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Antisense oligomers and their analogs have been successfully
utilized to silence gene expression for the treatment of many hu-
man diseases; however, the control of yeast’s virulence determi-
nants has never been exploited before. In this sense, this work is
based on the key hypothesis that if a pathogen’s genetic sequence
is a determinant of virulence, it will be possible to synthesize a
nucleic acid mimic based on antisense therapy (AST) that will
bind to the mRNA produced, blocking its translation into pro-
tein and, consequently, reducing the pathogen virulence pheno-
type. EFG1 is an important determinant of virulence that is
involved in the regulation of the Candida albicans switch from
yeast to filamentous form. Thus, our main goal was to design
and synthesize an antisense oligonucleotide (ASO) targeting
the EFG1mRNA and to validate its in vitro applicability. The re-
sults show that the anti-EFG1 20-OMethylRNA (20OMe) olig-
omer was able to significantly reduce the levels of EFG1 gene
expression and of Efg1p protein translation (both approximately
60%), as well as effectively prevent filamentation of C. albicans
cells (by 80%). Moreover, it was verified that anti-EFG1 20OMe
keeps the efficacy in different simulated human body fluids.
Undeniably, this work provides potentially valuable information
for future research into the management of Candida infections,
regarding the development of a credible and alternative method
to control C. albicans infections, based on AST methodology.
Received 10 May 2019; accepted 12 September 2019;
https://doi.org/10.1016/j.omtn.2019.09.016.

Correspondence: Sónia Silva, LIBRO—Laboratório de Investigação em Biofilmes
Rosário Oliveira, CEB – Centre of Biological Engineering, University of Minho,
4710-057 Braga, Portugal.
E-mail: soniasilva@deb.uminho.pt
INTRODUCTION
Candidiasis is the primary fungal disease, with a mortality rate of
about 30%–50% and with costs associated with hospitalized patients
that range from V5,700 to V85,000 (in U.S. dollars, approximately
$6,286 to $93,752) per episode.1,2 This important clinical, social,
and economic problem is due to the recognized phenomenon of
Candida species antifungal resistance, associated with the indiscrim-
inate use of traditional antifungal agents.1–3 Candida albicans re-
mains the most prevalent of all Candida species in Europe, with a
range of incidence of around 40%.2,4,5 The pathogenicity of
C. albicans is supported by a series of virulence factors, one of the
most alarming being its ability to switch from yeast to filament forms,
a tightly regulated process by a network of genes known as dimorphic
switching.6 This virulence factor requires C. albicans to sense and
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respond to the host environment and is essential for its pathoge-
nicity.7–9 EFG1 is one of the most important and well-studied regu-
lator genes involved in C. albicans filamentation.10–15

As a consequence of the rising levels of C. albicansmulti-resistance to
the traditional antifungal treatments, new alternative therapies, with
novel mechanisms of action, enhanced therapeutic potential,
improved pharmacokinetics, and less toxicity, are urgently
needed.16,17 Antisense therapy (AST) holds great promise for the
treatment of many human chronic non-infectious diseases;18–24 how-
ever, for controlling Candida species growth, the knowledge is
scarce.23,25 Moreover, the control of yeast virulence determinants
has never been exploited before with AST. The concept underlying
AST is relatively straightforward: the use of a complementary
sequence to a specific mRNA that can inhibit gene expression,
inducing a blockage in the transfer of genetic information from
DNA to protein.26

Antisense oligomers (ASOs) are simply short strands of nucleic acids
that have a sequence that is complementary to the target mRNA and
that bind to this target by means of standardWatson-Crick base pair-
ing.26 Up to now, there have been three generations of ASOs24–26 with
several chemical modifications in order to increase its nuclease resis-
tance, reduce its toxicity, and enhance its affinity and half-life.22 The
20-OMethylRNA (20OMe) sugar modification belongs to the second
generation of acid mimics; however, these do not support RNase H
activity (a specific degradation mechanism cleaving the target
mRNA).27,28 An insertion of a longer central unmodified region,
known as gapmers, has been used as a popular strategy to allow
that RNase to join and activate the degradation of the mRNA
target.29,30
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Table 1. Sequence of Anti-EFG1 20OMe (m) and Scramble ASO, with the

Respective Size, Theoretical Tm, and GC Content

ASO Sequence (50–30) Size
Tm
(�C)

