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To determine the immunological profile most important for IRIS prediction, we evaluated 20 baseline plasma 
biomarkers in Acquired Immunodeficiency Syndrome (AIDS) patients initiating antiretroviral therapy (ART). 
Patients were enrolled in a randomized, placebo-controlled ART initiation trial in South Africa and Mexico to 
test whether maraviroc could prevent IRIS. Participants were classified prospectively as having IRIS within 
6 months of ART initiation. Twenty plasma biomarkers were measured at study enrollment for 267 participants. 
Biomarkers were tested for predicting IRIS with adjustment for covariates chosen through forward stepwise 
selection. Sixty-two participants developed IRIS and of these 19 were tuberculosis (TB)-IRIS. Baseline levels of 
vitamin D and higher D-dimer, interferon gamma (IFNγ), and sCD14 were independently associated with risk 
of IRIS in multivariate analyses. TB-IRIS cases exhibited a distinct biosignature from IRIS related to other patho­
gens, with increased levels of C-reactive protein (CRP), sCD14, IFNγ, and lower levels of Hb that could be captured 
by a composite risk score. Elevated markers of Type 1 T helper (Th1) response, monocyte activation, coagulation 
and low vitamin D were independently associated with IRIS risk. Interventions that decrease immune activation 
and increase vitamin D levels warrant further study. 

Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/). 
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1. Introduction	 

Immune reconstitution inflammatory syndrome manifests as para-
doxical worsening or uncovering of infection or malignancy following 
ART initiation, despite successful suppression of HIV replication and 
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effective microbiologic control of underlying infection in cases of para­
doxical IRIS. Among patients with HIV infection in resource-limited set-
tings, IRIS usually occurs within the first few weeks and up to six 
months after start of therapy; in these settings, resource utilization and 
mortality can be high (Hoyo-Ulloa et al., 2011; Muller et al., 2010). De­
spite a substantial global disease burden, diagnostic criteria are ill defined, 
molecular mechanisms accounting for pathogenesis are unknown, and ef-
fective therapies to mitigate risk are needed (Sereti et al., 2010). 

In an earlier retrospective study increased baseline plasma levels of 
CRP, D-dimer, interleukin-6 (IL-6), and hyaluronic acid (HA) predicted 
IRIS/death within the first year of ART (Boulware et al., 2011). It is 
uncertain whether the same markers would have clinical utility when 
ense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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applied prospectively to a population at higher risk due to lower CD4 
count at ART initiation and higher prevalence of TB (Boulware et al., 
2011). 

Recent attention has focused on the role of vitamin D in infectious 
(de Haan et al., 2014) and autoimmune disease, including tuberculosis 
(Yang et al., 2013). In resource-limited settings, which have the largest 
burden of advanced HIV disease, mycobacteria are the most common 
pathogen involved in the development of IRIS (Conesa-Botella et al., 
2009). Vitamin D deficiency is also prevalent and associated with AIDS 
progression (Van Den Bout-Van Den Beukel et al., 2008). A recent ran­
domized, placebo-controlled trial of vitamin D supplementation in pa­
tients with pulmonary tuberculosis demonstrated more rapid clinical 
recovery than was seen in placebo recipients, although, further investi­
gation of vitamin D for the prevention or reactivation of tuberculosis in­
fection is needed (Salahuddin et al., 2013). Indeed, mounting evidence 
indicates a strong role for vitamin D in the regulation of the human im­
mune response (Modlin, 2007) and resolution of TB-induced inflamma­
tion (Coussens et al., 2012). Multiple in vitro studies have shown that 
vitamin D suppresses the stimulation of cell-mediated immunity 
(Coussens et al., 2012). Furthermore, a prominent role for monocyte ac­
tivation in paradoxical TB-IRIS was highlighted recently (Andrade et al., 
2014). Biomarkers that indicate monocyte and myeloid cell activation 
may improve prediction of IRIS and suggest new pathways of explora­
tion for preventive and therapeutic strategies. 

As an adjunctive study to a large randomized controlled trial of antire­
troviral treatment (ART) plus maraviroc or ART alone in treatment-naïve 
individuals in South Africa and Mexico, we tested the hypothesis that pro-
inflammatory cytokine levels, myeloid cell activation, coagulation and fi­
brosis markers were associated with IRIS risk prior to starting ART. We 
further speculated that high levels of vitamin D might protect against 
IRIS. Our findings suggest that T-cell and monocyte activation, inflamma­
tion and low vitamin D levels are independently associated with IRIS risk. 

2. Methods 

2.1. Study Outline 

Between 2009 and 2012, the C-C Chemokine Receptor 5 (CCR5) An­
tagonist to Decrease the Occurrence of Immune Reconstitution Inflamma­
tory Syndrome in HIV-Infection (CADIRIS) trial randomized and followed 
276 ART-naïve HIV-infected patients for six months to test the utility of 
the CCR5 antagonist maraviroc as an adjuvant to a standard ART regimen 
to reduce the occurrence of IRIS (Sierra-Madero et al., 2014; Mendonca 
et al., 2013). Participants received maraviroc 600 mg twice daily or place­
bo added to an ART regimen that included tenofovir, emtricitabine, and 
efavirenz for 48 weeks. The primary endpoint was an IRIS diagnosis with­
in 6 months of ART initiation. Clinical data were prospectively collected by 
health care providers at the clinical sites. The study was sponsored by the 
Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran. The 
main clinical trial was sponsored by Pfizer Inc. This study was approved 
by the Ministry of Health and Federal Commission for Sanitary Risks Pro­
tection of Mexico, and the Medicines Control Council and Human Re­
search Ethics Committee of South Africa. The ClinicalTrials.gov 
registration number is NCT00988780. Results of the main clinical trial 
were published in the Lancet HIV (Sierra-Madero et al., 2014). 

