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ABSTRACT: Accurate prediction of protein−ligand binding free energies is
important in enzyme engineering and drug discovery. The molecular mechanics/
generalized Born surface area (MM/GBSA) approach is widely used to estimate
ligand-binding affinities, but its performance heavily relies on the accuracy of its
energy components. A hybrid strategy combining MM/GBSA and machine
learning (ML) has been developed to predict the binding free energies of protein−
ligand systems. Based on the MM/GBSA energy terms and several features
associated with protein−ligand interactions, our ML-based scoring function,
GXLE, shows much better performance than MM/GBSA without entropy. In
particular, the good transferability of the GXLE model is highlighted by its good
performance in ranking power for prediction of the binding affinity of different ligands for either the docked structures or crystal
structures. The GXLE scoring function and its code are freely available and can be used to correct the binding free energies
computed by MM/GBSA.

■ 1INTRODUCTION

Reliable estimation of protein−ligand binding free energies is a
core issue in drug screening and design.1−3 In traditional drug
discovery, direct measurement of protein−ligand binding
affinity mostly relies on experimental techniques, which are
costly and time-consuming for high-throughput screening of a
great number of compounds. Various computational ap-
proaches have emerged for calculating the binding free energy
between ligands and their target proteins. These range from
the high-end free-energy methods such as free-energy
perturbation (FEP)4−6 and thermodynamic integration
(TI),7,8 which are physically rigorous but prohibitively
expensive for high-throughput screening, to the low-end
empirical scoring functions (SFs). Classical SFs can be
typically divided into three classes, namely, force field (FF)-
based SFs,9−16 empirical SFs,17−21 and knowledge-based
SFs.22−24 FF-based SFs characterize the protein−ligand
interactions by linear combination of nonbonding interaction
components (such as electrostatic, van der Waals, and
hydrogen bonding), while the other more difficult components
such as desolvation and entropic contributions are usually
simplified or even neglected. Consequently, these SFs show
diversified performance in predicting the protein−ligand
binding affinity.
The FF-based molecular mechanical/generalized Born

surface area (MM/GBSA) approach is a fast and popular
method for binding free-energy prediction.25,26 MM/GBSA is
usually more accurate than most SFs and less demanding in
computational cost than FEP and TI methods. In the MM/

GBSA approach, the binding free energy of the ligand can be
computed from the difference between the free energies of the
protein receptor (R), the ligand (L), and the complex (RL) in
solution (eq 1). The binding free energy can be decomposed
into a gas-phase MM energy, polar and nonpolar solvation
terms, and a conformational entropy term (eq 2),27,28 in which
the polar solvation energies are estimated using an implicit
solvation GB29 model, while the calculation of the nonpolar
solvation energy is based on the approximation of solvent-
accessible surface area.30 The conformational entropy term
(−TΔS), which is normally calculated by normal-mode
analysis, is usually neglected due to the high computational
cost and technical errors associated with its calculation.
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Recently, machine learning (ML)-based scoring functions
have emerged as promising techniques for the prediction of
protein−ligand binding free energies.31−36 Unlike conventional
SFs, ML-based SFs are able to capture the relationship
between protein−ligand binding affinity through a nonlinear
algorithm and have been shown to outperform the conven-
tional SFs in terms of scoring power. For instance, Ballester
and Mitchell developed a random forest-based SF (RF-
Score),37 in which the occurrence of the key protein−ligand
atom-type pairs within a cutoff distance was used as an input
feature. Using the PDBbind v2007 as the training set (1105
complexes) and test set (195 complexes), a high Pearson’s
correlation coefficient (R) of 0.776 was obtained for the
scoring power.37 Subsequently, RF-Score was further improved
by tuning the parameters and adding extra empirical energy
terms.38 On the basis of 50 descriptors related to protein−
ligand interactions, Li et al. developed a support vector
regression (SVR) algorithm-based SF named ID-Score, which
achieved a higher scoring power (Rp = 0.753).39 Wang and
Zhang developed a scoring function ΔvinaRF20,40 in which
the RF algorithm was employed to simultaneously improve the
scoring, ranking, docking, and screening power of the
AutoDock Vina scores. Using the features in AutoDock Vina
and an additional 20 features, ΔvinaRF20 achieved superior
performance compared to classical scoring function in both the
CASF-2007 and CASF-2013 benchmarks.40 By taking into
account the explicit water molecule binding and ligand
conformation stability, Zhang and co-workers developed a
new scoring function named ΔvinaXGB41 that shows better
performance than the previous ΔvinaRF20.
In addition to the traditional ML, deep learning-based SFs

have also emerged as a promising tool in predicting the binding
free energy of protein−ligand complexes.42−47 Unlike the
traditional machine learning algorithms, deep learning-based
SFs depend strongly on algorithms and data, as well as the
hardware.48−50 With the improvement of hardware computing
speed and the storage capacity, the quantum chemistry-based
SFs have been developed to predict the binding affinity of
protein−ligand complexes.51,52