% of
GC

Anti-EFG1
20OMe

50-mG mG mC mA TACCGTTA mU
mU mG mU-30 16

nt

41.1

43.8

Scramble ASO
50-mG mG mC mA TTCCAGTA mU
mU mG mU-30

41
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Thus, this work is based on the key hypothesis that, if a pathogen’s
genetic sequence of a specific gene is a determinant of virulence, as
is the case with the EFG1 gene, it will be possible to synthesize a nu-
cleic acid mimic that will bind to the mRNA produced and degrade it,
blocking its translation into protein and, consequently, reducing its
virulence phenotype (which, in this case, would be the filament devel-
opment). Our data confirm that ASOs, including 20OMe, can control
a virulence determinant of C. albicans. The results show that an anti-
EFG1 20OMe significantly reduced EFG1 gene expression and effec-
tively prevented C. albicans cell filamentation in simulated human
body fluids.
RESULTS AND DISCUSSION
Despite an increasing number of successful applications of AST for the
treatment of human chronic non-infectious diseases,20–22,24,31–37 and,
more recently, to manage infectious bacteria,37–39 this methodology
was never exploited to control Candida species virulence factors.
Moreover, EFG1 has been reported as one of the most relevant viru-
lence determinants involved in C. albicans filamentation and, conse-
quently, in its pathogenicity.6,10–15 This makes EFG1 an ideal target
for validating an AST approach against Candida, not only because
its role has been repeatedly proved but also because morphological
changes can be easily examined.

Thus, based on our key hypothesis, we intend, with this work, to vali-
date in vitro the application of a 20OMe oligomer to control
C. albicans switching from yeast to filamentous form, reducing the
mRNA produced by the EFG1 gene, and inactivate its translation
into Efg1p.
Anti-EFG1 20-OMe Characterization

Nucleic acid mimics in particular, the 20OMe were the base for the
design of the anti-EFG1 oligomer.26 It has been described that the nu-
cleic acid mimics must be designed with melting temperatures (Tms)
around 39�C–42�C and a guanine-cytosine (GC) content of approx-
imately 50% to 60% in order to increase the binding affinity for target
mRNA and stability in the human body.26,30 Furthermore, several
studies have shown that ASOs with sizes between 12 and 20 nt
(nucleotides) usually present a good hybridization performance.40

Taking into account these features, the anti-EFG1 20OMe sequence
was the 50-mG mG mC mA TACCGTTA mU mU mG mU-30

(m-20OMe), with a theoretical Tm of 41.1�C, 43.8% of GC, and a total
of 16 nt (Table 1). Four 20OMe chemical modifications were added to
each end of the sequence to increase the stability of the ASO while
maintaining the ability to recruit RNase H to degrade the mRNA.34

Being a synthetic molecule, 20OMe is not recognized by the RNase
H, but a small DNA gap in the middle of the ASO ensures the enzyme
binding. This way, the ASO will act not only by directly blocking the
protein synthesis but also by promoting the degradation of the target
mRNA.

A scramble ASO with the same number of nucleotides and chemical
modifications (50-mGmGmCmATTCCAGTAmUmUmGmU-30)
was also synthetized with three mismatches, resulting in a theoretical
Tm of 41�C and 43.8% of GC (Table 1). Furthermore, the anti-EFG1
20OMewas labeled with TYE563 at the 50 end to investigate its cellular
uptake, sensitivity, and specificity.

Anti-EFG1 20OMe Cellular Uptake, Sensitivity, and Specificity

Sensitivity and specificity of the nucleic acid mimics are two impor-
tant factors in the success of the ASO applicability.41–43 In this study,
we used fluorescence in situ hybridization (FISH), a standard meth-
odology used to identify microorganisms that makes use of nucleic
acid coupled with fluorochromes,44–47 and epifluorescence analysis
to evaluate the anti-EFG1 20OMe cellular uptake, sensitivity, and
specificity against C. albicans cells.

The anti-EFG1 20OMe specificity was tested against 10 strains of
C. albicans and 4 strains of other fungi (Figure 1). Anti-EFG1
20OMe binding in C. albicans was confirmed by the positive signal
(presence of fluorescence) observed for all C. albicans strains tested
(n = 10) (Figures 1A and 1B; Figure S1). The negative signal (absence
of fluorescence) obtained for the other fungi tested and for C. albicans
DDefg1 reinforces ASO specificity for C. albicans cells (Figure 1).

These studies demonstrate the anti-EFG1 20OMeCandida cellular up-
take without carriers or transfection agents for instance, by adsorptive
endocytosis as in other microorganisms,48–50 and its ability to hybrid-
ize with the respective target with high specificity for C. albicans cells.

