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Large-scale sequencing efforts in amyotrophic lateral sclerosis (ALS) have implicated novel genes using gene-based collaps-

ing methods. However, pathogenic mutations may be concentrated in specific genic regions. To address this, we developed

two collapsing strategies: One focuses rare variation collapsing on homology-based protein domains as the unit for collaps-

ing, and the other is a gene-level approach that, unlike standard methods, leverages existing evidence of purifying selection

against missense variation on said domains. The application of these two collapsing methods to 3093 ALS cases and 8186

controls of European ancestry, and also 3239 cases and 11,808 controls of diversified populations, pinpoints risk regions

of ALS genes, including SOD1, NEK1, TARDBP, and FUS. While not clearly implicating novel ALS genes, the new analyses

not only pinpoint risk regions in known genes but also highlight candidate genes as well.

[Supplemental material is available for this article.]

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegen-
erative disease characterized by progressive motor neuron loss
leading to paralysis and death, most often from respiratory failure.
Roughly 60%–70% of familial and 10% of sporadic cases have an
identifiable mutation in a known causal ALS gene, the majority
of which are repeat expansions in C9orf72 and point mutations
in SOD1 (Renton et al. 2014). Recent efforts in gene discovery,
largely driven by advances in sequencing and identification of
rare variants, have implicated and confirmed several new genes
in ALS pathogenesis including TBK1, NEK1, ANXA11, and CCNF
(Bannwarth et al. 2014; Johnson et al. 2014; Smith et al. 2014,
2017; Cirulli et al. 2015; Kenna et al. 2016; Williams et al. 2016;
Mackenzie et al. 2017; Nicolas et al. 2018). Despite this pro-
gress, the majority of sporadic cases still remain to be resolved
genetically.

The now established paradigm for case-control analyses
of exome or genome sequencing data of complex diseases and
traits involves a gene-based collapsing framework in which all
qualifying variants in a gene are treated as equivalent. Genes are
associated with the trait when they exhibit a significant excess of
qualifying variants occurring anywhere in the gene. This approach
has implicated disease genes in a growing number of other com-
plex conditions beyond ALS, including idiopathic pulmonary fi-
brosis (IPF), myocardial infarction (MI), and Alzheimer’s disease
(Cruchaga et al. 2014; Do et al. 2015; Petrovski et al. 2017).

While clearly effective, the power of this approach is limited
by the inclusion of benign variants that reduce statistical power.
However, for genes where pathogenic mutations are localized to
specific regions, such as functional domains, power can be in-
creased by using these regions as the unit for the collapsing
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analysis. In ALS-associated genes, there are several examples of
genes that show regionally localized pathogenic variation. For ex-
ample, inTARDBP, highly penetrant ALS variants are concentrated
in a glycine-rich domain near the C terminus (Pesiridis et al. 2009).
Furthermore, the gene FUS, which has a similar structure as
TARDBP, has pathogenic mutations clustering in two regions: ex-
ons 13–15 (encoding an Arg-Gly-Gly-rich domain and the nuclear
localization signal) and exons 3, 5–6 (encoding Gln-Gly-Ser-Tyr-
rich and Gly-rich domains) (Mackenzie et al. 2010).

Recognizing that undiscovered ALS-associated genes might
similarly have specific domains where pathogenic variants cluster,
we now apply two complementary regional approaches to gene
collapsing analyses to identify localized signals of rare variation
in a data set of 3093 ALS cases of European ancestry (2663 exomes
and 430 whole genomes) compared with 8186 controls of
matched ancestry (7612 control exomes and 574 whole genomes).
We further apply these analyses to a set of samples of diversified
ancestry origins, consisting of 3239 cases and 11,808 controls.
We compare the regional approaches to the standard gene collaps-
ing analysis and highlight the importance of a regional view spe-
cifically for ALS genetics.

Results

Collapsing analyses using homology-defined protein domains

The standard approach to gene discovery focuses on the burden of
rare variants across an entire gene by comparing the frequency of
qualifying variants in cases and controls (illustrated in Fig. 1A).
The qualifying variants can be defined by various criteria such as
function and allele frequency.

In this study, we describe two additional approaches to rare
variant collapsing: (1) a regional approach, in which the unit for
collapsing is not the gene but rather the functional domains with-
in the gene (Fig. 1B); and (2) a gene-based approach, in which the

definition of qualifying variants is informed by regional intoler-
ance to missense variation (Fig. 1C).

We first utilized the standard gene collapsing approach (Fig.
1A) to identify the burden of rare variants in a set of 3093 ALS cases
and 8186 controls of European ancestry. The demographic features
of our cohort reflect known epidemiological features of ALS, in-
cluding male predominance and the distributions of age at onset
and survival (Supplemental Table S1). Qualifying variants were de-
fined as nonsynonymous coding or canonical splice variants that
have a minor allele frequency (MAF) ≤0.1% in cases and controls
(internalMAF) and also a≤0.1%MAF imposed for each population
represented in the ExAC Browser (Lek et al. 2016). High quality
control (QC) metrics were further imposed on the variants (see
Methods).