2.2. Study Participants 

Eligible subjects in the CADIRIS Trial were HIV-infected, at least 
18 years-old, had a CD4 cell count b100 μL and  had  not  received  steroids  
within two weeks of randomization. We first evaluated IRIS and mortal­
ity according to baseline levels of selected biomarkers in the entire 
CADIRIS population. IRIS cases were reviewed by a central adjudication 
committee and identified as those who had an event during the first 
24 weeks of ART (Sierra-Madero et al., 2014). IRIS events were pre­
defined as symptoms consistent with an infectious or inflammatory 
condition, temporally related to ART initiation and associated with an 
increase in CD4 count, a decrease in viral load, or both, not explained 
by a new infection, the expected clinical course of a previously diag­
nosed infection, or side effects of ART according to the ACTG IRIS criteria. 
On-site clinicians utilized the above criteria to make a preliminary diag­
nosis of IRIS, and documented criteria in an electronic data management 
system. To capture all possible IRIS cases, the study coordination center 
in both countries actively monitored case report forms and electronic 
data management system of all patient visits. The central adjudication 
committee of four experts not involved in study execution or data col­
lection reviewed all preliminary cases and ultimately determined the 
classification of IRIS events by consensus. 

Opportunistic infections occurring in IRIS and non-IRIS cases are de­
scribed in the original publication of the related CADIRIS Trial in elec­
tronic Tables 3 and 4. 

2.3. Biomarker Measurement 

All plasma samples were obtained at study enrollment, prior to ART 
initiation, and were stored at -80°. Biomarkers were measured in dupli­
cate after a single freeze–thaw cycle in batched assays. Coagulation 
markers were measured in plasma collected in citrate tubes and the re­
maining biomarkers were measured in plasma collected in Ethylenedi­
aminetetraacetic acid (EDTA). 

Interferon-γ, interleukin (IL)-1b, IL-6, IL-8, IL-10, IL-12p70, IL-17 
and tumor necrosis factor-α (TNFα), CRP, serum amyloid A (SAA), 
P-selectin, interferon-inducible protein (IP)-10 were measured by 
electrochemiluminescence (Mesoscale Discovery, Rockville MD). 
Leukotriene B4 (LTB4), soluble (s) CD14, sCD40 ligand, sCD163, 
Von Willebrand Factor (vWF) activity, fibrinogen levels, proteins C and 
S, and HA were assessed with the use of standardized enzyme-linked im­
munosorbent assays (ELISAs) (R&D Systems, AdipoBioscience, Zymutest, 
and Corgenix). D-Dimer was measured with the use of an enzyme-linked 
fluorescence assay on a VIDAS instrument (Biomerieux). 25 hydro­
xyvitamin D is the most abundant of all circulating vitamin D metabolites 
and is generally accepted as the best indicator of vitamin D supply (Aloia 
et al., 2008). Therefore, the plasma concentration of 25 hydroxyvitamin D 
was measured by a standard ELISA assay (ALPCO). 

2.4. Statistical Analysis 

In this study, all participants who developed IRIS were included as 
IRIS cases and participants who did not develop IRIS were controls. 
Descriptive statistics were used to compare baseline demographics, lab­
oratory test results, and biomarker measurements between the groups. 
Results of laboratory tests were analyzed as continuous variables and 
variables not normally distributed were log10-transformed prior to 
comparisons. We used Fisher's Exact test to evaluate the association be­
tween categorical variables and IRIS. 

We used logistic regression to examine the association between 
biomarker levels and IRIS. We first performed univariate analyses to as­
sess the potential impact of baseline variables, selecting those with a 
two-sided p value of b 0.10 for inclusion in a forward stepwise regression 
analysis to determine which were independently associated with the de­
velopment of IRIS. Separate analyses were performed for all-cause IRIS, 
TB-IRIS and viral IRIS. Next, we performed univariate analyses of the bio­
markers, adjusting for the covariates above, and selected those signifi­
cantly associated with all-cause IRIS (p b 0.10) for inclusion in a forward 
stepwise regression analysis to identify those markers appearing inde­
pendently associated with all-cause IRIS, TB-IRIS, and viral IRIS. 

Further sub-analyses were performed by IRIS type (no-IRIS, TB-IRIS 
and other IRIS) utilizing Kruskal–Wallis tests with Dunn's multiple com­
parisons post-test because most variables in the clinical subgroups were 
not normally distributed even after logarithmic transformation. 

The inferential networks (described here as host interactome) were 
generated from Spearman correlation matrices containing values of 
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each biomarker measured in the plasma samples, as described before 
(Andrade et al., 2014; Mendonca et al., 2013, 2015). The values were 
inputted in JMP 11.0 software (SAS, Cary, NC, USA). Each mediator was se­
lected as a target, and the software performed a search within the other 
mediators for those that were correlated, with the target calculating a cor­
relation matrix using Spearman rank tests. As a result, the features related 
to the selected target are linked. Thus, the links shown in the networks 
represent statistically significant Spearman rank correlations (p b 0.05). 
Graphics for the network analysis were customized using the Ingenuity 
Systems Pathway Analysis software (Ingenuity Systems, Redwood City, 
CA, USA) and Adobe Illustrator (Adobe Systems Inc.). 

A composite score was created using the variables shown to be sta­
tistically different in TB-IRIS group compared to the other groups (CRP, 
sCD14, IFNγ and Hb). A score of one (+1) was attributed whenever 
CRP, sCD14 or IFNγ values were above the 75th percentile and Hb levels 
below the 25th percentile of the entire study population. The rationale 
for the use of the 75th and 25th percentiles respectively was to identify 
individuals with the highest values of CRP, sCD14 and IFNγ and with the 
lowest values of Hb in the study population. This composite score could 
then range between zero and 4. The values obtained between IRIS 
groups were compared using the Kruskal–Wallis test with Dunn's mul­
tiple comparisons post-test. Receiver Operator Characteristics (ROC) 
curves were employed to test the performance of the composite score 
to distinguish TB-IRIS cases from other types of IRIS or individuals 
who did not develop IRIS. 

All analyses were pre-specified. Two-sided p values of b0.05, unad­
justed for multiple testing, were considered statistically significant. 
Data were collected and stored at a central data repository. Statistical 
analyses were done using STATA (version 13; StataCorp., College 
Town, TX, USA) and JMP 11.0 software. 

3. Role of Funding Sources 

The main clinical trial and this substudy were investigator-initiated. 
Pfizer Inc. had no role in the design and conduct of the study; in the 
collection, analysis, or interpretation of data; in the decision to publish 
this study or main clinical trial; in the preparation, review, or approval 
of this manuscript. All substudy samples were processed and analyzed 
by NIAID. All authors had full access to all of the data in the study and 
the final responsibility for the decision to submit for publication. 