Anti-EFG1 20OMe Oligomer Behavior

In order to determine the concentration of anti-EFG1 20OMe to be
used in vitro validation studies, C. albicans SC5314 was incubated
with different concentrations of ASO (10–60 nM). Additionally, the
same was applied to investigate the cytotoxic effect of the ASO on
the 3T3 cell line.

Cytotoxicity Evaluation

Figure 2 presents the results of ASO cytotoxicity on the 3T3 cell line
for the determination of the minimal ASO concentration capable to
inhibit C. albicans filamentation and EFG1 gene expression.

MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium solution) assays were performed to
infer about the anti-EFG1 20OMe cytotoxicity against 3T3 cells. The
results demonstrated that the ASO concentrations of 10, 20, and
40 nM tested were not cytotoxic, since the relative cell viability is
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Figure 1. Anti-EFG1 20OMe Sensitivity and Specificity Obtained by FISH

(A) List of strains and species used and their origin, as well as the respective results obtained by FISH at 37�C, during 3 h. (B) Illustrative images obtained by epifluorescence

microscopy. The exposure time was the same for each strain: Candida albicans SC5314 was obtained with 218.7 ms; Candida albicans HLC52 (DDefg1 mutant strain) was

obtained with 713.2 ms, and Candida tropicalis ATCC750 was obtained with 293.9 ms of exposure. Negative controls were prepared only with 20 mL hybridization solution

without probe.
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higher than 70% of the control (absence of ASO) (Figure 2A).51 How-
ever, the relative cell viability for 60 nM is approximately 70%, so it
could be considered a cytotoxic concentration. Therefore, it was
decided to use 40 nM ASO for the next experimental assays.

Effect on Filamentation and Gene Expression

Concerning the anti-EFG1 20OMe effect on C. albicans filamentation,
it was possible to verify a reduction for all the concentrations tested
(Figure 2B). As expected, the percentage of filamentation of
C. albicans without ASO increased from 4 h to 8 h, reaching 80% fil-
amentation (Figure S2A). In the presence of ASO, after 4 h of incuba-
tion, approximately 10% reduction was observed (Figure 2B) without
statistical differences among the ASO concentrations tested
(p > 0.05). Additionally, the results revealed a more pronounced effect
after 6 h, specifically with 40 nM ASO, with approximately 20%
reduction (p < 0.05). After 8 h of incubation, a similar performance
was observed with 15% reduction, even for the lower concentration
(20 nM) of ASO. Additionally, the ASO scramble was unable to
reduce C. albicans filamentation (Figure S2C).

The EFG1 expression levels were determined for C. albicans SC5314
cells growing in the presence and the absence of 40 nM ASO in order
to evaluate the effect of anti-EFG1 20OMe in the blockage of the
expression of the respective gene. As expected, this strain expresses
the EFG1 gene, and a 3-fold increase on its expression levels was
noticed from 4 h to 8 h (Figure S2B). Regarding ASO treatment,
qRT-PCR studies revealed a decrease on the levels of EFG1 expression
after 6 h and 8 h (p < 0.05) (Figure 2C). Indeed, a reduction of 54% at
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6 h and 60% at 8 h on the EFG1 levels of expression was demonstrated
(p < 0.05).

After defining themost appropriate concentration of anti-EFG1 20OMe
to be used (40 nM), we evaluated the performance of theASOon longer
periods (Figure 3). In terms ofC. albicans filamentation reduction (Fig-
ure 3A), the results showed an increase of inhibition over time, reaching
80% after 24 h of treatment (p < 0.05) compared to the absence of ASO.
It is important to address that the dimorphic switching inC. albicans is
dependent on a network of genes.12,14,52–55 Thus, it was not expected a
total reduction on C. albicans filamentation. Subsequent examination
of epifluorescence microscopy images confirms these results and also
revealed a significant and relevant decrease in terms of the filaments’
lengths (74 mm to 34 mm at 6 h, 81 mm to 54 mm at 8 h, 68 mm to
37 mm at 10 h, and 143 mm to 56 mm at 24 h of treatment) (Figure 3D).
This is an important result onceC. albicans filamentation is considered
one of the most problematic virulence factors, increasing its capability
to invade human cells and causing tissue damage.56,57

As mentioned earlier, ASOs affect cellular functions through transcrip-
tion attenuation and protein translation inhibition.58–61 The effects of
anti-EFG1 20OMe on EFG1 gene expression and Efg1 protein transla-
tion were determined at 24 h of treatment (Figures 3 B and 3C), as
data from filamentation indicated this treatment time as quite effective.
The results obtained showed a significant reduction in the levels ofEFG1
expression (around 59%) (Figure 3B) and in Efg1 protein translation
(around 57%) (Figure 3C), corroborating the morphological data
(Figures 3A and 3D).