Inspired by the aforementioned work, we describe herein a
hybrid MM/GBSA and ML method to predict the binding free
energy of protein−ligand complexes. Using the MM/GBSA
energy components and other descriptors associated with
protein−ligand binding, we have shown that the hybrid MM/
GBSA and ML approach (named GXLE) has superior
performance in scoring power compared to the pure MM/
GBSA. Compared with many other ML methods, fewer
physicochemical features have been used in GXLE, which
renders robustness and transferability of binding affinity
prediction to this model.

2. METHODS
2.1. Data Sets. The PDBbind database (http://www.

pdbbind-cn.org/)53,54 developed by Wang et al. provides 3D
structures of protein−ligand complexes and their binding
affinity data, which has been widely used as the benchmark for
scoring functions. In this study, we chose a PDBbind refined
set as part of our training set, which consists of high-resolution
crystal structures with reliable experimental binding affinities
(3 < pKd < 12). In addition to the refined set from PDBbind,
we also used part of the general set from PDBbind (0.4 < pKd
< 3) in our training set. According to the time-split cross-
validation method,55 we divided the training set into two

sections. One section of the set, whose structures were released
after 2018, was used as a validation set, while the remainder of
the set was used as the new training set. The validation set was
used to select a model that could perform well with different
structure types. The core set (CASF-2016),56 which consists of
high-quality protein−ligand complexes, was used as the test
set. The structures in the test set were excluded from both the
training set and validation set. Due to some technical problems
in the Amber setup, a small part of problematic complexes
from the training set and validation set were ignored. In total,
our system has 3511 complexes in the training set, 301
complexes in the validation set and 285 complexes in the test
set (Table 1).

2.2. Preparation of Structures. All absent hydrogen
atoms were added to the proteins using the LEAP module in
AMBER18.57 The Amber ff14SB58 FF was employed for the
protein residues, while the general AMBER FF (GAFF)59 and
AM1-BCC60,61 charges were used for ligands. The resulting
protein−ligand complex was solvated in a rectangular box of
TIP3P62 waters extending up to at least 12 Å from the protein
surface. Counterions, Na+ or Cl−, were added to neutralize the
total charge of each system. After an ideal setup, the whole
system was fully minimized using combined steepest descent
and conjugate gradient method. All optimizations were
performed using the AMBER18 program.57,63 The fully
optimized structures were used in the subsequent MM/
GBSA calculations.

2.3. MM/GBSA Binding Free-Energy Calculations.

Δ = Δ + Δ + Δ + Δ − ΔG E E G G T Sbind ele vdw GB SA (3)

The MM/GBSA binding free-energy calculations can be
decomposed into five interaction terms as shown in eq 3. ΔEele
and ΔEvdW are electrostatic energies and the van der Waals
energies from the gas-phase molecular mechanics, respectively.
The electrostatic solvation energy between the solute and the
continuum solvent (ΔGGB) is calculated with the GB model,
while the nonpolar contribution (ΔGSA) is estimated by the
solvent-accessible surface area. The entropy term (−TΔS) can
be calculated by MMPBSA.py64 using the normal mode
method. However, some studies have shown that the
calculated entropy is far from accurate. As such, we chose
only the first four terms (ΔEele, ΔEvdw, ΔGGB, and ΔGSA) of
the MM/GBSA method featured in the work described below.

2.4. Feature Selection and Preprocessing. In addition
to the four features derived from the MM/GBSA equation,
other key features are also included in our ML models,
including the number of rotatable bonds (RT), hydrogen-bond
interactions (HB), experience-based van der Waals interactions
(VDW), hydrophobic interaction terms (HP, HM, and HS),
the total charges of the ligand, the number of atoms of each
element, and the number of heavy atoms. These features can
be divided into three categories: physical interaction energy
terms, empirical interaction energy terms, and the ligand
information.