4. Results 

4.1. Clinical Characteristics and IRIS 

Three hundred sixty-two patients were screened for eligibility and 
276 were enrolled. Of these, 267 had blood banked at enrollment and 
were included in this study. Patients in the maraviroc plus ART and 
Table 1 
Characteristics of study participants at initiation of ART. 

Characteristic All patients 
(n = 267) 

Age, years 36.0 (30.0–43.0) 
Female sex, no. (%) 92 (34.4%) 
Maraviroc treatment group, no. (%) 135 (50.6%) 
Country, no. (%) 

South Africa 143 (53.6%) 
Mexico 124 (46.4%) 

Death, no. (%) 11 (4%) 
AIDS-defining illness, no. (%) 159 (59.5%) 

Tuberculosis 53 (20%) 
CD4+ cell count, per mm3 33.0 (18.0–59.0) 
CD8+ cell count, per mm3 476.5 (341.5–743.0) 
Hemoglobin, g/dL 12.1 (10.8–13.4) 
Plasma HIV RNA, log copies/mL 5.4 (5.0–5.7) 

Data reported are medians and interquartile ranges unless otherwise noted. 
ART alone treatment arms had similar baseline demographics, clinical 
characteristics and no difference in risk of IRIS after 48 weeks of 
follow-up, as previously reported (Sierra-Madero et al., 2014). Eleven 
participants died; five had IRIS and six did not. 

Characteristics of the 267 participants at the initiation of ART are 
shown in Table 1. Participants had a median age of 36 years [Interquartile 
range (IQR), 30–43], median CD4 count of 33 cells per μL (IQR18–59), and 
median HIV-RNA 5.4 log10 copies/mL (IQR, 5.0–5.7 log10 copies/mL). 
Sixty-two patients (23%) developed IRIS within 6 months of ART initiation 
while 204 patients did not. Nineteen cases (31% of IRIS events) were TB­
IRIS. Four additional cases were non-mycobacterial IRIS. There were a 
total of 69 IRIS events with seven patients having multiple IRIS presen­
tations. IRIS cases by type and pathogen are described in Table 2. IRIS 
events were more common in men (odds ratio (OR) for male compared 
to female participants, 2.4 [95% confidence interval (CI), 1.2 to 4.6]). 
Patients who experienced IRIS were more likely to be from Mexico, to 
have anemia, and to present with an AIDS defining illness. There were 
no significant differences between study arms with respect to CD4 
count or HIV RNA level at baseline. Other laboratory values analyzed 
were albumin and CD8 count, which did not differ significantly between 
groups. 

4.2. Biomarker Measurement and Paradoxical vs. Unmasking IRIS 

Among all IRIS cases, participants who developed paradoxical IRIS 
had significantly higher levels of IFNγ and sCD14 (Table 3). There was 
a trend for higher levels of D-dimer and hyaluronic acid in parodixal IRIS. 

4.3. Biomarker Measurement and AIDS-defining Illness 

Participants with a prior AIDS-defining illness at the time of study 
enrollment had higher measurements of IFNγ, IL-6, IL-8, IL-10, TNFα, 
CRP, IP-10, sCD14, Hyaluronic acid, and D-dimer (Table 4). 

4.4. Inflammation and IRIS 

Levels of D-dimer and CRP were significantly higher in IRIS (Table 5). 
D-Dimer levels remained significantly associated with risk of IRIS when 
the analysis was adjusted for gender, AIDS-defining illness, and Hb level 
(OR per unit increase in log D-dimer value, 3.85; 95% CI, 1.43–10.3) 
while CRP did not. 

In univariate unadjusted analyses, elevated levels of inflammatory 
cytokines and chemokines (IL-6, IL-8, TNFα, IFNγ and IP-10) were sig­
nificantly associated with IRIS. Following adjustment for clinical con­
founders, IFNγ remained significant (OR per unit increase in log10­
transformed IFNγ value, 2.9; 95% CI, 1.3–6.4). To assess the role of mye­
loid cell activation in IRIS pathogenesis, sCD14, sCD40L, and sCD163 
IRIS diagnosed IRIS not diagnosed p-Value 
(n = 62) (n = 205) 

35.5 (30.0–41.0) 36.0 (31.0–43.0) 0.76 
13 (21.0%) 79 (38.5%) 0.01 
32 (51.6%) 103 (50.2%) 0.88 

0.008 
24 (38.7%) 119 (58.0%) 
38 (61.3%) 86 (42.0%) 
5 (8%) 6 (3%) 0.135 
49 (79.0%) 110 (53.7%) 0.001 
16 (26%) 37 (18%) 0.179 
30.5 (11.0–59.0) 35·0 (19.0–59.0) 0.24 
431 (313.5–620.0) 497.5 (348.5–758.5) 0.192 
11.8 (10.7–13.0) 12.3 (11.0–13.7) 0.08 
5.4 (5.0–5.7) 5.4 (5.0–5.7) 0.39 
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Table 2 
IRIS events by pathogen. 

Pathogen IRIS event Paradoxical Unmasking Steroid treatment Median days to 
n = 69  no. (%) no. (%) no. (%) IRIS (IQR) 

Tuberculosis 19 14 (70.0%) 5 (30.0%) 5 (26.3%) 13 (11–19) 
Varicella zoster 17 0 17 (100%) 0 46 (29–99) 
Herpes simplex 13 0 13 (100%) 1 (7.7%) 18 (13–26) 
Non-tuberculosis mycobacteria 4 1 (33.3%) 3 (66.6%) 0 10 (7–22) 
Human papilloma virus 3 0 3 (100%) 0 69 (42–125) 
Histoplasmosis 3 1 (33.3%) 2 (66.6%) 1 (33.3%) 126 (75–157) 
Eosinophilic folliculitisa 3 1 (33.3%) 2 (66.6%) 0 15 (12–50) 
Kaposi's sarcoma 2 1 (50.0%) 1 (50.0%) 2 (100%) 82.5 (49–116) 
Cryptosporidium 1 1 (100%) 0 1 (100%) 14 
Toxoplasmosis 1 1 (100%) 0 0 8 
Molluscum contagiousum 1 1 (100%) 0 0 18 
Cytomegalovirus 1 0 1 (100%) 0 33 
Pruritic eruptiona 1 1 (100%) 0 0 25 
Any IRIS 69 22 (31.9%) 47 (68.1%) 9 (13.0%) 25 (13–50) 

Seven patients had more than one IRIS event. These participants were classified by the first event. Patients who received steroids within two weeks of enrollment were excluded from the 
clinical trial and this substudy. All biomarkers were measured prior to IRIS diagnoses. Severe IRIS cases were treated with systemic steroids, consistent with the standard of care at the 
clinical trial center. 

a IRIS cases in which the pathogen was not identified. 
were compared between cases and the remaining cohort and of these, 
only sCD14 was significantly associated in multivariate analyses. 