Figure 2. Anti-EFG1 20OMe Effect on Candida albicans Filamentation

(A) Relative cell viability (%) determined by the absorbance values (Abs; 490 nm cm�2)

of formazan product obtained from 3T3 cells treated with different concentrations of

ASO (10, 20, 40, and 60 nM). The control is related to the cells without ASO treatment.

(B) Percentage of inhibition (%) of filamentous forms, after treatment with different

concentrations of ASO (10, 20, and 40 nM). (C) Levels of EFG1 gene expression

obtained by the Pfaffl method, after application of 40 nM ASO, at different time points

(4, 6, and 8 h) in RPMI. Error bars represent SD. *Significant differences among 10 nM

and the other concentrations of ASO tested (p < 0.05). +Significant difference between

untreated and treated cells (p < 0.05).
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Performance on Simulated Human Body Fluids

To mimic human body environments, the performance of anti-
EFG1 20OMe was also evaluated on different simulated human
body fluids (artificial saliva [AS] and artificial urine [AU]) and
horse blood (Figure 4). It is important to highlight that
C. albicans was able to grow and filament in all simulated human
body fluids tested, but in a time- and fluid-dependent manner (Fig-
ures S3A and S3B).
Interestingly, it can be noticed that anti-EFG1 20OMe maintains its
performance in simulated human body fluids, reducingC. albicans fil-
amentation and EFG1 gene expression. In fact, it was verified that the
ASO was able to reduce 90% and 80% of C. albicans filamentation
after 24 h of incubation in AS and AU (p < 0.05), respectively, and
50% after 48 h of incubation in horse blood (Figure 4A).

Figure 4B shows the levels of EFG1 gene expression and demonstrates
decreases in the levels of expression of 89% in AS, 61% in AU, and
74% in horse blood (p < 0.05). It is important to highlight that the
levels of EFG1 expression in the absence of ASO were different in
all simulated human body fluids tested (Figure S2C), which justifies
the different levels of reduction observed.

Considering any possible future clinical applications of the anti-EFG1
20OMe in the control of local candidiasis (oral and urinary), as well as
of systemic infections (blood), these are important results once the
ASO maintains its performance in human fluids, inhibiting
C. albicans filamentation and the EFG1 gene expression.

MATERIALS AND METHODS
Microorganisms

A total of 11 clinical strains (Figure 1A), including Candida albicans
(n = 10) and Saccharomyces cerevisiae (n = 1), recovered from
different body sites, were used during this study. All isolates were
recovered from vaginal, urinary, and oral tracts and were obtained
from the Candida collection of the Biofilm group of the Centre of Bio-
logical Engineering, University of Minho, Braga, Portugal. Four refer-
ence strains—Candida albicans (SC5314), Candida parapsilosis
(ATCC 22019), Candida tropicalis (ATCC 750), and Candida
glabrata (ATCC 2001)—were included in this study. The mutant
strain C. albicans DDefg1 (HLC52) was also tested.62

Growth Conditions

For all experiments, yeast strains were subcultured on sabouraud
dextrose agar (SDA; Merck, Darmstadt, Germany) and incubated
for 24 h at 37�C. Cells were then inoculated in sabouraud dextrose
broth (SDB; Merck, Darmstadt, Germany) and incubated over-
night at 37�C, at 120 rpm. After incubation, the cells’ suspensions
were centrifuged for 10 min at 3,000 g at 4�C and washed twice
with PBS (pH 7, 0.1 M). Pellets were suspended in 5 mL RPMI
medium (Sigma-Aldrich, St. Louis, MO, USA), and the cellular
density was adjusted for each experiment using a Neubauer cham-
ber (Paul Marienfeld, Lauda-Königshofen, Germany) to 1 � 105

or 1 � 106 cells per milliliter (mL�1). All experiments of this
work were performed in triplicate and in a minimum of three in-
dependent assays.