Table 1. Summary of the Data Sets

Source numbers

traning set PDBbind refined set (before 2018) 3511
validation set PDBbind refined set (after 2018) 301
test set CASF-2016 285
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For empirical interaction energy terms, the RT feature
represents the number of rotatable bonds in the ligand (eq 4),
which can be used to approximate the entropy term upon
ligand binding. The HB feature, which is taken from the
empirical X-Score,18 measures the hydrogen-bonding inter-
actions between H-bond donors (D) and the H-bond
acceptors (A). The strength of a hydrogen bond is related to
the A−D bond length, as well as the two bond angles involved
in H-bond interactions (eq 5). In addition, the VDW obtained
from X-Score is calculated by considering all the atom pairs
between the ligand and the protein (eq 6). The hydrophobic
interaction terms (HP, HM, and HS) obtained from empirical
SFs17,65,66 were also considered in our ML models. Hydro-
phobic pairs (HPs) are calculated by summing the hydro-
phobic atom pairs formed between the ligand and the protein
(eq 7). The overall hydrophobic matching (HM) between the
ligand and the protein is calculated with eq 8. The
hydrophobic surface (HS) calculates the buried hydrophobic
surface of the ligand (eq 9).

∑=RT RT
i

i

ligand

(4)

θ θ= f R f fHB ( ) ( ) ( )AD 1,AD 2,AD (5)

∑ ∑=VDW VDW
i j

ij

ligand protein

(6)

∑ ∑= f dHP ( )
i j

ij

ligand protein

(7)

∑= ×PHM log HM
i

i i

ligand

(8)

∑=HS SAS
i

i

ligand

(9)

For the ligand information, a total of 12 features were
considered and the total charges of the ligand, the number of
atoms of each element (C, N, O, F, P, S, Cl, Br, I, and H), and
the number of heavy atoms were included.
In order to eliminate the influence of unit and scale

differences between features, each feature was subsequently
standardized using sklearn.preprocessing.StandardScaler class.

2.5. Machine Learning Models. Scikit-Learn 0.24.167 was
used to generate all ML models. For linear regressions (LR),
ridge regressions (RR), decision trees (DTs), extra trees
(ETs), support vector machines (SVMs), random forests
(RFs), and deep neural networks (DNN), the classes
sklearn.linear_model.LinearRegression, sklearn.linear_model.-
Ridge, sklearn.tree.DecisionTreeRegressor, sklearn.ensem-
ble.ExtraTreesRegressor, sklearn.svm.SVR, sklearn.ensemble.R-
andomForest-Regressor, and sklearn.neural_network.MLPRe-
gressor were invoked. We also tested the recently developed
extreme gradient boosting (XGB).68 A brief description and
tuned hyperparameters of each ML method are shown in
Table S1 in the Supporting Information. The ML models are
used for predicted binding free energy according to eq 10

= ΔF x x x G( , , ..., )i n i1 2 pre, (10)

where (x1,x2,...xn) is the vector of input features, in which n is
the number of features. F is the ML model that adopts a
nonlinear function. The output is the predicted binding free
energy for protein−ligand complex i. Different models have
different ways to define and obtain minimum loss through eq
11

∑= Δ − Δ
=

G GLoss ( )
i

N

i i
1

pre, exp,
(11)

where ΔGpre,i and ΔGexp,i are the binding free energy of the
protein−ligand complex from prediction and experiment,
respectively, and i and N are the number of samples in the
training set.

2.6. Performance Evaluation. The scoring power is
gauged by Pearson’s correlation coefficient (Rp) and mean
square error (MSE). Rp is the correlation coefficient between
predicted binding free energy and experimental binding free
energy (eq 12), while MSE is the mean-squared error between
the predicted binding free energy and the experimental binding
free energy (eq 13), which quantifies the bias in free-energy
predictions.

=

∑ Δ − Δ Δ − Δ

∑ Δ − Δ ∑ Δ − Δ
=

= =
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G G G G
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i i
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i
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1 pre, pre,ave
2

1 exp, exp,ave
2

(12)

Figure 1. Performance of eight ML models on the validation set with three different feature sets (G, G + X, and G + X + L). (A) Pearson’s
correlation coefficient (Rp). (B) Mean square error (MSE).
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In eqs 12 and 13, ΔGpre,ave and ΔGexp,ave are the average
binding free energy from prediction and experiment,
respectively, while N is the number of samples in the data
set used for testing. The larger the value of Rp, the better is the
correlation between them.