4.5. Vitamin D Levels and IRIS	 

Participants had very low vitamin D levels with a median level of 
9.4 ng per mL (IQR 5.4–15.9) compared to a commonly accepted cut-
off for clinical deficiency of b30 ng/mL (LeBlanc et al., 2014). Higher vi-
tamin D levels were associated with protection against development of 
IRIS events. The multivariate-adjusted odds ratio of IRIS per unit in-
crease in the log vitamin D value was 0.37 (95% CI, 0.14–0.95). 

4.6. TB-IRIS	 

Differences between TB-IRIS cases and the remaining cohort are 
shown in Table 6. TB-IRIS cases were more frequently male, from 
Mexico, and had lower levels of hemoglobin. In univariate analyses, 
Table 3	 
Biomarker measurements at initiation of ART: paradoxical vs. unmasking IRIS.	 

Biomarker	 Paradoxical IRIS Unmasking IRIS p-Value 
(n = 20) (n = 42) 
Median (IQR) Median (IQR) 

IFNγ (pg/mL) 9.4 (3.2–22.0) 5.4 (1.8–8.2) 0.03a 

IL-6 (pg/mL) 3.2 (1.6–4.4) 2.4 (1.5–4.0) 0.80 
IL-8 (pg/mL) 13.2 (9.2–17.6) 9.4 (6.1–14.9) 0.13 
IL-10 (pg/mL) 13.1 (9.0–18.3) 14.5 (10.6–20.5) 0.97 
IL-12p70 (pg/mL) 1.8 (0.9–5.4) 1.3 (0.8–2.9) 0.53 
IL-17 (pg/mL) 0.4 (0.2–0.7) 0.3 (0.2–0.6) 0.85 
TNFα (pg/mL) 22.0 (14.6–29.8) 18.8 (15.9–26.8) 0.23 
CRP (mg/L) 6.0 (3.1–24.5) 3.9 (1.7–11.4) 0.22 
SAA (mg/L) 10.3 (3.5–34.8) 6.2 (2.6–24.4) 0.57 
P-selectin (ng/mL) 62.2 (34.9–88.3) 55.2 (42.8–67.4) 0.58 
IP-10 (pg/mL) 2917 (1690–4134) 2587 (1517–3843) 0.36 
sCD14 (μg/mL) 3.01 (2.33–3.76) 2.18 (1.78–2.78) 0.007a 

sCD163 (ng/mL) 686.5 (458.4–914.7) 607.4 (369.5–832.0) 0.87 
sCD40L (pg/mL) 1093 (603.8–1695) 779.9 (471.1–1197) 0.14 
Fibrinogen (mg/dL) 749.9 (537.3–2428) 843.7 (575.0–1768) 0.99 
Protein C (%) 3516 (3152–4325) 3810 (3077–4237) 0.91 
Protein S (%) 3494 (2813–3937) 3848 (3169–4927) 0.06 
HA (pg/mL) 89.2 (45.0–141) 63.1 (39.9–91.5) 0.11 

D-Dimer (mg/L) 1.6 (1.2–2.9) 1.1 (0.8–2.1) 0.08 

Vitamin D (ng/mL) 9.3 (5.7–13.8) 7.5 (4.5–13.3) 0.22	 

Data reported are medians and interquartile ranges unless otherwise noted. Biomarkers 
with non-parametric distributions were log-transformed for statistical analyses. 
Log-transformed p-values are reported with the exceptions of sCD14, sCD163, sCD41L, 
P-selectin, Proteins C & S. 

a	 Significant in univariate analysis.	 
higher concentrations of IL-10, CRP, sCD14, IFNγ, and lower Hb, were 
present in TB-IRIS (Fig. 1a; Table 7). Of these markers, values of CRP, 
sCD14, IFNγ and Hb were different in TB-IRIS cases compared to the 
no-IRIS and other IRIS groups (Fig. 1b). An exploratory analysis using 
networks from Spearman correlation matrices demonstrated distinct 
networking profiles (Fig. 1c and Supplemental File 1), and that, in gen­
eral, Hb levels exhibited statistically significant negative correlations 
with markers of inflammation and coagulation within each study group. 

We next constructed an inflammatory score, which compiled vari-
ables significantly linked to TB-IRIS, and compared it to the non-IRIS 
and other-IRIS groups (Fig. 2a). TB-IRIS cases accumulated a higher 
score than either the non-IRIS or other IRIS groups (Fig. 2b). Increases 
above 1 point in the composite score were associated with TB-IRIS 
after adjustments for age, gender and country (unadjusted OR: 7.46, 
95% CI: 2.86–19.4, p b 0.0001; adjusted OR: 5.67, 95% CI: 1.92–15.63, 
p b 0.0001). ROC curves confirmed that the composite score had poten-
tial to identify TB-IRIS cases in this cohort (TB-IRIS vs. non-IRIS AUC: 
Table 4 
Biomarker measurements in all patients: baseline AIDS-defining Illness at ART Initiation. 