Design and Synthesis

To design a specific ASO for C. albicans EFG1, the target region of
the gene was selected based on a search conducted at the
Candida Genome Database (http://www.candidagenome.org/cgi-
bin/compute/blast_clade.pl). Several EFG1 gene sequences were
aligned to make sure that conserved regions were used for the design.
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Figure 3. Anti-EFG1 20OMe Effect on Efg1p Translation

(A) Percent inhibition (%) of filamentous forms at different time points (6, 8, 10, and 24 h). (B) Levels of EFG1 gene expression obtained by the Pfaffl method at 24 h. (C) Levels

of Efg1p translation normalized with the translation of Act1p at 24 h. (D) Epifluorescence microscopy images of Candida cells stained with Calcofluor after treatment with

40 nM ASO (control was prepared only with cells in RPMI; without ASO). The assays were performed forC. albicans SC5314. Error bars represent SD. *Significant difference

between 6 h and the other times tested (p < 0.05). +Significant difference between untreated and treated cells (p < 0.05).
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Also, a BLAST search was performed to ensure that the sequences
were not targeting any sequence of the human genome or a similar
region in another C. albicans gene. The EFG1 sequence 50-ACAA
TAACGGTATGCC-30 was selected as the target, taking into account
its high specificity to the C. albicans genome, its non-binding against
the Homo sapiens genome, and the number of nucleotides.26 Specific
ASOs were then designed for the use of 20 ribose modification. 20OMe
was selected, since it is one of the most used for antisense applica-
tions.28–30,63 A gapmer was introduced to increase the odds of
activating RNase H activity.64 The calculator from Integrated DNA
Technologies (IDT; https://eu.idtdna.com/calc/analyzer) was used
to determine the theoretical Tm and the GC content of the possible
ASO for that target region. The selected ASOwas produced according
to the user’s own specifications at EXIQON and purified by high-
pressure liquid chromatography (HPLC). The same ASO was synthe-
tized with an orange-fluorescent fluorophore (TYE563). A scrambled
ASO, similar to the EFG1 ASO, was also synthesized to be used as
negative control.
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Sensitivity and Specificity Tests

The sensitivity and specificity of anti-EFG1 20OMe was determined
against different yeast strains (Figure 1A) by FISH.65 For that, 20 mL
of an inoculum of Candida cells adjusted to 1 � 106 cells mL�1 was
transferred to a slide and fixated with 30mL 4% (v/v) paraformaldehyde
(Sigma-Aldrich) for 10 min, and the excess was removed. After that,
cells were permeabilized with 30 mL 50% (v/v) ethanol for an additional
10 min and allowed to air dry. The hybridization step was performed
with 20 mL ASO (200 nM) coupled with orange-fluorescent fluoro-
phore diluted in hybridization solution (900 nMNaCl [PanReac Appli-
chem, Barcelona, Spain], 30% formamide [Sigma-Aldrich, Sintra,
Portugal], 20 mM Tris-HCl [Sigma-Aldrich, Sintra, Portugal], and
0.01% SDS [Sigma-Aldrich, Sintra, Portugal]). Negative controls were
prepared only with 20 mL hybridization solution without probe. Sam-
ples were then covered with coverslips and incubated at 37�C for 3 h in
dark conditions. After hybridization, slides were submerged in wash
solution (20 mM Tris-HCl, 0.01% SDS, and 900 mM NaCl) and
incubated for 30 min at the same temperature.

https://eu.idtdna.com/calc/analyzer


Figure 4. Anti-EFG1 20OMe Effect on Simulated

Human Body Fluids (AS, AU, and Horse Blood)

(A) Percent inhibition (%) of filamentous forms at different

time points (6, 8, 10, and 24 h for AS and AU; 48 h for

horse blood). (B) Levels of EFG1 gene expression for

C. albicans SC5314 obtained by the Pfaffl method, after

treatment with 40 nM ASO in the presence of different

simulated human body fluids (AS and AU at 24 h and

horse blood at 48 h). Error bars represent SD. *Significant

difference between 6 h and the other times tested

(p < 0.05); +Significant difference between untreated and

treated cells (p < 0.05).
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The images from cells were acquired with an epifluorescence micro-
scope (Olympus Portugal, Porto, Portugal). Cells were observed using
a 40� objective. The exposure time, gain, and saturation values were
fixed for each sample. The TRITC filter (530-550/591) was used for
image acquisition.
Cytotoxicity

In order to select the concentration of anti-EFG1 20OMe without cyto-
toxicity to be used during this study, the ASO cytotoxicity was deter-
mined against 3T3 cell line (fibroblast cells, embryonic tissue, mice
from the CCL 163 line, American Type Culture Collection). For that,
3T3 cells were grown inDMEM (Biochrom, Berlin, Germany) supplied
by 10% fetal bovine serum (FBS; Sigma-Aldrich) and 1% antibiotic
containing P/S (penicillin and streptomycin; Biochrom, Berlin,
Germany). After detachment, a suspension with 1 � 105 cells mL�1

was added to a 96-well plate, and cells grew until attaining 80% conflu-
ence. Prior to the cytotoxicity assay, the wells were washed twice with
PBS. Different concentrations of ASO (10, 20, 40, and 60 nM)were pre-
pared in DMEM, and 50 mL of each concentration was added to each
well. Negative control was performed by adding 50 mL DMSO to the
cells, and positive control was performed by adding 50 mL DMEM.
The plates were incubated for 24 h at 37�C and 5% CO2.