3. RESULTS
3.1. Features and Model Analysis. Consistent with

previous studies, ML model selection and parameter adjust-
ment are carried out on the basis of the validation set. As
mentioned in the Methods section, above, our features contain
three categories: GBSA-based (G), X-Score-based (X), and
ligand-based entries (L). Accordingly, we used three feature
sets, G, G + X, and G + X + L. For each model training, the
results were obtained 100 times and the mean values were used
as the final results. Figure 1A presents the Rp of eight ML
models for the validation set. According to the results on the
validation set in Figure 1, Pearson’s correlation coefficient of
each model improves as the feature dimensions increase (G <
G + X < G + X + L), with the exception of one from the
decision tree model (DT). In addition to Pearson’s correlation
coefficient, the addition of more features also decreases the
MSE. For regression models, especially for ensemble learning-
related ET and RF, the increase in feature sets can greatly
improve its performance. All these results confirm the
effectiveness of selected features in prediction power.

As shown in Figure 1, the extreme tree regression model
using G + X + L features (22 features in total) yielded the best
performance in the validation set (also see Table S2 in the
Supporting Information for detailed data), in which the Rp is
0.656, while the MSE value is 3.65. As expected, use of ML
significantly improved the results of MM/GBSA, in which
MM/GBSA leads to a huge MSE value of 1913.95 and a low
correlation coefficient of 0.404 (Figure 2A). As summarized in
Table S2 in the Supporting Information, the worst DT
achieved Rp = 0.547, while the best ET achieved Rp = 0.656,
which are both better than the empirical scoring function X-
Score (0.528) and AutoDock Vina (0.496) (Figure 2B,C). In
addition, the Rp of linear regression (LR) is 0.610, which is
better than that of linear regression-based X-Score and
AutoDock Vina, indicating the effectiveness of our feature
selection. As the extreme tree regression model using G + X +
L features (labeled GXLE model) produced the best results
(Figure 2D), we will use GXLE in the following test studies.
According to feature importance analysis results (Figure S1),
VDW from X-Score, ΔGSA from MM/GBSA, and the number
of heavy atoms from ligands are ranked as top 1, 2, and 3,
respectively, among 22 features. It should be noted that they
come from different categories of features, which proves the
effectiveness of three feature categories.

3.2. Results from a Test Set, CASF-2016. To evaluate
the performance of the GXLE model, the CASF-2016
benchmark contained 285 complexes were used as a test set.
As is shown in Figure 3, compared with MM/GBSA and X-
Score, our GXLE model significantly reduces the error and

Figure 2. Pearson correlation coefficients and mean-squared error between the experimental data and the predicted binding free energies: (A)
calculated by MM/GBSA, (B) X-Score, (C) AutoDock Vina, and (D) GXLE on the validation set.

Figure 3. Pearson correlation coefficients and mean-squared error between the experimental data and predicted binding free energies: (A)
calculated by MM/GBSA, (B) X-score, (C) AutoDock Vina, and (D) GXLE on the test set CASF-2016.
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improves the correlation. In line with the validation test in
Figure 2, MM/GBSA yields large error in terms of the MSE
value, and its correlation coefficient is only 0.403 (Figure 3A).
This is because the entropy term was ignored in our MM/
GBSA calculations due to the high computational cost, while
the neglection of entropy term would result in the significant
overestimation of the predicted binding free energies (see
Figure 3A). Interestingly, the experience-based X-Score
performs much better than MM/GBSA, while the former has
a coefficient of 0.643 and an MSE of 5.45, respectively (Figure
3B). In particular, our GXLE model affords a correlation
coefficient of 0.762 and an MSE of 3.97 (Figure 3D),
respectively, which is better than X-Score and AutoDock Vina
(Figure 3C).
3.3. Comparison with Other Scoring Functions. For

CASF-2016, more than 30 common scoring functions have
been tested and included in the data set. Figure 4 compares
our model GXLE against 30 scoring functions included in the
CASF-2016 data set, while the detailed data are shown in
Table S3 in the Supporting Information.
Since the training set of the published ΔvinaRF20 contains

140 complexes that have been included in the test set of CASF-
2016, we retrained the ΔvinaRF20 by excluding these 140
complexes from CASF-2016. As displayed in Figure 4, the

retrained ΔvinaRF20 yielded a Pearson correlation coefficient
of 0.732 and a Spearman correlation coefficient of 0.626,
respectively. Inspection of Figure 4 shows that our GXLE has a
Pearson correlation coefficient of 0.762 and a Spearman
correlation coefficient of 0.63, which is among one of the best
scoring functions in CASF-2016 data set.