Biomarker AIDS-defining illness No AIDS-defining illness p-Value 
(n = 108) (n = 159) 
Median (IQR) Median (IQR) 

IFNγ (pg/mL) 4.5 (2.4–8.8) 1.8 (1.1–3.6) b.0001a 

IL-6 (pg/mL) 2.2 (1.5–3.6) 1.4 (1.1–3.6) 0.02a 

IL-8 (pg/mL) 10.2 (6.7–17.5) 5.9 (3.9–9.0) b.0001a 

IL-10 (pg/mL) 12.2 (8.6–18.6) 9.3 (7.1–12.9) b.0001a 

IL-12p70 (pg/mL) 1.1 (0.5–2.8) 1.3 (0.8–3.8) 0.98 
IL-17 (pg/mL) 0.3 (0.2–0.5) 0.3 (0.2–0.6) 0.94 
TNFα (pg/mL) 18.9 (14.1–25.9) 14.9 (11.0–19.0) 0.04a 

CRP (mg/L) 4.7 (1.7–11.3) 2.1 (1.1–5.6) 0.03a 

SAA (mg/L) 6.5 (2.3–19.0) 4.4 (1.5–10.1) 0.21 
P-selectin (ng/mL) 52.4 (39.2–74.8) 59.4 (47.1–77.5) 0.28 
IP-10 (pg/mL) 2669 (1708–3895) 1567 (991.5–2230) b.0001a 

sCD14 (μg/mL) 2.31 (1.94–2.96) 1.83 (1.52–2.18) b.0001a 

sCD163 (ng/mL) 690.8 (444.9–951.4) 630.0 (407.1–925.8) 0.59 
sCD40L (pg/mL) 887.0 (337.6–1333) 1062 (707.4–1574) 0.20 
Fibrinogen (mg/dL) 931.9 (554.8–1551) 959.0 (581.2–1871) 0.46 
Protein C (%) 3749 (3177–4378) 3788 (3241–4319) 0.25 
Protein S (%) 3789 (3177–4510) 3982 (3277–4927) 0.07 
HA (pg/mL) 66.5 (41.8–120) 36.9 (13.8–76.0) b.0001a 

D-Dimer (mg/L) 1.2 (0.6–1.8) 0.8 (0.5–1.3) 0.04a 

Vitamin D (ng/mL) 9.5 (5.5–15.9) 9.2 (5.1–15.8) 0.94 

Data reported are medians and interquartile ranges unless otherwise noted· Biomarkers 
with non-parametric distributions were log-transformed for statistical analyses· 
Log-transformed p-values are reported with the exceptions of sCD14, sCD163, 
sCD41L, P-selectin, Proteins C &S. 

a Significant in univariate analysis. 
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Table 5 
Biomarker measurements at initiation of ART. 

Biomarker IRIS diagnosed IRIS not diagnosed p-Value 
Median (IQR) Median (IQR) 

Unadjusted Adjusted 

IFNγ (pg/mL) 5.6 (2.2–10.6) 2.7 (1.4–5.2) b.001 0.01a 

IL-6 (pg/mL) 2.5 (1.5–4.0) 1.7 (1.2–3.1) 0.048 0.48 
IL-8 (pg/mL) 10.5 (6.6–15.4) 7.6 (4.8–13.8) 0.04 0.79 
IL-10 (pg/mL) 14.0 (9.4–20.3) 10.4 (7.6–15.7) 0.04 0.19 
IL-12p70 (pg/mL) 1.3 (0.9–4.8) 1.1 (0.7–3.2) 0.48 0.45 
IL-17 (pg/mL) 0.4 (0.2–0.6) 0.3 (0.2–0.6) 0.74 0.79 
TNFα (pg/mL) 19.9 (15.4–28.1) 15.5 (12.1–21.9) 0.04 0.23 
CRP (mg/L) 4.5 (1.8–13.7) 2.5 (1.3–9.0) 0.03 0.28 
SAA (mg/L) 6.3 (2.6–25.2) 5.3 (1.6–12.6) 0.15 0.54 
P-selectin (ng/mL) 55.4 (39.9–69.9) 56.1 (41.7–76.5) 0.86 0.98 
Log10IP-10 (pg/mL) 3.4 (3.2–3.6) 3.3 (3.1–3.5) 0.005 0.16 
sCD14 (μg/mL) 2.4 (2.0–3.2) 2.0 (1.6–2.5) b.0001 0.01a 

sCD163 (ng/mL) 607.6 (391.6–893.5) 677.0 (442.9–979.9) 0.23 0.13 
sCD40L (pg/mL) 912.7 (489.1–1318) 963.7 (449.0–1532) 0.35 0.49 
Fibrinogen (mg/dL) 829.6 (562.9–1977) 990.1 (575.0–1596) 0.99 0.76 
Protein C (%) 3660 (3108–4270) 3780 (3220–4388) 0.34 0.66 
Protein S (%) 3711 (2912–4439) 3891 (3264–4764) 0.21 0.47 
HA (pg/mL) 70.7 (43.7–102.4) 51.3 (26.1–93.0) 0.10 0.95 

D-Dimer (mg/L) 1.3 (0.8–2.3) 0.8 (0.5–1.5) 0.0008 0.007a 

Vitamin D (ng/mL) 8.2 (5.0–13.8) 9.6 (5.8–17.9) 0.04 0.04a 

Data reported are medians and interquartile ranges unless otherwise noted. Biomarkers with non-parametric distributions were log-transformed for statistical analyses. Log-transformed 
p-values are reported with the exceptions of sCD14, sCD163, sCD41L, Proteins C &S. 

a Significant after adjustment for gender, AIDS-defining condition, and Hb level. 
0.82, sensitivity: 71.4%, specificity: 73.2%, p b 0.0001; TB-IRIS vs. other 
IRIS AUC: 0.85, sensitivity: 71.4%, specificity: 80.0%, p b 0.0001; Fig. 2b). 

4.7. Viral IRIS 

Baseline characteristics for participants who developed viral IRIS 
compared to participants who did not are described in Table 8. Partici­
pants who developed viral IRIS were more immunosuppressed and 
otherwise, similar to the remaining participants. Biomarkers measured 
prior to ART were compared between participants with viral IRIS to 
those without (Table 9). Only IL-10 was significantly associated with 
disease. In our multivariate analysis, following adjustment for CD4 
count, IL-10 remained the only significant association, although we ob­
served trends for higher levels of D-dimer and TNFα in viral IRIS. 

