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Abstract. Two metalloproteinases, collagenase and 
stromelysin, are produced in large quantities by syno- 
vial fibroblasts in individuals with rheumatoid arthri- 
tis. These enzymes play a major role in the extensive 
destruction of connective tissue seen in this disease. In 
this study, we show that heat shock of monolayer cul- 
tures of rabbit synovial fibroblasts increases expression 
of mRNA for heat shock protein 70 (HSP-70), and for 
collagenase and stromelysin. We found that after heat 
shock for 1 h at 45°C, the mRNA expression for 
HSP-70 peaks at 1 h and returns to control levels by 
3 h. Collagenase and stromelysin mRNA expression is 
coordinate, reaching peak levels at 3 h and returning 
to control levels by 10 h. The increase in mRNA is 

paralleled by an increase in the corresponding protein 
in the culture medium. 3 h of heat shock at a lower 
temperature (42°C) is also effective in inducing col- 
lagenase and stromelysin mRNAs. Concomitant treat- 
ment with phorbol myristate acetate (PMA; 10 -8 or 
10 -9 M )  and heat shock is not additive or synergistic. 
In addition, all-trans-retinoic acid, added just before 
heat shock, prevents the increase in mRNAs for col- 
lagenase and stromelysin. Our data suggest that heat 
shock may be an additional mechanism whereby col- 
lagenase and stromelysin are increased during rheuma- 
toid arthritis and perhaps in other chronic inflamma- 
tory stress conditions. 

C 
ONNECTIVE tissue metalloproteinases are enzymes 
that are active at neutral pH, contain Zn ÷÷, and have 
the ability to degrade the extracellular matrix (31, 39, 

46). Recent work by our laboratory (21, 22) and others (23, 
31) indicates that metaUoproteinases comprise a multigene 
family whose members share considerable structural simi- 
larities (reviewed in reference 31). Two members of this 
gene family are collagenase and stromelysin. Collagenase 
(57,000 mol wt) is an enzyme that has the singular ability to 
initiate the breakdown of the interstitial collagens, types I, 
II, and III (31, 46), while stromelysin (55,000 mol wt) is an 
enzyme that degrades noncollagen matrix; e.g., proteogly- 
cans, laminin, and fibronectin. It can also activate latent col- 
lagenase (31). 

Modeling and remodeling of connective tissue by metal- 
loproteinases occurs in a number of normal and disease 
states: wound healing, uterine resorption, and tumor inva- 
sion (reviewed in references 31, 46). Nowhere, however, is 
the impact of excess production of metalloproteinases more 
apparent than in rheumatoid arthritis, a chronic inflamma- 
tory autoimmune disease in which the fibroblasts (synovial 
cells) that line the joints secrete large quantities of col- 
lagenase and stromelysin. The result is rampant destruction 
of articular cartilage and bone (6, 27, 28). 

Using a model system of rabbit synovial fibroblasts cul- 
tured in vitro, we and others have shown that cell stress in- 

duced by fusion of fibroblasts with polyethylene glycol (7), 
phagocytosis of crystals of monosodium urate monohydrate 
(26), or treatment with PMA (8, 13, 21) increases the synthe- 
sis of mRNAs for collagenase and stromelysin. Heat shock, 
another form of cellular stress, has been associated with an 
increase in synthesis of a family of peptides known as heat 
shock proteins (HSPs) ~ (5, 16, 41). Although the function of 
HSPs has not been determined, investigators have hypothe- 
sized that these proteins may be involved in embryological 
development, cell growth and proliferation, and in a survival 
mechanism referred to as the SOS (emergency repair) re- 
sponse (reviewed in references 5, 16, 41). In addition, several 
of the heat shock proteins 70 (HSP-70s) may participate in 
the translocation of proteins through stages of the protein 
maturation process inside the cell (33). An HSP-90 is part 
of the glucocorticoid receptor and plays a role in the trans- 
duction process to produce glucocorticoid effects (40). 

As part of the inflammation associated with rheumatoid 
arthritis, local increases in temperatures may occur within 
joints (27, 28). We proposed that the stress of increased tem- 
perature might increase expression of collagenase and 
stromelysin, and therefore heat shock may play a role in per- 
petuating the joint destruction seen in rheumatoid arthritis. 