Comparing genetic variation across 18,653 protein-coding
genes found a genome-wide and study-wide significant (P< 6.7 ×
10−7) case-enrichment only for SOD1 (P=1.23×10−18) (Fig. 2A),
with qualifying variants identified in 43 cases (1.39%) and only
six controls (0.07%; OR=19.2). TARDBP showed the second stron-
gest enrichment (OR=3.6, P=1.02×10−4), but with 23 cases
(0.74%) and 17 controls (0.21%) it did not achieve genome-wide
significance. FUS harbored qualifying variants in 20 cases and 37
controls (OR=1.43, P=0.23) (Fig. 2A).

A gene-based analysis evaluating only rare loss-of-function
(LoF) variants was also performed, identifying a genome-wide
and study-wide significant case-enrichment of NEK1 variants
(OR=7.35, P=1.85×10−10), with 33 cases (1.07%) compared to
12 controls (0.15%) (Supplemental Fig. S1).

As a negative control, we included a model for rare synony-
mous variants and did not observe any genes with significant en-
richment. The genomic inflation factor, lambda (λ) for this model
was 1.03 (Supplemental Fig. S2).

We hypothesized that genes with clustered mutations that
had weak enrichments using this standard gene-based collapsing
approach, such as TARDBP and FUS, could be identified by a col-
lapsing method that uses functional gene regions (i.e., domains)
as the unit for collapsing (Fig. 1B). For this analysis, we utilized
a list of 89,522 gene domains covering the human coding se-
quence, as described previously (Gussow et al. 2016). In short,
the coding sequence of each genewas aligned to a set of conserved
protein domains based on the ConservedDomainDatabase (CDD)
(Marchler-Bauer et al. 2013). The final domain coordinates for
each genewere defined as the regions within the gene that aligned
to the CDD and the unaligned regions between each CDD align-
ment. These domains were then used as the unit for collapsing
compared with a standard gene-based collapsing approach (Fig.
1A,B; Supplemental Table S2).

This domain-based analysiswas performedusing the same co-
hort and codingmodel as the standard approach (European ances-
try, nonsynonymous and canonical splice variants, internal and
population MAF ≤0.1%). As hypothesized, the top three case-en-
riched domains reside in ALS genes: SOD1, TARDBP, and FUS (Fig.
2B). For SOD1, one domain that uniquely maps to a conserved
domain (Cu-Zn superoxide dismutase) spans the majority of
SOD1’s coding sequence and contains most of the variation found
in 1.29% of cases and 0.07% of controls (OR=17.9; P=4.1 ×10−17)
(Fig. 2B).

The glycine-rich TARDBP domain, where known mutations
cluster, is now identified with genome-wide and study-wide signif-
icance (OR=7; P=5.84×10−7) (Fig. 2B). Of note, this glycine-rich
domain covers exon 6 of TARDBP and was not mapped to a con-
served domain from the CDD.

A

B

C

Figure 1. Gene and regional collapsing. (A) A standard gene-based ap-
proach for collapsing analysis of nonsynonymous and canonical splice
rare variants in cases (green) and controls (black) on example Gene A.
(B) A domain-unit–based regional approach in which only the domains
that are intolerant to functional variation are considered as units for collaps-
ing. (C) Intolerance-informedgene collapsing: a regional approach togene
collapsing in which the unit for collapsing is the entire gene, yet missense
variants only qualify for the analysis if they reside in domains that are intol-
erant to variation (domain 1 and 3). Loss-of-function variants (big circles)
continue to qualify regardless of whether they reside in a tolerant or intol-
erant domain of the gene. Bright blue backgroundmarks qualifying region.
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The same trend was observed for FUS, which shows the third
strongest enrichment in this analysis (OR=8.6; P= 3.6 ×10−5) (Fig.
2B). Specifically, qualifying variants were identified in 13 cases
(0.42%) and four controls (0.05%) in the previously reported
Arg-Gly rich domain covering exons 13–15, which also did not
map to a conserved CDD domain (Pesiridis et al. 2009).
Although not at genome-wide or study-wide significance, this rep-
resents a substantial improvement over the gene-based collapsing
approach (OR=1.43, uncorrected P=0.23).

The fourthmost case-enriched domainwas a conserved arma-
dillo repeat domain spanning exons 12–14 of PKP4 (plakophilin 4,
also known as p0071). Qualifying variants occurred in 0.61% of
ALS cases and 0.13% of controls (OR=4.6, P=4.1 ×10−5). While
not genome-wide significant, PKP4 is a relevant candidate gene
that has been previously linked to various ALS-related pathways
(see Discussion).