5. Discussion 

In this multicenter, prospective study, we identified biomarkers that 
were associated with increased IRIS risk when measured immediately 
prior to ART initiation. Our findings suggest that vitamin D, D-dimer and 
markers of T cell and monocyte activation (IFNγ, sCD14), may help iden­
tify patients at highest risk. Notably, D-dimer and vitamin D were not as­
sociated with TB-specific IRIS in a multivariate sub-analysis. This study 
was not powered for this sub-analysis and may best explain the observed 
Table 6 
Characteristics of study participants at initiation of ART based on TB versus other IRIS event. 

Characteristic TB-IRIS O
(n = 19) (

Age, years 38.0 (29.0–42.0) 3
Female sex, no. (%) 4 (19.0%) 9
Treatment group, no. (%) 9 (42.9%) 2
Country, no. (%) 

Mexico 13 (61.9%) 2
Death, no. (%) 2 (9.5%) 3
CD4+ cell count, per mm3 31.0 (17.5–56.5) 2
CD8+ cell count, per mm3 430.0 (278.5–639.0) 4
Hemoglobin, g/dL 10.7 (9.8–12.0) 1
Plasma HIV RNA, log copies/mL 5.5 (5.0–5.7) 5

Data reported are medians and interquartile ranges unless otherwise noted. 
discrepancy. Taken together, our results support a potential role for vita­
min D in IRIS pathogenesis and thus, a potential target for intervention. 

To our knowledge, this is the largest, comprehensive prospective 
study of baseline biomarker measurement and IRIS risk to date in pa­
tients without a pre-specified infection at baseline. Distinctively, our 
study participants represent an important HIV patient group particular­
ly susceptible to IRIS in settings endemic for TB and poor immune status 
at therapy initiation. Further, our results were derived from a study per­
formed on two different continents, increasing their generalizability. 
Moreover, plasma samples were obtained prior to ART initiation and 
thus prior to the onset of IRIS symptoms. 

The exploratory nature of our study allowed us to screen twenty bio­
markers and evaluate their association with IRIS development. Plasma 
specimens were drawn prior to ART initiation, and therefore prior to 
symptom onset, thereby permitting our measurements to capture dif­
ferences in cytokine expression and other inflammatory biomarkers 
prior to immune reconstitution with ART. Study monitoring was also 
rigorous. 

There are limitations to our study. Firstly, patients with severe labo­
ratory abnormalities, mental status changes and CNS infections were 
not eligible for participation, thus these results may not be generalizable 
to critically ill patients. Additionally, baseline biomarker measurement 
allowed for the assessment of IRIS risk prediction but did not allow us 
to evaluate temporal changes in biomarker levels; an approach that 
might have improved our understanding of the pathophysiology of 
ther IRIS IRIS not diagnosed p-Value 
n = 43) (n = 205) 

5.0 (31.0–41.0) 36.0 (30.0–43.0) 0.87 
 (21.5%) 79 (38.5%) 0.04 
3 (56.1%) 103 (50.2%) 0.60 

0.03 
5 (61.0%) 86 (42.0%) 
 (7.3%) 6 (3.0%) 0.19 
8.0 (19.0–59.0) 35.0 (19.0–60.0) 0.47 
31.0 (313.5–597.0) 502.0 (356.0–761.5) 0.26 
2.6 (11.1–13.2) 12.3 (11.0–13.7) 0.002 
.4 (5.0–5.7) 5.4 (5.0–5.7) 0.81 
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Fig. 1. Using pre-ART plasma levels of inflammatory biomarkers to predict TB-IRIS. Pre-ART levels of selected plasma markers were compared among individuals who developed TB-IRIS 
(n = 19), viral or other kinds of IRIS (n = 43) within 6 months of ART initiation, and those who did not develop IRIS (n = 205). (a) A heat map was designed to depict the overall 
expression pattern of plasma cytokines, chemokines, and inflammatory markers in the study population. A two-way hierarchical cluster analysis (Ward's method) of circulating 
biomarkers by clinical group was performed. Expression scale for each biomarker represents log10 fold-change from the median values of the entire study population. Markers in bold 
identify those that were statistically different between the groups using the Kruskal–Wallis test (**p b 0.01; ***p b 0.001). (b) Scatter plots of six biomarkers that displayed significant 
differences assessed by Kruskal–Wallis tests are shown, and groups were compared using Dunn's multiple comparisons post-test (*p b 0.05; **p b 0.01; ***p b 0.001). (c) The network 
analysis (interactome) shows statistically significant correlations (p b 0.05). Data were analyzed using Spearman rank tests. See Supplemental File 1 for additional details on the 
strength (r value) and level of significance (p-value) of each individual correlation. In (b), lines represent median values and interquartile ranges. 

Table 7 
Biomarker measurements at initiation of ART: TB-IRIS. 

Biomarker TB-IRIS diagnosed TB-IRIS not diagnosed p-Value 
Median (IQR) Median (IQR) 

Unadjusted Adjusted 

IFNγ (pg/mL) 10.2 (5.6–22.0) 2.9 (1.5–5.8) b.0001 0.003a 

IL-6 (pg/mL) 3.5 (1.6–5.0) 1.8 (1.3–3.2) 0.07 0.53 
IL-8 (pg/mL) 11.8 (7.7–14.5) 8.0 (5.0–14.0) 0.04 0.54 
IL-10 (pg/mL) 12.9 (9.2–15.8) 10.9 (7.8–17.4) 0.32 0.58 
IL-12p70 (pg/mL) 1.5 (0.6–5.4) 1.2 (0.7–3.2) 0.95 0.73 
IL-17 (pg/mL) 0.3 (0.20–0.50) 0.3 (0.2–0.6) 0.85 0.78 
TNFα (pg/mL) 22.0 (16.0–29.2) 16.1 (12.4–22.3) 0.12 0.55 
CRP (mg/L) 10.8 (3.5–31.4) 2.7 (1.3–9.0) 0.002 0.04 
SAA (mg/L) 15.6 (4.4–70.5) 5.1 (1.7–13.7) 0.03 0.13 
P-selectin (ng/mL) 55.4 (34.9–87.2) 56.1 (42.0–75.9) 0.76 0.86 
IP-10 (pg/mL) 2917 (2227–3993) 2080 (1342–3185) 0.04 0.47 
sCD14 (μg/mL) 3.08 (2.46–3.76) 2.05 (1.66–2.52) b.0001 0.003a 

sCD163 (ng/mL) 695.1 (373.3–949.9) 652.0 (432.9–952.9) 0.90 0.62 
sCD40L (pg/mL) 656.3 (413.5–1140) 963.7 (489.1–1474) 0.77 0.74 
Fibrinogen (mg/dL) 857.8 (537.3–3607) 951.6 (575.0–1554) 0.40 0.54 
Protein C (%) 3516 (3014–4247) 3781 (3208–4366) 0.38 0.68 
Protein S (%) 3516 (2813–4269) 3886 (3246–4765) 0.08 0.12 
HA (pg/mL) 86.2 (48.4–140.8) 54.3 (27.1–93.0) 0.06 0.93 