3.4. Extended Application of GXLE. In this section, we
examine the ranking power of an extended application of
GXLE. For this purpose, we selected a test set (a, b, c, d, e, and
f, Figure 5C) of six lipid kinases, PI4KIIIβ inhibitors, whose
bioactivities (IC50) are considerably different from each
other.69 For the ligand c, the crystal structure of PI4KIIIβ in
complex with c was available (PDB id: 4D0L).70 As such, the
hydrophilicity and hydrophobicity of protein pocket (Figure
5A) and the interactions of c with the important residues of
the binding pocket (Figure 5B) were analyzed first. As shown
in Figure 5B, LYS549 and VAL598 form H-bond interactions
with c and are key to the binding of inhibitors. Indeed, the vital
role of LYS549 in ligand binding has been confirmed
experimentally.70 On the basis of PDB 4D0L, five other
inhibitors were docked into the binding site of PI4KIIIβ using
the SYBYL program. Among different docked poses, the
docking pose (I) is able to form the H-bond interactions with
LYS549; (II) has the similar binding pose with c; and (III) has

Figure 4. Performance of scoring functions on the CASF-2016 benchmark. (A) Scoring power measured by the Pearson correlation coefficient and
(B) ranking power measured by the Spearman correlation coefficient. GXLE’s performances are colored orange and other scoring functions’
performances are blue.
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Figure 5. Interaction between the ligand and the protein in the crystal structure 4D0L. (A) Interaction analysis of the binding pocket, brown for the
hydrophobic part and blue for the hydrophilic part. (B) Interaction of the important residues, green for hydrogen bonding and pink for
hydrophobicity. (C) Molecular formulas of six inhibitors. The ligand c is contained in the crystal structure (PDB id: 4D0L), while the other ligands
(a, b, d, e, and f) are docked to the pocket of the target.

Table 2. Evaluation of the Ranking Power of Selected Scoring Functions Using a Set of PI4KIIIβ Inhibitors

ID IC50 (nM) GXLE GBSA X-score D-score PMF-score G-score ChemScore Vina

a 0.98 −10.09 −46.05 6.37 −160.81 −50.87 −127.24 −24.44 −5.12
b 6.1 −9.95 −52.02 6.35 −150.30 −54.91 −125.00 −27.58 −4.46
c 19 −9.83 −44.94 6.10 −47.85 91.31 −149.75 −7.71 −4.47
d 220 −9.68 −57.55 6.30 −190.07 −76.92 −248.21 −25.67 −4.77
e 316 −6.31 −29.61 5.70 −86.48 −66.81 −162.86 −23.89 −6.17
f 1250 −3.80 −20.36 5.00 −83.48 −31.16 −125.92 −12.76 −2.87
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the highest docking score and was selected for subsequent
scoring. Figure S2 in the Supporting Information shows more
details about these and it depicted the selected binding pose
for each inhibitor a, b, d, e, and f.
Then, GBSA, X-score,18 D-score,9 PMF-score,22 G-score,14

ChemScore,17 and AutoDock Vina,21 as well as GXLE, were
used to rank the binding affinity of the selected poses (Figure
S2). Table 2 compares the calculated scores from the seven
selected scoring functions and our GXLE model. It is seen that
GXLE yielded exactly the same ranking order as experiments
(IC50), while all other seven scoring functions failed to give the
correct ranking order. Notably, the performance of GBSA is
even much poorer than the empirical X-score. All these results
indicate that for different ligands of the same target, GXLE
shows good performance in its ranking power for the docked
structures.
3.5. Assessment on Different Biological Targets. In

this section, the performance of GXLE with different biological
targets will be evaluated. For this purpose, we selected a test
set consisting of 10 targets that cover different biological target
types. For each target, we collected all the crystal structures of
complexes that contain small molecular ligands with their
bioactivity data available from the PDBbind general set.
Complexes presented in the training set, validation set, or test
set were removed (for a PDBid list of all the collected crystal
structures of the 10 selected targets, see Table S4 in the
Supporting Information). For each target, the performance of
GXLE on the collected complexes was evaluated and was
characterized by Rp and Rs. Table 3 shows the calculated Rp
and Rs values for each target. The Rp values for the 10 targets
are in the range of 0.467−0.844 and on average are 0.736. The
Rs values are between 0.399 and 0.873, and the average is
0.697. For comparison, using the same data and evaluation
method, we also tested MM/GBSA without the entropy term,
X-score, and AutoDock Vina. All the results are listed in Table
3. Compared with MM/GBSA without the entropy term,
GXLE shows higher Rp and Rs values, respectively, in eight
targets. The Rp values of GXLE in six systems are higher than
those of X-score, while the Rs values in seven targets are higher
than those of X-score. In addition, we also compared our
GXLE model against the recently developed geometric and
topological invariant-based ML models, which have shown
superior performance in benchmark studies.71−74 To this end,