Gene-based collapsing analyses informed by regional intolerance

to missense variation

As we have demonstrated, domain-based collapsing effectively
identifies genes where pathogenic variants are localized to single
specific regions (e.g., TARDBP and FUS) and highlights suggestive
candidates for further study (PKP4). However, to identify haploin-
sufficient genes where truncating variants and sufficiently damag-
ing missense mutations could both contribute to risk of disease,
the difficulty lies in determining which missense variants should
qualify in the analysis. To address this challenge, we implemented
a collapsing approach that leverages regional patterns of intoler-
ance to missense variation (sub-RVIS) (Gussow et al. 2016;
Traynelis et al. 2017) as a way to prioritize missense variants
most likely to result in disease. In this ‘intolerance-informed’ ap-
proach, rare missense alleles were counted as qualifying if they re-
sided in gene regions that are intolerant to missense variation,
whereas LoF variants were counted as qualifying regardless of loca-
tion within the gene (Fig. 1C).

As ameasure of intolerance of gene regions,we applied a com-
plementary approach to sub-RVIS (Gussow et al. 2016) for when
there is limited resolution in the sequence region of interest.
This approach uses the observed to expected missense ratio in a
domain (OE-ratio), which is equivalent to a domain-based mis-
sense tolerance ratio (MTR) (Traynelis et al. 2017). In short, the ex-
pected rate leverages the underlying sequence context in the
domain, and the observed rate is based on the rate of nonsynony-
mous variants identified in the subregion of interest based on the
ExAC Browser, release 0.3 (see Methods; Lek et al. 2016).

We focus our intolerance-informed gene collapsing approach
on domains that have intolerance below the median exome-wide
OE-ratio, thus subselecting variants in genic regions that have
greater evidence of purifying selection acting against nonsynony-
mous variation. As mentioned earlier, for each gene, variants in
these intolerant regions are considered along with LoF variants in-
dependent of their location within the gene.

Because intolerant coding regions are expected to have a low-
er rate of common variation, we included samples from diversified
ancestries when applying intolerance-informed gene collapsing.
The diversified population approach increased the total number
of samples by 3768, to 3239 cases and 11,808 controls, thereby in-
creasing the power of the analysis. For this approach, we applied
similar rules for qualifying variants, including low population fre-
quency (MAF≤0.1% imposed for each population represented in
ExAC), an internal MAF≤0.04% (decreased from 0.1% due to a
larger control cohort), coding annotation (nonsynonymous and
splice variants), and high QC metrics, with the additional criteria
of residing in the lower 50th percentile of OE-ratio domains.

The genomic inflation factor (λ) of the diversified populations
intolerance-informed analysis was 1.14, slightly higher than the
European-only cohort used for the standard gene-level analyses
(λ=1.1) (Fig. 2A). Yet, this inflation is much lower than for the
standard gene-based analysis using a diversified population (λ=
1.25) (Supplemental Fig. S3), demonstrating the advantage of an
intolerance-informed approach for reducing the genomic inflation
due to variation in tolerant regions.

A B

Figure 2. Q-Q plots of gene- and domain-level collapsing. (A) The results for a standard gene-level collapsing of 3093 cases and 8186 controls; 18,065
covered genes passed QC with more than one case or control carrier for this test. The genes with the top associations and FUS gene are labeled. The ge-
nomic inflation factor, lambda (λ), is 1.10. (B) The results for the domain-based collapsing of 3093 cases and 8186 controls; 70,603 covered domains
passed QC with more than one case or control carrier for this test. The genes with the top associations are labeled and genome-wide significant genes
are in bold. λ =1.046.
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In this analysis, SOD1 achieved a slightly better enrichment
than in either gene-based or domain-based analyses (OR=20.31;
P= 4.13×10−22) (Fig. 3A). TARDBP also had genome-wide and
study-wide significant enrichment (OR=4.95; P= 8.77× 10−8)
(Fig. 3A), which is due to the added power of a diversified versus
European-only analysis (Fig. 3B).

LGALSL (galectin like, previously known as lectin, galacto-
side-binding-like) was the third gene to have a strong enrichment
of qualifying variants in cases (OR=14.63; P=2.29×10−6) (Fig. 3A)
that was not study-wide significant given the models tested. The
enrichment of this gene originates from one specific domain
that harbors variants for 12 cases (0.37%) and three controls
(0.025%) with the addition of an African-American and a Latino
case over the European-only analysis. The target domain harbor-
ing all LGALSL case-variants is a region comprising 378 bp that is
mapped to a conserved protein domain intolerant to variation.
Notably, LGALSL LoF variants were only identified in cases and ab-
sent from nearly 12,000 controls. To assess the rate of LoF variants
in a larger control population, we looked at the ExAC cohort and
found three LoF alleles in 60,033 individuals (Lek et al. 2016).

We also examined the effects of population and gender as
possible covariates by performing the analysis using the Firth logis-
tic regression and using gender and first five genotype principal
components as covariates. We find that the inflation factor is re-
duced from λ=1.14 to λ=1.04, and the P-value for LGALSL is
strengthened to 5.84×10−7 (Supplemental Fig. S4).