D-Dimer (mg/L) 1.2 (1.1–2.5) 0.9 (0.5–1.6) 0.16 0.16 

Vitamin D (ng/mL) 9.7 (5.2–13.3) 9.4 (5.4–15.9) 0.04 0.25 

Data reported are medians and interquartile ranges unless otherwise noted. Biomarkers with non-parametric distributions were log-transformed for statistical analyses. Log-transformed 
p-values are reported with the exceptions of sCD14, sCD163, sCD41L, Proteins C &S. 

a Significant after adjustment for AIDS-defining condition and Hb level. 
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Fig. 2. A composite score of inflammatory markers to predict TB-IRIS. (a) A composite score was created using the variables shown to be statistically different in TB-IRIS group compared to 
the other groups (CRP, sCD14, IFNγ, and Hb). A score of one (+1) was attributed whenever CRP, sCD14 or IFNγ values were above the 75th percentile and Hb levels below the percentile 
25th of the entire study population (percentile values were: CRP = 10.44 mg/L, sCD14 = 2.65 μg/mL, IFNγ = 16.5 pg/mL, Hb = 10.8 g/dL). This composite score could then range between 
zero and four; values obtained between the study groups were compared using the Kruskal–Wallis test with Dunn's multiple comparisons post-test (***p b 0.001). (b) Receiver Operator 
Characteristic (ROC) curves were employed to test the performance of the composite score to distinguish TB-IRIS cases from Other IRIS or non-IRIS individuals. In (a), data represent 
median and interquartile range. 
IRIS. It is also important to note that IRIS incidence was higher in 
patients in Mexico compared to those in South Africa. This is likely 
explained by a higher prevalence of AIDS-defining illnesses among 
patients in Mexico as reported in our published clinical trial results 
(79.0% vs. 42.8%; Sierra-Madero et al., 2014). 

The active form of vitamin D has anti-inflammatory properties and 
higher vitamin D levels are associated with lower risks of immune-
mediated disorders, multiple sclerosis and graft versus host disease 
(Salzer et al., 2012; von Bahr et al., 2015). In a randomized clinical 
trial of vitamin D supplementation in patients with TB, a subset of 
patients with a polymorphism in the vitamin D receptor showed im­
proved infection clearance (Martineau et al., 2011). Most patients 
with HIV infection in low-resource settings have demonstrable vitamin 
D deficiency and this deficiency is directly related to the degree of im­
munosuppression (Aziz et al., 2013). A recent clinical trial of vitamin 
D supplementation in HIV infection showed a reduction in immune ac­
tivation, suggesting an anti-inflammatory role (Fabre-Mersseman et al., 
2014). Consistent with those results, our study revealed an association 
between lower vitamin D levels and IRIS risk. In contrast, a recent 
nested case–control study of TB-IRIS in HIV linked severe vitamin D 
deficiency with underlying inflammation, irrespective of IRIS status, 
suggesting that low vitamin D levels represent markers of inflamma­
tion, rather than of IRIS itself (Conesa-Botella et al., 2012). This hypoth­
esis may best explain why a trend for significance between TB-IRIS risk 
and vitamin D was not upheld after multivariate adjustment. However 
in the same study, while corticosteroid use improved inflammatory cy­
tokine expression, it did not influence vitamin D levels, suggesting that 
in this setting vitamin D deficiency may not be driven by inflammation 
but rather may drive it or alternatively, may play an independent role in 
IRIS pathogenesis (Conesa-Botella et al., 2012). 
Table 8 
Characteristics of study participants at ART initiation by viral IRIS. 

Characteristic Viral IRIS No viral IRIS p-Value 
(n = 36) (n = 231) 

Age, years 37.0 (32.5–42.5) 36.0 (30.0–43.0) 0.48 
Female sex, no. (%) 8 (22.2%) 84 (36.4%) 0.10 
Treatment group, no. (%) 19 (52.8%) 116 (50.2%) 0.77 
Country, no. (%) 0.24 

Mexico 20 (55.6%) 104 (45.0%) 
Death, no. (%) 1 (2.8%) 10 (4.3%) 0.67 
CD4+ cell count, per mm3 26.5 (6.5–53.0) 34.0 (19.0–61.0) 0.03 
CD8+ cell count, per mm3 416.5 (302.0–597.0) 493.0 (351.0–757.0) 0.23 
Hemoglobin, g/dL 12.5 (11.2–13.2) 12.1 (10.8–13.6) 0.77 
Plasma HIV RNA, log 5.4 (5.0–5.8) 5.4 (5.0–5.7) 0.57 
copies/mL 

Data reported are medians and interquartile ranges unless otherwise noted. 
D-Dimer may be the biomarker most strongly associated with ad­
verse events in HIV infection — from all-cause mortality in the SMART 
trial to venous thromboembolism and cardiovascular disease in prior 
published work (Kuller et al., 2008; Musselwhite et al., 2011; Nordell 
et al., 2014). Recent studies using peripheral blood monocyte popula­
tions have identified a unique relationship between D-dimer and mono­
cyte activation — specifically that activated monocyte phenotypes are 
preferentially expanded in HIV infection and express tissue factor, pro­
moting activation of the extrinsic coagulation cascade resulting in clot 
formation and elevation of D-dimer levels (Funderburg et al., 2012). 
These findings support our observations, which link higher D-dimer 
levels and sCD14 to IRIS risk. 