1. Abbreviations used in this paper: HSE, heat shock element; HSP, heat 
shock protein; HSP-70, heat shock protein 70. 
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Materials and Methods 

Cell Culture 
New Zealand White rabbits (4-6 wk old; Snelling Rabbitry, Claremont, 
NH) were killed and synovial tissue was removed and dissociated into a sin- 
gle cell suspension with bacterial collagenase and trypsin (10, 15, 19). Pri- 
mary cultures of rabbit synovial fibroblasts were plated in DME (Gibco Labora- 
tories, Grand Island, NY), supplemented with 20% FCS (Gibco Laborato- 
ries), and grown to confluency at 37°C in a humidified atmosphere contain- 
ing 5% CO2. Cultures were passed three times in DME containing 10% 
FCS, antibiotics, and glutamine to establish sufficient numbers of ceils. For 
experiments, the fibroblasts were used between passages three and six. 
These cells secrete minimal amounts of collagenase and stromelysin in the 
unstimulated state. 

Heat Shock Protocol 

Rabbit synovial fibroblasts were grown to 80% confluency in 150-mm-diam 
culture dishes as described above. Just before heat shock, culture dishes 
were tightly wrapped in parafilm to minimize loss of CO2 and then the cul- 
tures were placed in a New Brunswick Scientific Co. (Edison, NJ) incubator 
for heat shock: 1 h at 45°C, or 3 h at 42°C. After heat shock, the dishes 
were unwrapped and returned to 37°C, 5% CO2, and RNA was harvested 
at various time points (see below). As controls, some cultures remained at 
37°C in 5% CO2 during the time of heat shock, while other control cul- 
tures were wrapped in parafilm and placed at 25°C in the tissue culture hood 
to control for possible effects of decreased CO2. We found that three cul- 
ture dishes (150 mm diam) for each experimental point provided sufficient 
quantities of RNA for analysis: control plates yielded an average of 220 #g 
of whole cell RNA/plate, while the experimental plates yielded an average 
of 190 #g of whole cell RNA/plate. Except where noted otherwise, all ex- 
periments were performed two or three times. 

Northern Blot Analysis 

Whole cell RNA was isolated, as described previously (15, 17), and 25 
/~g/lane was electrophoresed on a 1% agarose/6% formaldehyde gel for 
Northern blot analysis (21, 25, 26, 30). After electrophoresis, the RNA was 
transferred to Gene Screen Plus (New England Nuclear, Boston, MA) and 
hybridized with 32p-labeled cDNA probes for either Drosophila HSP-70 
(kindly provided by Dr. J. Zurlo, Dartmouth Medical School, Hanover, 
NH), or rabbit collagenase or stromelysin. Both the rabbit collagenase (26) 
and stromelysin (21) cDNAs were isolated and characterized in this labora- 
tory. Stringent wash conditions were used: two washes in 2x SSC + 0.5% 
SDS at 65°C for 45 min followed by one wash in 0.5× SSC + 0.5% SDS 
for 45 min at 65°C. The HSP-70 cDNA hybridizes with a 2.4 kb mRNA, 
collagenase cDNA hybridizes with a 2.0 kb mRNA, and stromelysin cDNA 
hybridizes with a 1.9 kb mRNA. A cDNA clone for bovine pyruvate kinase 
(a gift from Biogen Co., Cambridge, MA) which detects a mRNA of 2.4 kb 
was used as a "housekeeping gene" to control for variations in the amount 
of RNA loaded per lane. cDNA probes were radiolabeled with [32p]dCTP 
by the oligolabeling technique of Feinburg and Vogelstein (20). The North- 
ern blots were exposed to XAR-5 film (Eastman Kodak Co., Rochester, N¥) 
and densitometry was performed on selected audioradiographs to compare 
levels of induction. 

lmmunoprecipitation 

Cultures in 100-mm-diam culture dishes were heat shocked in DME + 
10% FCS at 42°C for 3 h. Immediately after heat shock, the cells were 
transferred to 5 ml of methionine-free medium and incubated for 30 min 
at 37°C to deplete the intracellular pool of methionine (32). The medium 
was then replaced with fresh 5 ml of methionine-free medium and 300/~C 
[35S]methionine was added. After 5 h, medium was harvested and [35S]me- 
thionine-labeled collagenase was measured by immunoprecipitation of 4 ml 
of culture medium with monospecific antibodies to rabbit collagenase, SDS- 
PAGE, and autoradiography (10, 32). 