The case-enrichment of LGALSL was also replicated using an
additional data set constructed byCirulli et al. (2015), inwhich the
top 51 genes identified in their best performing model (including
LGALSL) were sequenced in a replication cohort.We subjected this
data set of 830 cases and 1858 controls that were available at
Columbia University to the same intolerance-informed analysis
as the original cohort.We identify two cases (0.24%) and one con-
trol (0.054%) with qualifying variants in the LGALSL domain and
an odds-ratio of 4.5. While not significant due to the small sample
size, this analysis shows the same direction of case-enrichment in

LGALSL. We further used the Cochran-Mantel-Haenszel (CMH)
test to combine the original and replication cohorts, providing a
final, combined P=1.54×10−7 that is genome- and study-wide sig-
nificant and a common odds-ratio of 11.35 for LGALSL.

We also performed a domain-level analysis to compare gene
and domain results over the diversified population cohort.
This analysis achieved similar signals for the top three genes:
SOD1 (P=2.56×10−20), TARDBP (P=4.32×10−11), and LGALSL
(P=2.29×10−6) (Supplemental Fig. S5). While this analysis
achieves similar results as the intolerance-informed gene-level
analysis, there is an advantage to using the intolerance-informed
analysis since it requires correcting for the lower number of
genes (18,653) than the much higher number of genic domains
(89,522).

Genome-wide associations with age-at-onset

We next examined whether qualifying variants in known ALS
genes, or candidate genes identified by our novel approaches, in-
fluence age at symptom onset (AAO). We therefore examined
the average AAOof cases in all genes that have at least three carriers
(11,541 genes) against the average AAO of the rest of the cases
(Supplemental Table S3).

We found that SOD1 variant carriers tended to be younger
than the rest of the cohort (52.2 vs. 57.1 yr, P=0.059; Mann–
WhitneyU test, ranked at position 705/11,541). Also, subjects har-
boring qualifying variants in ANXA11 showed delayed onset (63.8
yr, P=0.037; Mann–Whitney U test, ranked at position 417/
11,541), which is consistent with prior studies (Smith et al. 2017).
No other known ALS genes showed significant influence on AAO.

Subjects harboring LGALSL qualifying variants showed a
mean AAO that is 13 yr younger than the rest of the cohort (43.8
yr vs. 57.1, P=8.1 ×10−4; Mann–Whitney U test). The AAO infor-
mation was available for 11/12 variant carriers and 2767/3239
noncarriers, and LGALSL was ranked as the fifth highest gene
with regard to significance of AAO difference.

A B

Figure 3. Intolerance-informed gene-level collapsing with unified/diversified ancestry samples. (A) A Q-Q plot presenting the results of the gene-based
intolerance-informed collapsing of 3239 cases and 11,808 controls from diversified ancestries. Missense variants are aggregated only if they reside in an
intolerant domain that is lower than the 50th percentile OE-ratio score, while loss-of-function variants are aggregated independent of location; 17,795
genes passed QC with more than one case or control carrier for this test. The genes with the top associations are labeled. λ=1.14. (B) A Q-Q plot of a
gene-based intolerance-informed collapsing of 3093 cases and 8186 controls of European ancestry; 18,135 genes passed QC with more than one case
or control carrier for this test. The genes with the top associations are labeled and genome-wide significant genes are in bold. λ=1.073.
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The early onset in cases carrying LGALSL variants was further
validated by a random sampling approach in which LGALSL
carriers’ average AAO was significantly lower than 9983/10,000
randomly sampled sets of 11 cases (P= 0.0017) (Methods). We
further examined the recruitment sites of these 11 LGALSL
carriers that might explain the earlier age at onset. We find that
they originate from five different recruitement sites, and the
AAOper site did not reveal any confounding effects (Supplemental
Table S4).

Discussion

Here, we present a regional approach to rare variant collapsing
analyses and demonstrate its utility in ALS. This approach has
two distinct forms: (1) aggregating rare variants on genic subre-
gions defined using conserved protein domain annotations; and
(2) aggregating rare variants on a gene unit but using the pattern
of purifying selection to identify the most damaging missense
variants and combine them with loss-of-function mutations
occurring anywhere in the gene. Both approaches show improved
sensitivity for known ALS genes, finding SOD1, NEK1, and
TARDBP as genome-wide significant. We also find FUS’s Arg-
Gly-rich domain within the top three associations in our
domain-based regional collapsing, jumping from an insignificant
OR=1.43 to a high OR=8.6. These findings underscore the utility
of applying a regional approach to ALS genetics, especially in light
of similar Gly-rich domains’ importance in mediating pathologic
RNA-protein complexes (Rogelj et al. 2011).

This approach has also implicated a potential new candidate
ALS gene, LGALSL, encoding the galectin like protein GRP (galec-
tin-related protein, also known as HSPC159). We identified a case-
enriched intolerant galectin-binding domain (Fig. 4A). While the

functions of LGALSL remain largely unknown, members of the
galectin family, including LGALS1 and LGALS3, have been impli-
cated in ALS disease processes and progression. Specifically,
LGALS1 has been identified as a component of sporadic and fami-
lial ALS-related neurofilamentous lesions (Kato et al. 2001) and is
associated with early axonal degeneration in the SOD1G93A ALS
mouse model (Kobayakawa et al. 2015). Furthermore, homozy-
gous deletion of Lgals3 reportedly led to accelerated disease pro-
gression and reduced lifespan in SOD1G93A mice (Lerman et al.
2012). We also performed an analysis of age at onset that is inde-
pendent of the predisposition analysis, showing a significant asso-
ciation between carriers of qualifying variants in LGALSL and early
age at onset. This independent analysis supports LGALSL as a can-
didate ALS gene that might be responsible for a form of ALS with a
younger age at onset.