we have retrained the open-sourced PSH-ML using the same
training set as ours (including 3511 complexes). Then, we have
tested it on the same extended test set, as shown Table 3.
Compared with PSH-ML, our GXLE model shows slightly
higher average Rp and Rs values. Overall, GXLE achieved the
highest average values in both Rp and Rs. These results clearly
indicate that GXLE can achieve better and more consistent
performance on all the test targets, suggesting that it can be
applied to a broad range of biological target types.

4. DISCUSSION AND CONCLUSIONS

A few and simple features taken either from MM/GBSA terms
or associated with protein−ligand interactions have been used
here to develop the ML-based scoring functions for ligand
binding affinity predictions. Among a variety of nonlinear
regression ML methods, the extreme tree regression was found
to have the best performance. The best model GXLE we
trained in this study remarkably improves the accuracy of the
prediction compared to MM/GBSA without entropy. On the
benchmark CASF-2016, our method achieves a Pearson
correlation coefficient of 0.762 in scoring power and a
Spearman correlation coefficient of 0.63 in ranking power,
which is among one of the best scoring functions contained in
CASF-2016 data sets. In particular, our model shows good
transferability in its extended ranking power for binding affinity
prediction of different ligands of the same target for either the
docked structures or crystal structures. Due to both the
efficiency and accuracy, our GXLE model is expected to find
wide applications in a broad range of protein−ligand
complexes. To further improve the predicting power of
GXLE, extended training sets comprising the docked
complexes40,41,75,76 and more features associated with
protein−ligand interactions may be useful.39,77

5. DATA AND SOFTWARE AVAILABILITY

Code for processing data and acquiring features, data related to
training set, validation set, and test set, and code for ML-
related modeling are available (https://github.com/
LinaDongXMU/GXLE).

Table 3. Performances of GXLE, MM/GBSA, X-Score, AutoDock Vina, and PSH-ML Evaluated against a Set Consisting of 10
Selected Diverse Biological Targetsa

method GXLE MM/GBSA X-score AutoDock Vina PSH-ML

test target number Rp Rs Rp Rs Rp Rs Rp Rs Rp Rs

BACE-1 73 0.833 0.746 0.836 0.783 0.810 0.711 0.660 0.710 0.836 0.752
CHK1 15 0.777 0.737 0.687 0.293 0.736 0.564 0.876 0.787 0.924 0.755
DPP4 13 0.467 0.399 0.197 0.250 0.456 0.285 0.191 0.316 0.711 0.301
ER 7 0.844 0.857 0.794 0.786 0.642 0.857 0.601 0.750 0.391 0.571
LTA-4H 22 0.770 0.873 0.700 0.749 0.774 0.859 0.606 0.613 0.769 0.894
P38a 18 0.793 0.780 0.689 0.706 0.814 0.851 0.765 0.764 0.849 0.685
PPAR 11 0.750 0.645 0.485 0.600 0.756 0.581 0.734 0.573 0.528 0.509
PTP1B 14 0.675 0.737 −0.292 −0.189 0.713 0.724 −0.025 0.070 0.526 0.530
thrombin 15 0.840 0.679 0.926 0.821 0.823 0.707 0.621 0.546 0.874 0.732
renin 22 0.611 0.514 −0.165 0.225 0.398 0.463 0.187 0.213 0.601 0.423
average values 0.736 0.697 0.486 0.502 0.692 0.660 0.522 0.534 0.701 0.615

aBACE-1, β-secretase 1; CHK1, serine/threonine-protein kinase chk1; DPP4, dipeptidyl peptidase 4; ER, estrogen receptor; LTA-4H, leukotriene
A-4 hydrolase; P38a, mitogen-activated protein kinase 14; PPAR-γ, peroxisome proliferator-activated receptor; and PTP1B, protein tyrosine
phosphatase 1B.
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