Results  

HSP-70 mRNA Expression 

Rabbit synovial fibroblasts were heat shocked at 45°C for 

Figure 1. Time course of  HSP-70 m R N A  expression in rabbit syno- 
vial fibroblasts. Rabbit synovial fibroblasts at 80% confluency and 
cultured in D M E  + 10% FCS were heat shocked for 1 h at 45°C 
and harvested at the indicated t ime points (lanes 1-5). Another  
group of  rabbit synovial fibroblasts were treated for 48 h with P M A  
(lane 6) at 37°C and RNA was then harvested. Nor thern  blot analy- 
sis was performed with 25/~g/lane of  whole  cell RNA and probed 
with a [32p]oligo-labeled c D N A  probe for Drosphila HSP-70. Ex- 
posure t ime of  blot to x-ray film was 24 h. Lane 1, untreated control 
(37°C), harvest  RNA at 3 h. Heat shock, harvest  RNA at 1, 3, 10, 
and 24 h (lanes 2-5, respectively); lane 6, P M A  for 48 hours (37°C) 
and harvest RNA.  

1 h, returned to 37°C, and whole cell RNA was harvested at 
1, 3, 10, and 24 h (Fig. 1). By Northern blot analysis and den- 
sitometry, we found that heat shock results in a 14-fold in- 
crease in mRNA that is detected by a cDNA probe for Dro- 
sophila HSP-70 (Fig. 1, lane 2). This increase peaks at 1 h 
and returns to control levels by 10 h (Fig. 1, lane 4). In addi- 
tion, we found that treatment for 48 h with PMA (10 -s M) 
induces a fivefold increase in HSP-70 mRNA. These results 
are consistent with previous reports showing an increase in 
the activity of HSPs after treatment with PMA, UV light, or 
mitomycin C (4, 44). In addition, they suggest that our heat 
shock protocol and culture system of rabbit synovial fibro- 
blasts are suitable for the study of the regulation of mRNA 
expression by heat shock. 

Heat Shock Induces Metalloproteinase 
mRNA Expression 
Levels of mRNA expression for two metalloproteinases, col- 
lagenase and stromelysin, were determined at intervals after 
heat shock in the same experiment as described above. The 
time course of  induction of  mRNA for these two metallopro- 
teinases was determined by Northern blot analysis (Fig. 2). 
The figure shows coordinate induction of both mRNAs which 
peaked at 3 h (Fig 2, lanes 3) and returned to control levels 
by I0 h (Fig. 2, lanes 5). 

In addition, we found that heat shock induces these metal- 
loproteinases in a dose-dependent fashion: a 60-min ex- 
posure to 45°C induces twice as much metalloproteinase 
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Figure 2. Time course of metalloproteinase mRNA expression. Rabbit synovial fibroblasts at 80% confluency and cultured in DME + 10% 
FCS were heat shocked for 1 h at 45°C, returned to 37°C, and harvested at indicated time points. Northern blot analysis was performed 
with 25/~g/lane of whole cell RNA and probed with [32P]oligo-labeled cDNA probes for either collagenase (A) or stromelysin (B). Ex- 
posure time of blots to x-ray film was 24 h for collagenase and 16 h for stromelysin. Lanes 1, untreated control (37°C), harvest RNA at 
3 h; Heat shock, harvest RNA at 1, 3, 6, and 10 h (lanes 2-5, respectively). 

mRNA as a 30-min heat shock at this same temperature (data 
not shown). In other experiments, rabbit synovial fibroblasts 
were heat shocked at a somewhat lower temperature (42°C) 
for a longer period of time; i.e., 3 h (see Fig. 4, below). 
These conditions were also effective in increasing col- 
lagenase and stromelysin mRNA expression, whereas heat 
shock at 42°C for 1 h was not (data not shown). 