Further study of additional LGALSL mutation carriers
will be required to confirm this observed genotype-phenotype
correlation.

Regional collapsing analyses also highlighted PKP4 as a new
candidate gene, with a single armadillo repeat domain strongly en-
riched for qualifying variants in cases (Fig. 4B). Evidence support-
ing PKP4’s role in ALS-linked processes including microtubule
transport and endosomal processing, in addition to its local trans-
lation in ALS-mutant FUS granules, all provide evidence in favor of
PKP4 as a risk factor for ALS (Keil et al. 2013; Yasuda et al. 2013; Keil
and Hatzfeld 2014; Becher et al. 2017).

This study incorporated both exome andwhole genome sam-
ples froma large cohort of over 3000 cases and close to 12,000 con-
trols. Yet, despite these large cohorts, the standard gene collapsing
approach identified only SOD1 and NEK1 (loss-of-function-specif-
ic model) as achieving genome-wide significance and failed to un-
cover other known signals for ALS risk factors. We were able to

A

B

Figure 4. Distribution of functional coding variants across LGALSL and PKP4. The distribution of LGALSL (A) and PKP4 (B) coding variants across domains
(LGALSL transcript ENST00000238875 and PKP4 transcript ENST00000389757). The y-axis corresponds to the total number of variants identified at a spe-
cific location. The blue boxes highlight the (A) LGALSL carbohydrate-binding domain and (B) PKP4 armadillo repeat domain 2 (ARM2) found to be enriched
for variants in cases (green) compared to controls (black). Each domain’s OE-ratio percentile is marked above for both tolerant (bright blue) and intolerant
(orange) domains.
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capture these signals, along with candidate novel signals, using a
regional approach that is informed by missense variation intoler-
ance. That being said, while confirming TARDBP, and suggesting
LGALSL (0.42% of cases) as a candidate gene, the regional ap-
proach was still underpowered with the current sample size to
show genome-wide significance for FUS and PKP4 that might re-
flect true associations. For example, relying on the aggregate vari-
ant frequencies observed in our case and control cohorts, we find
that roughly 10,300 of each group are necessary to reach 80%pow-
er to detect genome-wide significance of FUS using the domain-
level approach. Alternatively, the standard gene-level analysis
would require nearly 89,000 in each cohort. For PKP4, a domain-
level approach would require roughly 10,300 cases and controls
each, compared to around 12,100 for a gene-level approach. This
suggests that even with our signal optimization approaches, larger
sequencing studies are required in ALS.

While being able to pinpoint candidate genes, the ap-
proaches used in this study are still experimental and stand
alongside, not in place of, current methodologies of gene discov-
ery analyses. Furthermore, other methods can and should be
used to identify functional genic domains that might harbor sig-
nals of case enrichment. While the mapping of coding regions to
CDD domains is one approach to identify functional domains
that has proven beneficial for these analyses, it is possible that
case enrichment could be further strengthened by using different
functional domains. In addition, the measurement of intolerance
that incorporates information from over 60,000 samples still
lacks information on many genic domains that, in time and
with larger population sequencing efforts, will increase the con-
fidence in the assumption that intolerant regions harbor damag-
ing variation. That said, we are confident that the continued
application of regional approaches to collapsing analyses in
ALS and other rare disorders will enable the identification of nov-
el, rare risk factors in patient populations. These were previously
difficult to identify given the presence of benign variants in in-
tolerant genic regions.

Methods

Subject sources

ALS samples analyzed by whole-exome or -genome sequencing
came from the Genomic Translation for ALS Care (GTAC study),
the Columbia University Precision Medicine Initiative for ALS,
the New York Genome Consortium, and the ALS Sequencing Con-
sortium (IRB-approved genetic studies from Columbia University
Medical Center, including the Coriell NINDS repository), Univer-
sity of Massachusetts at Worchester, Stanford University (includ-
ing samples from Emory University School of Medicine, the
Johns Hopkins University School of Medicine, and the University
of California, San Diego), Massachusetts General Hospital Neuro-
genetics DNA Diagnostic Lab Repository, Duke University, McGill
University (including contributions from Saint-Luc and Notre-
DameHospital of theCentreHospitalier de l’Université deMontré-
al [CHUM], [University of Montreal]), Gui de Chauliac Hospital of
the CHU de Montpellier (Montpellier University), Pitié Salpêtrière
Hospital, Fleurimont Hospital of the Centre Hospitalier Universi-
taire de Sherbrooke (CHUS) (University of Sherbrooke), Enfant-
Jésus Hospital of the Centre hospitalier affilié universitaire de
Québec (CHA) (Laval University), Montreal General Hospital,
Montreal Neurological Institute and Hospital of the McGill Uni-
versity Health Centre, and Washington University in St. Louis
(including contributions from Houston Methodist Hospital,

Virginia Mason Medical Center, University of Utah, and Cedars
Sinai Medical Center).