After incubation, 10 mL MTS (CellTiter 96 Aqueous One Solution
Cell Proliferation Assay, Promega) and 1% DMEM without phenol
were added to each well and incubated for 1 h. Lastly, the absorbance
was measured at 490 nm in a microplate reader (Biochrom EZ Read
800 Plus, Biochrom, Cambridge, England). The cytotoxicity results
were expressed as the percentage of viable cells corresponding the op-
tical density 490 (OD490) of cells grown without ASO as 100% cell
viability.
Effect on C. albicans Filamentation

In parallel, to determine the effect on C. albicans filamentation, the
similar concentrations of ASOs (10, 20, and 40 nM) were incubated
with C. albicans SC5314, and the effects were evaluated in terms of
filament number. For this, 100 mL ASO at the different concentrations
prepared in RPMI medium were added to each well of a 96-well plate
(Orange Scientific, Braine-I’Alleud, Belgium) together with 100 mL of
1� 106 cells mL�1 of Candida cell suspensions. The positive controls
were prepared with 200 mL of cells in RPMI medium without the
addition of ASO, and the negative controls were prepared only with
RPMI medium. In addition, the scrambled ASO was used as control.
The ASO effects were evaluated at 4, 6, and 8 h of incubation.

To determine the percentage of filamentation, Candida cells were
scraped from each well, and the filaments were enumerated using a
Neubauer chamber by optic microscopy. The results were presented
as percentage of filamentation reduction through the following for-
mula: percentage of filamentation inhibition = [(percentage of cells
in filament on control) � (percentage of cells in filament in the pres-
ence of ASO)]/(percentage of cells in filament on control).
Effect on EFG1 Gene Expression

qRT-PCR studies were performed to determine the effect of 40 nM
ASO on EFG1 gene expression. For that, in 24-well plates (Orange Sci-
entific, Braine-I’Alleud, Belgium), 500 mL C. albicans cells at
1 � 106 cells mL�1 of were incubated with 500 mL ASO for the same
periods of time. After each time point, the cells were collected from
each well, recovered by centrifugation for 5 min at 7,000 � g and
4�C, and washed once with sterile water. RNA extraction was per-
formed using the PureLink RNA Mini Kit (Invitrogen, Carlsbad, CA,
USA).66,67 Then, to avoid potential DNA contamination, samples
were treated with DNase I (DNase I, Amplification Grade, Invitrogen),
and RNA concentration was determined by optical density measure-
ment with the NanoDrop 1000 Spectrophotometer (Thermo Fisher
Scientific). The cDNA was synthetized using the iScript Reverse Tran-
scriptase (Bio-Rad) in accordance with themanufacturer’s instructions.
qRT-PCR (CFX96, Bio-Rad) was performed on a 96-well microtiter
plate using EvaGreen Supermix (Bio-Rad, Berkeley, CA, USA). The
expression of the EFG1 gene was normalized with the ACT1 Candida
reference gene.68 No-reverse transcriptase controls (NRTs) and no-
template controls (NTCs) were included in each run. Each reaction
was performed in triplicate, and mean values of relative expression
were determined for each gene. The primers were designed using the
Primer 3 web-based software (http://www.bioinformatics.nl/cgi-bin/
primer3plus/primer3plus.cgi) and are described in Table 2.
Performance

In order to evaluate the performance of the anti-EFG1 20OMe
throughout the study, C. albicans SC5314 was incubated with
40 nM ASO for 24 h. For that, 5 mL anti-EFG1 20OMe at 40 nM
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Table 2. Primers Used for qRT-PCR, with the Respective Theoretical Tm Obtained from the Calculator from IDT and Amplification Product

Candida albicans Gene Name Systematic Name Sequence (50–30) Primer Tm (�C) AP (BP)