To determine that an increase in mRNA was accompanied 
by an increase in protein in the culture medium, we used our 
monospecific antibody to collagenase (10, 32) to immuno- 
precipitate [35S]methionine-collagenase from culture medium 
(Fig. 3). When the bands of immunoprecipitated [35S]me- 
thionine-collagenase were quantified by scintillation count- 
ing (10, 31), we found that control cultures that were not heat 
shocked secreted 710 cpm, while cells subjected to heat 
shock produced 1,219 cpm of [35S]methionine-collagenase. 
In several other experiments we consistently observed an 
increase in metalloproteinase, measured by immunoprecip- 
itation, Western blotting, or visualization of total culture 
medium proteins by SDS-PAGE (10, 26) (data not shown). 
This qualitative correlation between mRNA and protein 
agrees with our previous studies on the appearance of col- 
lagenase mRNA and protein after stimulation of rabbit syno- 
vial fibroblasts with crystals of monosodium urate monohy- 
drate (26). 

Finally, heat shock, under the conditions we have de- 
scribed was not toxic to rabbit synovial fibroblasts, as re- 
vealed by the equivalent amounts of RNA recovered from 
treated and control plates (see Materials and Methods). This 
is in agreement with the nontoxic nature of heat shock on 
monocytes reported in other laboratories (35) as measured 
by trypan blue exclusion and [3H]thymidine incorporation 
in cells. 

Retinoic Acid  Inhibits  P M A  and Heat  Shock  Induction 
o f  Metalloproteinase m R N A  Expression 

Treatment of fibroblasts with all-trans-retinoic acid (10 -6 

M) antagonizes the induction by a number of agents of col- 
lagenase and stromelysin m'RNAs and protein (8, 11, 12, 14, 
18, 21). We determined whether retinoic acid could also an- 
tagonize the heat shock-induced increase in mRNAs for 
these metalloproteinases. Cells were heat shocked for 3 h at 
42°C or treated with PMA (10 -8 M) at 37°C in the presence 

Figure 3. Immunoprecipitation of [35S]methionine collagenase. 
Rabbit synovial fibroblasts, grown in DME + 10% FCS, were heat 
shocked for 3 h at 42°C. Both control cells and heat-shocked cells 
were then transferred to methionine-free medium with [35S]methi- 
onine and incubated for 5 h at 37°C. Radiolabeled collagenase was 
immunoprecipitated with a monospecific antibody and visualized 
by SDS-PAGE and autoradiography. Lane 1, Untreated control (no 
heat shock); lane 2, heat shocked. 
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Figure 4. Effect of retinoic acid on phorbol ester and heat shock induction of metalloproteinase mRNA expression. Rabbit synovial fibro- 
blasts at 80% confluency and cultured in DME + 10% FCS were heat shocked at 42°C or treated with PMA (10 -g M) for 3 h in the pres- 
ence of all-trans-retinoic acid (10 -6 M). The retinoic acid was added immediately before heat shock or treatment with PMA. After the 
heat shock or exposure to PMA, all cells were washed three times with HBSS, control medium without PMA or control medium containing 
retinoic acid was added to all cultures, and the cells were returned to 37°C. RNA was harvested 3 h later. Northern blot analysis was per- 
formed with 25/zg/lane of whole cell RNA and transferred to Gene Screen Plus, the RNAs were probed with [32p]oligo-labeled cDNA 
probe for pyruvate kinase (A). The blot was stripped and reprobed with cDNA probe for collagenase (B) and the procedure was repeated 
and reprobed with cDNA for stromelysin (C). Exposure time of the blots to x-ray film was 16 h for pyruvate kinase, 16 h for collagenase, 
and 12 h for stromelysin. Lanes 1, untreated control (37°C) for 3 h; lanes 2, PMA (37°C) for 3 h; lanes 3, PMA + all-trans-retinoic 
acid (37°C) for 3 h; lanes 4, heat shock (42°C) for 3 h; lanes 5, heat shock (42°C) + all-trans-retinoic acid for 3 h. 

or absence of all trans-retinoic acid. Cells were then washed 
and medium was replaced with medium without PMA, but 
containing retinoic acid. Cells were returned to 37°C and 
whole cell RNA was harvested 3 h later. In this experiment, 
densitometric analysis revealed that heat shock increased 
collagenase mRNA approximately twofold over control, 
while stromelysin mRNA was increased fourfold (see Dis- 
cussion). We found that all-trans-retinoic acid prevented the 
increase in collagenase and stromelysin mRNA expression 
(Fig. 4, B and C). It is important to point out that during the 
same experiment, pyruvate kinase remains relatively un- 
changed regardless of treatment (Fig. 4 A). A densitometric 
comparison of mRNA for this gene revealed a relative inten- 
sity of 0.88 + 0 .30D.  This suggests that this gene is an ap- 
propriate "housekeeping gene" that does not change dramati- 
cally during heat shock in rabbit synovial fibroblasts. 