All subjects provided written, informed consent for genetic
studies that had been IRB-approved at each contributing center.

Subject selection criteria

ALS subjects were diagnosed according to El Escorial revised crite-
ria as suspected, possible, probable, or definite ALS by neuromus-
cular physicians at submitting centers. Subjects were considered
sporadic if no first- or second-degree relatives had been diagnosed
with ALS or died of an ALS-like syndrome. Because screening for
knownALS genemutations prior to sample submissionwas highly
variable across the cohort, gene status was not considered a priori.
Controls were selected from >45,000 whole-exome or -genome se-
quenced individuals housed in the IGM Data Repository. We ex-
cluded all individuals with a known diagnosis or family history
of neurodegenerative disease, but not all had been specifically
screened for ALS.

Sequencing

Sequencing of DNA was performed at Columbia University,
the New York Genome Center, Duke University, McGill Universi-
ty, Stanford University, HudsonAlpha, and University of Massa-
chusetts, Worcester. Whole-exome capture used Agilent All Exon
kits (50MB, 65MB, and CRE), Nimblegen SeqCap EZ Exome En-
richment kits (V2.0, V3.0, VCRome, and MedExome), IDT Exome
Enrichment panel, and Illumina TruSeq kits. Sequencing occurred
on Illumina GAIIx, HiSeq 2000, or HiSeq 2500 sequencers accord-
ing to standard protocols (Supplemental Tables S5, S6).

Illumina lane-level FASTQ files were aligned to the human
reference genome (NCBI Build 37) using the Burrows–Wheeler
Alignment Tool (BWA) (Li and Durbin 2009). Picard software
(http://picard.sourceforge.net) removed duplicate reads and pro-
cessed lane-level SAM files to create a sample-level BAM file.
Genomes (n=402) from the New York Genome Center were trans-
ferred as sample-level BAM files. We used GATK to recalibrate base
quality scores, realign around indels, and call variants (McKenna
et al. 2010).

While sequences were aligned to the genome reference build
37, we do not expect a change in the results by mapping to the
newer build 38. This is because the collapsing utilized only the
consensus coding sequence (CCDS) of humangenes,whichwas al-
ready mature in build 37 and experienced only minor changes.
Furthermore, none of the top genes presented in this work saw
any changes (other than chromosomal base pair numbering) be-
tween build 37 (CCDS version r15) and that of build 38 (CCDS ver-
sion r17).

Quality control

Several robust measures were taken to control for the effects that
might arise from the different sequencing platforms, kits, and cov-
erage that are the result of the various recruitment sites, sequenc-
ing centers, and technology changes through the years when the
samples were collected and sequenced. Thesemeasures were taken
in both sample- and variant-level filtering. The cohort of cases and
controls underwent the following steps of construction and cover-
age harmonization that are explained below in detail: Following
stringent QC and ancestry filters (if applied) and assessment of
10× coverage (Supplemental Tables S7, S8), a newly developed
method was applied to account for the variability of coverage
over theCCDS between samples originating fromvarious sequenc-
ing kits and platforms. This method was used to remove samples
that are considered coverage outliers. Following the removal of
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coverage outliers, a further genotype PCA analysis was used to re-
move remaining genotypic outliers. Following the cohort stratifi-
cation and harmonization, tests were performed to remove
variants that did not survive stringent QC metrics. The surviving
high-quality variants were then subjected to a coverage binomial
test to control for variant-level coverage differences between the
cohorts (detailed below). Any sitewhich did not pass a significance
threshold was eliminated from consideration in the test of
enrichment.

Cohort construction: sample quality and relatedness filters

The initial sample consisted of 4149ALS cases and15,107 controls.
Samples reporting >8% contamination according to verifyBamID
(Jun et al. 2012) were excluded. KING (Manichaikul et al. 2010)
was used to ensure only unrelated (up to third-degree) individuals
contributed to the analysis. For controls, where sample collection
methods were not known, we excluded samples where X:Y cover-
age ratios did not match expected sex. For studies where sample
collection and processing involved only ALS patients, mismatches
were not exclusionary. Further, to be eligible, samples were further
subjected to a CCDS 10-fold coverage principal components anal-
ysis (PCA) and an ancestry prediction filter (for European ancestry
analysis).