EFG1 CR_07890W_A/Orf19.610
50-TTCTGGTGCAGGTTCCAC-30 forward

57 168
50-CCTGGTTGTGATGCAGGT-30 reverse

ACT1 C1_13700W_A/Orf19.5007
50-AATGGGTAGGGTGGGAAAAC-30 forward

57 150
50-AGCCATTTCCATTGATCGTC-30 reverse

AP, amplification product; BP, base pairs.
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prepared in RPMImediumwas added to 5mL of aC. albicans SC5314
suspension at 1� 105 cells mL�1 and incubated at 37�C under gentle
agitation (120 rpm). The positive control was prepared only with
10 mL of the same concentration of cells. At pre-determined time
points (6, 8, 10, and 24 h) aliquots were recovered, and three comple-
mentary criteria were evaluated: percentage of filamentation reduc-
tion at 6, 8, 10, and 24 h; levels of EFG1 expression; and Efg1 protein
translation at 24 h of incubation.

The ASO effect on C. albicans filamentation and on levels of EFG1
gene expression was evaluated as described previously. For that, the
number of filaments of cells grown in the presence and absence of
ASO was enumerated, and RNA was extracted from those cells to
quantify the levels of EFG1 gene expression. Epifluorescence micro-
scopy images were used to confirm the levels of filamentation and
to determine the length of the filaments. C. albicans cells grown in
the presence and absence of ASOs were stained with 20 mL calcofluor
(2 g/L; Sigma-Aldrich, St. Louis, MO, USA) for 15 min in dark con-
ditions. Consequently, the cells were centrifuged for 5 min and
washed twice with ultra-pure water. All samples were observed with
an Olympus BX51 microscope (Olympus Portugal, Porto, Portugal)
coupled with a DP71 digital camera. The laser DM 405/488/559/
635 and the emission filters BA 430-470 (blue channel) were used,
and images were acquired with the program FluoView FV100
(Olympus). The length of the filaments was determined using ImageJ
plug-in software.

Effect on Efg1p Translation

Liquid chromatography (LC)-MALDI-TOF-mass spectrometry (MS)
(Q-Exactive Orbitrap, Thermo Fisher Scientific) was used to infer
about the effect of ASO in the translation of respective genes into a
protein (Efg1p).69 For that, the proteome of C. albicans cells grown
in the presence and absence of the ASO was obtained as described
previously,70 with some modifications. Cells were obtained by centri-
fugation for 5min, at 8,000� g and 4�C, and washed twice with sterile
ice-cold ultrapure water. Then, cells were washed with lysis buffer
(10 mM Tris-HCl [pH 7.4], 1 mM phenylmethylsulfonyl fluoride
[PMSF]) and resuspended in ice-cold lysis buffer in order to lyse me-
chanically, with an equal volume of glass beads in a cell homogenizer
(FastPrep, MP Biomedicals), four times. Lysed cells were separated by
centrifugation at 1,000 � g for 10 min at 4�C, and the pellet was
washed twice with each of the following ice-cold solutions: 1 mM
PMSF and 5% NaCl (Thermo Fisher Scientific, Waltham, MA,
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USA) and 1 mM PMSF in ultrapure water. Then, it was resuspended
in washing buffer (50 mM Tris-HCl [pH 8], 1 mM PMSF) and ex-
tracted by boiling with SDS extraction buffer (50 mM Tris-HCl
[pH 8.0], 0.1 M EDTA, 2% SDS, 10 mM DTT) for 10 min. Finally,
the supernatant was transferred to fresh tubes, and the protein con-
centration was determined using the Pierce BCA Protein Assay Kit
(Thermo Fisher Scientific).

Protein samples were analyzed by nano-LC-MS/MS (tandem MS) in
order to identify and quantify Efg1p and Act1p. First, protein samples
were digested based on the filter-aided sample preparation (FASP)
procedure described by Wi�sniewski and colleagues,71 with some
modifications. Protein digestion with a trypsin/Lys-C mix was per-
formed overnight at 37�C (Promega, Madison, WI, USA), and each
reaction was stopped with 1% (w/v) trifluoroacetic acid (TFA). Pep-
tides were then recovered by centrifugation, followed by an additional
centrifugation step with 0.1% TFA. Next, peptide samples were
cleaned up and concentrated by SPE-C18 chromatography.
Nano-LC-MS/MS equipment, composed of an Ultimate 3000 LC sys-
tem coupled to a Q-Exactive Hybrid Quadrupole-Orbitrap mass spec-
trometer (Thermo Fisher Scientific, Bremen, Germany), was used to
identify and quantify the proteins.72 Samples were loaded onto a trap-
ping cartridge (Acclaim PepMap 100 C18 [pore size, 100 Å, 5 mm �
300 mm i.d.], catalog no. 160454, Thermo Fisher Scientific) in a mo-
bile phase of 2% acetonitrile (ACN), 0.1% formic acid (FA) at 10 mL/
min. Data acquisition was controlled by Xcalibur 4.0 and Tune 2.8
software (Thermo Fisher Scientific, Bremen, Germany).