Effect of Combined Heat Shock and PMA on 
Induction of Metalloproteinase mRNA Expression 

PMA is a potent inducer of collagenase and stromelysin 
mRNAs (8, 11, 13, 15, 21, 24) and we wanted to determine 
whether combined treatment with PMA and heat shock was 
either additive or synergistic. For this experiment, cells were 
treated with PMA for 1 h at 37°C, were heat shocked for 1 h 
at 45°C, or were subjected to heat shock (1 h at 45°C) in 
the presence of PMA. Medium without PMA was then re- 
placed on all cultures and the cells were returned to 37°C for 
3 h and then harvested. The results (Fig. 5) show that heat 
shock of rabbit synovial fibroblasts in the presence of PMA 
(10 -9 or 10 -8 M) did not increase collagenase or stromelysin 
mRNA expression (Fig. 5, lanes 6 and 7) above treatment 
with PMA alone or above heat shock alone (Fig. 5, lanes 2, 
3, and 5). We also found that the room temperature control 

cells held at 25°C for 1 h showed virtually no difference in 
the levels of collagenase and stromelysin mRNAs, relative to 
the control cells held at 37°C (Fig. 5, lanes 1 and 4). 

Densitometric scanning of the autoradiographs in this ex- 
periment revealed that heat shock increased collagenase and 
stromelysin mRNAs to the same extent; i.e., approximately 
sixfold. In a total of 12 experiments, we have noted that col- 
lagenase and stromelysin mRNAs increase two- to tenfold. 
In addition, although the time course of increase for col- 
lagenase and stromelysin is always coordinate, the magni- 
tude of the response for each mRNA may vary within an ex- 
periment. As we have noted previously with PMA treatment 
(8, 13, 15), the variation in the magnitude of the increase in 
collagenase and stromelysin is typical of the responsiveness 
of monolayers of rabbit synovial fibroblasts. Possible reasons 
for this variability are discussed below. 

Localization of PMA Element and Putative Heat 
Shock Element (HSE) 

PMA is a potent inducer of metalloproteinase gene expres- 
sion (2-4, 8, 11, 13, 15, 21-24) and a PMA-responsive ele- 
ment has been localized in the 5' flanking DNA of the col- 
lagenase (2-4, 22) and stromelysin (23) genes (see Table I). 
An HSE has been identified in the HSP-70 gene (34), as well 
as in other genes (42). In Drosophila, the HSE is located in 
the 5' flanking region of the HSP-70 gene - 4 5  to - 6 6  bp 
from the start site of transcription. In addition, an HSE has 
been identified in the rat heme oxygenase gene -273 bp from 
the start site of transcription (42). We, therefore, examined 
the 5' flanking DNA of the rabbit collagenase and stromely- 
sin genes for putative HSEs, as shown in Table I. The puta- 
tive HSEs are compared with a "stringent" nucleotide se- 
quence (defined by Pelham [34] and Schlesinger [41]) and the 
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Figure 5. Effect of combined heat shock and phorbol ester on induction of metalloproteinase mRNA expression. Rabbit synovial fibroblasts 
at 80% confluency and cultured in DME + 10% FCS were treated with PMA (10 -s or 10 -9 M) for 1 h at 37°C and/or heat shocked for 
1 h at 45°C. Medium without PMA was replaced on all cultures, and the cells were returned to 37°C for 3 h when RNA was harvested. 
Northern blot analysis was performed with 25 #g/lane of whole cell RNA and after transfer to Gene Screen Plus, the RNAs were probed 
with [32p]oligo-labeled cDNA probe for collagenase (A). The blot was stripped and reprobed with a cDNA probe for stromelysin (B). 
Exposure of blots to x-ray film was 18 h for collagenase and 15 h for stromelysin. Lanes 1, untreated control (37°C), 1 h; lane 2, PMA 
(10 -s M), 1 h (37°C); lane 3, PMA (10 -9 M), I h (37°C); lane 4, untreated control (25°C), 1 h; lane 5, heat shock (45°C), 1 h; lane 6, 
heat shock (45°C) + PMA (10 -8 M), 1 h; lane 7, heat shock (45°C) + PMA (10 -9 M), 1 h. 