Cohort construction: ancestry prediction

The ancestry classification model was trained using genotyped
data from 5287 individuals of known ancestry and 12,840 well-ge-
notyped and ancestry-informativemarkers that were limited to the
human exome. The model was trained, tested, and validated on a
set of individuals with ancestry as follows: non-Finnish European
(N=2911),Middle Eastern (N= 184), Hispanic (N=368), East Asian
(N=539), South Asian (N=529), and African (N=756). Briefly, the
sample × genotype matrix was scaled to have unit mean and stan-
dard deviation along each SNV and subjected to a principal com-
ponent analysis. For training the classifier, the genotypes were
projected onto the top six PCs and used as feature vectors. The clas-
sifier is a multi-layer perceptron with one hidden layer, a logistic
activation function, L2 regularization term, alpha= 1×10−5, size
of hidden layer = 6, and a L-BFGS solver. The classifier was imple-
mented using the scikit-learn API in Python. A stratified 10-fold
CV with 80:20 split of the training data was used to tune parame-
ters using a grid search. Cross-validation performance on the co-
hort yielded precision/recall scores as follows: NFE: 0.99/1, AFR:
0.99/1, SAS: 0.99/1, EAS: 0.99/1, HIS: 0.93/0.97, ME: 0.93/0.77.
Samples in this study were subjected to ancestry prediction
using themodel trained above by projecting their genotype vector
to the training PCA model and running the classifier to obtain a
given sample’s ancestry probabilities for each of the trained
populations.

For samples to qualify for a European ancestry analysis, they
were required to have a European probability greater than 0.5
and an overall genotyping rate of 0.87 across the 12,840 well-
genotyped and ancestry informative markers. Lower genotyping
rates were considered as uninformative for ancestry predic-
tion. In the case of low genotyping rate, we considered self-de-
clared ethnicity of ‘White’ as qualifying for the European-based
analysis.

Furthermore, once the final list was constructed, we applied
an additional analysis to control for population stratification by
using EIGENSTRAT (Price et al. 2006) to remove samples that
were considered as genetic outliers. This ensured that the main
cluster of samples was of European origin (see below).

Cohort construction: CCDS coverage PCA

To account for the variability of the coverage over the CCDS be-
tween cases and controls that originate from various sequencing
centers, kits, and platforms, we developed a method to remove
samples that are considered outliers due to coverage. This step
was performed for samples that passedQC and ancestry prediction
filters (if applied) and allowed for maximizing the coding region
available for the analysis whenharmonizing variant-level coverage
between cases and controls.

We first randomly selected a set of 1000CCDS genes for a cov-
erage test. We next constructed a coverage matrix in which the
rows are the samples used for the analysis and the columns are
the number of bases covered at 10× in each of the 1000 random
genes. Finally, we used the matrix in a principal-component anal-
ysis. Outliers were identified as being further than three standard
deviations away from the center of the first four principal compo-
nents (PCs).

In the Caucasian analysis, 3866 cases and 9426 controls
passed initial QC and ancestry filters and were subjected to the
coverage PCA filter. The coverage PCA maintained 3314 cases
and 9214 controls.

In the diversified population analysis, 4075 cases and 14,494
controls passed initial QC and were subjected to the coverage PCA
filter. The coverage PCA maintained 3468 cases and 13,957
controls.

Cohort construction: Eigenstrat PCA threshold adjustment

EIGENSTRAT (Price et al. 2006) PCA was used for removing geno-
typic outlier samples as a final cohort pruning step before running
the collapsing analysis. The default threshold for removing outli-
ers is six standard deviations from mean over the top 10 PCs.
This process, including recalculation of the PCs, was repeated
five times.

In the Caucasian analysis, 3208 cases and 8821 controls
passed initial QC, ancestry, coverage PCA, and kinship filters and
were subjected to the final EIGENSTRAT PCA filter. The
EIGENSTRAT PCA maintained the final 3093 cases and 8186
controls used for the collapsing analysis, including 383 out of
420 whole genome cases that were mapped by the New York
Genome Center (NYGC).

In the diversified analysis, 3353 cases and 13,373 controls
passed initial QC, coverage PCA, and kinship filters and were
subjected to the final EIGENSTRAT PCA filter. The default
EIGENSTRAT PCA threshold removed all 420 NYGC whole ge-
nomes. This was the result of the addition to the Caucasian analy-
sis of over 3000 exomes,which reduced the standard deviation and
resulted in the exclusion of NYGCwhole genomes in the third PC.
As these samples were very high-quality and were included in the
Caucasian only analysis, we adjusted the threshold of the third PC
to seven standard deviations, thus maintaining 402 out of 420
NYGCwhole genomes. In total, following the stratification phase,
we maintained 3239 cases and 11,808 controls for the collapsing
analysis.

Variant-level quality control

Quality thresholds were set based on previous studies (Cirulli et al.
2015; Epi4K consortium; Epilepsy Phenome/Genome Project
2017). Variants were required to have a quality score of at least
30, a quality by depth score of at least 2, genotype quality score
of at least 20, read position rank sum of at least −3, mapping qual-
ity score of at least 40,mapping quality rank sum greater than−10,
and a minimum coverage of at least 10. SNVs had a maximum
Fisher’s strand bias of 60, while indels had a maximum of 200.
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For heterozygous genotypes, the alternative allele ratio was re-
quired to be greater than or equal to 25%. Variants were excluded
if they were marked by EVS as being failures (http://evs.gs
.washington.edu/EVS/). Variants were annotated to Ensembl 73
using SnpEff (Cingolani et al. 2012).