Consistent with our findings of elevated IFNγ and sCD14 in IRIS, 
other studies have suggested that an exaggerated Th1 response may 
characterize the pathogenesis of IRIS (Grant et al., 2012; Vignesh et al., 
2013; Ravimohan et al., 2015). The presence of a pathogen or malignan­
cy triggers Th1 cytokine production, thereby converting myeloid cell 
precursors into potent, activated monocytes resulting in downstream 
inflammatory cytokine signaling. 

Of note, higher levels of proinflammatory biomarkers TNFα and CRP 
were significantly associated with IRIS risk in our univariate analysis, 
while after adjustment, this statistical relationship tempered. It may 
be that these biomarkers better reflect a concomitant opportunistic in­
fection, rather than IRIS risk. Indeed the relationship between IRIS and 

D-dimer, IFNγ, sCD14, and vitamin D were upheld following multivari­
ate adjustment and may shed better light on the true pathophysiology 
of IRIS itself — independent of a pre-existing AIDS-defining illness. 

In the present study, we identified a unique biosignature in partici­
pants who developed TB-IRIS compared to other IRIS causes. The bio­
markers composing this signature indicate systemic inflammation 
(elevated CRP concentrations) monocyte activation (heightened sCD14 
levels), increased Th1 responses (elevated IFNγ levels) and anemia (low 
Hb levels) in TB-IRIS, which when considered together in a composite 
score could indicate heightened risk. In addition, findings from our net­
work analysis using Spearman matrices shows a negative correlations be­
tween Hb and sCD14 — another independently associated biomarker, 
highlighting the interplay between immune-mediated inflammation 
and anemia in these patients. We identified similar findings in TB-IRIS pa­
tients in prospective cohorts from India and South Africa (Narendran 
et al., 2013). Together, our results suggest that monocyte activation and 
the Th1 responses are robustly related to TB-IRIS. 

A post-hoc, exploratory viral IRIS sub-analysis revealed a significant, 
independent relationship with IL-10. We recently reported a parallel 
observation in HIV-positive persons co-infected with hepatitis B or C 
who developed hepatitis flares after ART (Andrade et al., 2013). Further, 
higher hepatitis B and C viral loads were associated with hepatitis flares, 
suggesting that pathogen burden itself may play a role in IL-10 elevation 
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Table 9 
Biomarker measurements at initiation of ART: Viral IRIS. 

Biomarker Viral IRIS diagnosed Viral IRIS not diagnosed p-Value 
Median (IQR) Median (IQR) 

Unadjusted Adjusted 

IFNγ (pg/mL) 4.0 (1.6–7.5) 2.9 (1.6–6.2) 0.71 0.61 
IL-6 (pg/mL) 2.3 (1.4–3.9) 1.8 (1.3–3.2) 0.65 0.61 
IL-8 (pg/mL) 10.5 (6.3–15.4) 8.0 (5.0–13.8) 0.16 0.27 
IL-10 (pg/mL) 16.0 (10.6–24.9) 10.7 (7.8–15.6) 0.005 0.005a 

IL-12p70 (pg/mL) 1.2 (0.9–5.2) 1.2 (0.7–3.2) 0.26 0.18 
IL-17 (pg/mL) 0.4 (0.2–0.7) 0.3 (0.2–0.6) 0.39 0·25 
TNFα (pg/mL) 19.7 (15.4–27.0) 16.0 (12.3–22.2) 0.21 0.08 
CRP (mg/L) 3.3 (1.6–8.1) 3.1 (1.4–11.0) 0.78 0.71 
SAA (mg/L) 4.7 (2.2–15.3) 5.5 (1.7–15.6) 0.76 0.78 
P-selectin (ng/mL) 56.5 (39.9–73.4) 56.0 (41.7–76.3) 0.86 0.63 
IP-10 (pg/mL) 2197 (1486–3824) 2119 (1342–3153) 0.22 0.18 
sCD14 (μg/mL) 2.10 (1.67–3.23) 2.10 (1.73–2.63) 0.48 0.48 
sCD163 (ng/mL) 582.1 (391.6–935.4) 678.7 (436.5–952.9) 0.60 0.60 
sCD40L (pg/mL) 943.5 (497.8–1355) 962.9 (446.9–1501) 0.49 0.68 
Fibrinogen (mg/dL) 857.8 (575.0–1559) 967.3 (564.4–173) 0.97 0.89 
Protein C (%) 3854 (3132–4308) 3841 (3208–4378) 0.94 0.99 
Protein S (%) 3806 (2912–4773) 3885 (3234–4686) 0.81 0.84 
HA (pg/mL) 63.4 (41.7–92.2) 54.5 (27.3–95.0) 0.54 0.72 

D-Dimer (mg/L) 1.2 (0·8–2.3) 1.0 (0.5–1.6) 0.13 0.06 

Vitamin D (ng/mL) 8.9 (5.0–14.6) 9.4 (5.4–17.1) 0.43 0.55 

Data reported are medians and interquartile ranges unless otherwise noted. Biomarkers with non-parametric distributions were log-transformed for statistical analyses. Log-transformed 
p-values are reported with the exceptions of sCD14, sCD163, sCD41L, P-selectin, Proteins C &S. 

a Significant after adjustment for CD4 count. 
and pathogenesis. Unfortunately, measurement of viral antigen and 
replication was beyond the scope of this study. Interleukin-10 is elevat­
ed in HIV-uninfected patients with hepatitis B flares (Tan et al., 2010), 
CMV reactivation (Frantzeskaki et al., 2015), and Herpes Zoster lesions 
(Zhang et al., 2011). Combined, these data highlight a replicable rela­
tionship between IL-10 concentration and viral infections commonly 
implicated in IRIS. In IRIS patients, we need to next determine whether 
it is pre-ART pathogen load itself or other host factors responsible for 
enhanced IL-10 concentration. In doing so, we may identify the best 
intervention target. 

If our findings are reproducible in similar high-risk groups of patients, 
future research may be warranted to measure specific biomarkers  
to identify patients for whom vitamin D supplementation, anti-
inflammatory or anti-thrombotic drugs may be of clinical benefit. 
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