mismatches are underlined. Note that one of the putative 
HSEs in the collagenase gene (-78) is similar to the location 
of the HSE for Drosophila HSP-70, while two putative HSEs 
in the stromelysin gene ( -265  and -278) are similar to the 
location of the HSE in the rat heme oxygenase gene. 

Discussion 

In this study, we show that physical stress in the form of heat 
shock can increase the expression of collagenase and stro- 
melysin mRNAs and protein. This expression was not en- 
hanced by concomitant treatment with PMA, a potent in- 
ducer of metalloproteinases, but the heat shock induction 
could be antagonized by all-trans-retinoic acid, a compound 
known to inhibit metalloproteinase synthesis induced by a 
variety of agents (8, 11, 12, 14, 15, 18, 21). 

Our data on the time course of induction of collagenase 
and stromelysin mRNAs by heat shock (45°C for 1 h or 42°C 
for 3 h) show a coordinate increase in both mRNAs. They 
peak by 3 h after heat shock, and return to control levels by 
10 h. This increase in mRNA is accompanied by an increase 
in the secreted protein for these enzymes, measured by im- 
munoprecipitation of [35S]methionine-collagenase. In pre- 
vious studies, we demonstrated that the time required for 
synthesis and secretion of collagenase is ,,o45 min (32). 
Thus, although the increase in mRNA is closely linked to the 
increase in protein there is a slight lag (26). Furthermore, 
the increase in collagenase and stromelysin mRNAs and pro- 
teins in the culture medium is coordinate (11, 21, 24). 

At this point, we do not completely understand the varia- 
tion in the magnitude of induction of mRNA for collagenase 
and stromelysin seen with heat shock. We have long noted 
variation in the quantitative response of collagenase seen in 

synovial fibroblasts. This variation is apparent whether poly- 
ethylene glycol (7, 8), urate crystals (26), or phorbol esters 
(8, 13) are used as the inducing agent. In the past we have 
attributed the variability to the fact that these cultures of rab- 
bit synovial fibroblasts represent an outbred population with 
inherent genetic differences in their responsiveness. As we 
learn more about the cellular mechanisms involved in the in- 
duction of collagen ase synthesis (9, 10), our understanding 
of the basis for these differences should increase. 

As already mentioned, PMA is a potent inducer of col- 
lagenase, greatly increasing levels of collagenase mRNA and 
protein (8, ll, 13, 15, 21, 24). However, it is important to 
point out that when the rabbit fibroblasts were subjected to 
a 1-h treatment with PMA or to 1 h of heat shock (45°C), 
the magnitude of the metalloproteinase response was similar 
for both treatments (Fig. 4, B and C). Furthermore, com- 
bined treatment with PMA and heat shock was neither addi- 
tive nor synergistic. These data suggest that induction of 
metalloproteinases by heat shock and by PMA may occur via 
similar mechanisms. It seems possible, for example, that 
PMA triggers an intracellular pathway that eventually results 
in the transcription factor, AP-1, binding to the PMA con- 
sensus sequence (5'-ATGAGTCAG-3') and subsequently in- 
creasing the transcription of the collagenase gene (2-4, 22). 
It is also possible that another transcription factor (e.g., heat 
shock transcription factor), similar to those isolated from 
yeast and HeLa cells (43), may interact with the putative 
HSEs that we have identified in the DNA flanking the 5' 
regions of the collagenase and stromelysin genes (Table I), 
thereby inducing these genes. The differential responsive- 
ness sometimes seen in the magnitude of induction of mRNA 
for stromelysin and coUagenase genes to heat shock may in 
part be due to the number and location of HSEs (29) in these 
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Table I. 