Variant-level coverage harmonization between cases and controls

To ensure balanced sequencing coverage of evaluated sites be-
tween cases and controls, we imposed a statistical test of indepen-
dence between the case/control status and coverage. For a given
site, consider s the total number of cases, t the total number of con-
trols, x the number of cases covered at 10×, and y the number of
controls covered at 10×. We model the number of covered cases
X as a binomial random variable

X � bin(n = number covered samples, p = P(case|covered)).
If case/control status and coverage status are independent,

then

P (case|covered) = P (case) = s/(s+ t).

We test for this independence by performing a two-sided bino-
mial test on the number of covered samples at given site, x.

Binom Test (k = x, n = x+ y, p = s/(s+ t).

In the collapsing analyses described below, a binomial test for
coverage balance as described above was run as an additional qual-
ifying criterion. Any site which resulted in a nominal significance
threshold of 0.01 or lower was eliminated from further
consideration.

Variant-level statistical analysis

Our primary model was designed to search for nonsynonymous
coding or canonical splice variants that have less than 12 cases
with a recurring variant in cases and controls (internal MAF) and
also a ≤0.1% MAF imposed for each population represented in
the ExAC Browser (Lek et al. 2016).

This model was tested in three forms: a standard gene-unit
collapsing analysis; a domain-unit analysis; and an intolerance-in-
formed gene collapsing analysis. A further gene-based analysis
evaluating only rare loss of function variants was also performed.
Two additional models examined other thresholds of population
allele frequencies of ≤0.01% and an ultrarare 0% using the
standard gene-based approach. Overall, the results of these analy-
ses show SOD1 as the only genome-wide significant gene (Supple-
mental Tables S9, S10).

For each of the six models, we tested the list of 18,653 CCDS
genes. For each gene, we counted the presence of at least one qual-
ifying variant in the gene. A two-tailed Fisher’s exact test (FET) was
performed for each gene to compare the rate of cases carrying a
qualifying variant compared to the rate in controls. For our
study-wide significance threshold, after Bonferroni correction for
the number of genes tested across the six nonsynonymousmodels,
the study-wide multiplicity-adjusted significance threshold α=
(0.05/[6 × 18653]) = 4.47×10−7. We did not correct for the synon-
ymous (negative control) model.

OE-ratio intolerance for coding domains

TheOE-ratio is calculated using the same approach as themissense
tolerance ratio that is described by Traynelis et al. (2017). This ap-
proach uses the observed to expectedmissense ratio for the 89,522
domain coordinates that are described by Gussow et al. (2016).

For calculating a domain OE-ratio, the following require-
ments are applied: (1) adequate coverage—at least 50%of the bases

within the domain must have at least a 10-fold coverage in the
ExAC Browser, release 0.3 (Lek et al. 2016); and (2) at least five dis-
tinct variants (of any annotation) are required to perform
a binomial exact test depletion of missense at uncorrected alpha
of P<0.05. There were 67,890 domains that passed the above re-
quirements and were scored for their OE-ratio. The average size
of the remaining unscored domains was usually very short
(mean=21 bp; median= 12), and they accounted for 0.77% of
the protein-coding exome. Unscored domains were considered as
below the intolerance ratio required for the intolerance-informed
analysis (Fig. 3) to prevent loss of gene-level information. Once a
domain lacking anOE-ratio is implicated in an analysis, its intoler-
ance is examined using the average missense intolerance ratio
(Traynelis et al. 2017) of the domain in question (http://
mtr-viewer.mdhs.unimelb.edu.au).

In the case of LGALSL, the last three codons of the coding
transcript are a short independent domain that was not mapped
to a conserved domain from the CDD. However, this small region
is still considered part of the gal-binding domain by other databas-
es (Finn et al. 2016). TheMTR score for these three codons is below
the 30th percentile of intolerance, marking this region at least as
intolerant as the implicated galectin binding domain (OE-ratio
percentile of 37).

In the case of COMMD1, the enrichment signal observed in
Figure 3B is due to two very small domains at the beginning
(11 aa) and the end (6 aa) of the gene, each harboring three cases
and no controls. Since these domains are too small for scoring
with the OE-ratio, they were considered as below the intolerance
ratio required for the intolerance-informed analysis to prevent
loss of gene-level information.When further testing theMTR score
of these domains, the codons of the first short domain are indeed
intolerant, but the other domain is tolerant to variation, which
causes the frequency of cases with QVs in this gene to be 50% low-
er than observed in the original analysis.

LGALSL age-at-onset randomized testing scheme

The age-at-onset of LGALSL carriers was further validated using a
random sampling approach. For this purpose, we sampled the
AAO data 10,000 times, each time randomly selecting a group of
11 cases. The mean AAO of the original LGALSL cases (43.8) was
lower than 9983 randomly selected AAO groups (p =0.0017).

Data access

The aggregated genotypes of case and control cohorts used in this
study are available for download as version 3.0 of the ALS database
(http://www.alsdb.org).
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