physiological noise (Zou et al.,
2008; Zuo et al., 2010), and d-fALFF examined the temporal
variability of power of intrinsic brain activity and the regional
features of low-frequency oscillation changes in TIA (Chen et al.,
2018). In this study, the opercular part of right inferior frontal
gyrus and left calcarine of patients with TIA show increased
d-fALFF. A previous study has indicated that the opercular part
of right inferior frontal gyrus is vital to the implementation
of multicomponent behavior (Dippel and Beste, 2015). Since
calcarine is related to the visual center, the damage of which
also suggests the possibility of early visual center disturbance in
patients with TIA (Gupta et al., 2016; Liang et al., 2020; Yu et al.,
2020). The abnormality in behavior processing and disturbed
vision in patients with TIA may be relevant to the increased
d-fALFF in these regions (Lavallee and Amarenco, 2007). These
findings indicate that the alterations of fALFF changes over time
in the opercular part of right inferior frontal gyrus and left
calcarine may at least partially lead to behavior impairments and
visual dysfunction in patients with TIA. The speculation could be
examined in future studies.

The ReHo reflects the local synchronization of spontaneous
BOLD signal (Zang et al., 2004). The d-ReHo represents the
change of similarity between the time series of a given voxel and
its nearest neighbors (Yin et al., 2013; Avena-Koenigsberger et al.,
2017). In this study, the left cerebellum-crus1, left occipital, and
the left temporal showed increased d-ReHo in patients with TIA.
The cerebellum is related to sensorimotor (Kansal et al., 2017)
and cognitive-emotional processing (Adamaszek et al., 2017;
Beckinghausen and Sillitoe, 2018). Besides, it influences motor
and cognitive functions via cerebello-thalamocortical circuits
(Middleton and Strick, 2001). The occipital lobe damage leads
to visual-field loss (Tohid et al., 2015). As naming function
is a critical function of temporal lobe, damage to which will
result in language impairment (Trimmel et al., 2018). This
result echoed the symptoms of sudden dizziness or loss of
balance and coordination in patients with TIA (Lavallee and
Amarenco, 2007; Easton et al., 2009; Bonilha et al., 2017).
Notably, a previous study has shown decreased functional
connectivity (FC) in left middle temporal gyrus within the default
mode network (DMN) in patients with TIA (Li et al., 2013),
decreased FC in the left middle temporal gyrus, the medial
prefrontal cortex and the posterior cingulate cortex/precuneus
in patients with TIA (Zhu et al., 2019), and decreased ALFF
in the left middle temporal gyrus of patients with TIA (Lv
et al., 2019). The decreased FC in the left middle of occipital
with visual network (VN) was reported (Li et al., 2013). Taken
together with these findings, it provided further evidence for
the existence of impaired brain region in TIA patients, which

may help to understand the pathophysiological underpinnings in
patients with TIA.

Considering dynamic indicators and static indicators are bond
with each other closely and these dynamic results are not reported
in static results before, doing dynamic indicators within patients
with TIA are urgently needed in this study, which further proved
the necessity of this study. As traditional TIA diagnosis methods
were subjective and lacked of clear objective standards, we used
machine learning algorithms, data-driven methods used to obtain
diagnostic criteria, to acquire higher reliability. Researching the
algorithms of machine learning to search for the diagnosis
biomarker of TIA can alleviate the contradiction between supply
and demand between the limited psychiatrists with professional
diagnostic qualifications and the increasing number of patients
with TIA and can improve the accuracy of diagnosis and the
precision of treatment at the same time. Although the application
of artificial intelligence in the medical field is still in the initial
stage, with more in-depth development of machine learning
technology, it will become a general trend for doctors to use
artificial intelligence to diagnose and manage the health of the
patients in the future. SVM has been widely applied in various
diseases and achieved great classification performance (Chan
et al., 2019; Gui et al., 2021). Using the SVM classifier, the
patients with TIA could be differentiated from HCs by dynamic
local metrics. In addition, high identification accuracy of 80.90%
between the TIA and HCs was achieved in this study. The results
may indicate the potential value of the dynamic local metrics in
the clinical diagnosis of TIA.

This is the first study to explore the dynamic characteristics
of patients with TIA. In addition, the temporal brain dynamics
could distinguish the patients with TIA from HCs. The results of
our study are of great importance to investigate the underlying
mechanism of TIA. However, considering the heterogeneity of
patients, the results should be cautious when applied to the
whole patients with TIA. Further studies are encouraged to pay
more attention to the TIA-specific brain dynamic alterations
based on this study.

This study has several potential limitations. First, although the
findings were encouraging, the sample size was relatively small.
The results that there were no significant correlations between
TIA-related brain dynamics and clinical variables may be due
to the sample size, which was demonstrated to result in low
statistical power (Button et al., 2013). Accordingly, our findings
should be interpreted with caution regarding the observed brain
dynamic alterations as sensitive biomarkers for TIA, and further
studies are required to expand the sample size to improve
the statistical power. Second, although the correlation analysis
revealed there was no significant correlation between TIA-related
brain dynamics and clinical variables, the mismatch between
two groups in clinical variables results in a heterogeneity of the
sample. Third, the medications were used ahead of the MRI
scanning, and it might have impact on the brain dynamics, which
would be controlled in the future. Fourth, due to the lack of the
TIA attack times, we could not evaluate the extent to which our
findings are dependent on the attack frequency of the patients.
In further studies, we would like to combine larger sample and
reduce heterogeneity among participants to confirm our findings.
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CONCLUSION

Our results demonstrate that TIA is associated with spontaneous
brain activity accompanied by dynamic characteristics, and
it may provide important evidence for understanding the
neuropathology underlying TIA and strong support for the
hypothesis that these local metrics have a potential value in
clinical diagnosis.
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