Consensus sequence Location Mismatches 

Collagenase 
H e ~ s h ~ k  

CTTGAAGAATGGAG -1151  2 

TTAGAACCTTTGAA - 9 5 5  3 

CCAGGAAGTTCATG -881  3 

CATTCAAATT C T A G  - ~ 3  3 

CCAGCAGAATCAAG - 3 5 8  3 

CATGAAATTGCAAC - 7 8  3 

PMA 
\CATGAGTCAG - 7 7  

~romelys in  
H ~ t S h ~ k  

C C T G T A T T T T A G A G  - 4 7 3  3 

CTTAAAAGT T C T G C  - 3 5 6  3 

C T A G T A A A T T C T A G  - 2 7 8  1 

GTCAAATTTT C C A G  - 2 6 5  2 

PMA 
TGAGTCAAG - 6 5  

Localization of PMA and putative HSE consensus sequences in the 5' flanking 
region of the collagenase and stromelysin genes for rabbit. Listed are the loca- 
tions (5' to start site of transcription), and nticleotide sequences for the PMA 
and putative HSE consensus sequences for rabbit collagenase and stromelysin 
genes. For the HSE consensus sequences, the number of mismatches is based 
on comparison with stringent, (CTNGAANNTTCNAG) HSE consensus se- 
quences described by Pelham (34). Mismatched nucleotides are underlined. 

anism for increasing the expression of these enzymes in dis- 
ease states. 

The heat shock response in monocytes (35-38) and our 
work on the induction of metalloproteinases in fibroblasts by 
heat shock support the hypothesis that heat shock is one of 
several stress inducers in eukaryotic cells (5). Indeed, we 
have long suspected that induction of metalloproteinases was 
directly linked to stress, as evidenced by an increase in col- 
lagenase synthesis after formation of multinucleated giant 
cells in fibroblasts treated with polyethylene glycol (7). More 
recently, PMA was shown to influence the expression of 
HSPs in rat embryo fibroblasts (44); and other shock treat- 
ments, such as UV irradiation and viral reactivation (45), in- 
duced HSPs as well. 

Thus, we are continuing to document the expression of the 
"classical" HSPs (stress proteins) under a variety of condi- 
tions. However, similar to the induction of heme oxygenase 
(42), we are finding that other proteins, e.g., collagenase and 
stromelysin, can also be classified as heat shock inducible. 
The ability of heat shock to induce metalloproteinase mRNAs 
and proteins suggests a pathophysiological role for increases 
in temperature during chronic inflammatory states. 
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genes (Table I). The number of PMA-responsive elements 
has been shown to be important for the PMA induction of 
metalloproteinases (2, 3). 

Other investigators have shown that the heat shock re- 
sponse can induce heme oxygenase, an enzyme essential in 
heme catabolism, in rat glioma cells (42). These experi- 
ments are interesting for two reasons. First, in contrast to our 
studies with PMA, they found that heat shock was additive 
with heroin, another heme oxygenase inducer, implying two 
different mechanisms of induction for these enzymes. Sec- 
ond, their report documents that heat shock can induce pro- 
teins other than the "classical" HSPs, and thus they begin to 
suggest physiologic roles for the heat shock response. Fur- 
ther support for this concept is given by studies documenting 
that heat shock of HeLa cells increased the expression of the 
c-fos protooncogene (1). They postulate that the increase in 
c-fos mRNA may facilitate the reinitiation of the cell cycle 
during recovery from stress. 

The concept that HSPs could be involved in the pathophys- 
iology of inflammation has been proposed by Polla et ai. 
(35-38). They investigated the possible effects that heat 
shock of monocytes may play in several inflammatory condi- 
tions. They found that temperatures of 41-45°C for 20 min 
resulted in an increase in a variety of HSPs, and that u-l,25- 
dihydroxyvitamin D3 could protect the cells from thermal 
injury, perhaps by shielding the cells from oxidative damage 
by enzymes such as superoxide dismutase or catalase. As we 
have shown in this study, heat shock at a lower temperature 
for a longer period of time, 3 h at 42°C vs. 1 h at 45°C, is an 
effective inducer of metalloproteinases. This implies that a 
relatively low level of heat shock for a prolonged period 
(seen, for example, in chronic inflammation) may be a mech- 
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