The raw data were processed using Proteome Discoverer v2.2.0.388
software (Thermo Fisher Scientific) and searched using the UniProt
database for the taxonomic selection Candida albicans (November
2017 release). The Sequest HT search engine was used to identify
tryptic peptides. The percentage of Efg1p translation was determined
by the ratio of media of peptides area corresponding to Efg1p andme-
dia of peptides area corresponding to Act1p (used as reference
protein).

Performance on Simulated Human Body Fluids

To mimic the human body fluids, AU, AS, and horse blood were used
during this work. AU (pH 5.8) and AS (pH 6.8) were prepared with
slight modifications to that previously described by Silva et al. in their
2010 and 2013 studies, respectively.73,74 The composition of AU was
CaCl2 (0.65 g/L), MgCl2 (0.65 g/L), NaCl (4.6 g/L), Na2SO4 (2.3 g/L),
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Na3C3H5O (CO2)3 (0.65 g/L), Na2C2O4 (0.02 g/L), KH2PO4 (2.8 g/L),
KCl (1.6 g/L), NH4Cl (1.0 g/L), urea (25 g/L), creatinine (1.1 g/L), and
glucose (3 g/L); and the composition of AS was peptone (5 g/L),
glucose (2 g/L), mucin (1 g/L), NaCl (0.35 g/L), CaCl2 (0.2 g/L),
and KCl (0.2 g/L). The blood used was defibrinated horse blood
(Probiológica-Empresa de Produtos Biológicos, Belas, Portugal) sup-
plemented with 50% of 0.9% NaCl.

Pellets obtained as described earlier were resuspended in 10 mL of
each body fluid after adjusting the cellular density to 1 � 106 cells
mL�1, using a Neubauer hemocytometer (Paul Marienfeld, Lauda-
Königshofen, Germany) and incubated for 24 h (AS and AU) and
48 h (horse blood) at 37�C in Erlenmeyer flasks under gentle agitation
(120 rpm). RPMI medium was used as positive control. All experi-
ments were performed in triplicate and in a minimum of three inde-
pendent assays.

To determine whether anti-EFG1 20OMe maintains its performance
on different simulated human body fluids, its ability to inhibit
C. albicans filamentation and reduce EFG1 expression was deter-
mined. For that, at pre-determined time points (6, 8, 10, and 24 h
for AS and AU and 48 h for horse blood), aliquots of each suspension
were recovered, and the cells were harvested by centrifugation at
3000� g for 10 min at 4�C and washed twice with PBS. To determine
the percentage of filamentation, Candida cells that formed filaments
were enumerated using a Neubauer chamber, as described earlier.

To determine the effect on C. albicans EFG1 gene expression, qRT-
PCR studies were evaluated at 24 h (for AS, AU, and RPMI medium)
and 48 h (for horse blood) of incubation. The extraction of RNA and
qRT-PCR were performed as described earlier. Simultaneously, we
evaluated C. albicans capability for growing on the different simulated
human body fluids by colony-forming unit (CFU) determination
methodology. For that, 1 mL of each suspension was recovered, and
cells were harvested by centrifugation at 3,000 � g for 10 min at
4�C and washed twice with PBS. Serial dilutions were performed on
PBS, inoculated onto SDA, and incubated for an additional 24 h at
37�C. The results are presented as the log of CFUs cm�2 (Figure S3A).

Statistical Analysis

Data are expressed as the mean ± SD of at least three independent ex-
periments. Results were compared using two-way ANOVA using
GraphPad Prism (GraphPad Software, San Diego, CA, USA). All tests
were performed with a confidence level of 95%.

Conclusions

Our data demonstrate, for the first time, that it is possible to use anti-
sense oligomers with 20OMe chemical modifications to control viru-
lence determinants of C. albicans. The anti-EFG1 20OMe that we have
projected has significantly reduced EFG1 gene expression and effec-
tively prevented C. albicans cell filamentation in different simulated
human body fluids. Undeniably, this work provides potentially valu-
able information for future research into the management of Candida
infections. Thus, in the future, it will be possible to develop a credible
and alternative method to control oral and urinary candidiasis, as well
as systemic infections, based on AST methodology.
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