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Abstract: Aiming at classifying the polarities over aspects, aspect-based sentiment analysis (ABSA) is
a fine-grained task of sentiment analysis. The vector representations of current models are generally
constrained to real values. Based on mathematical formulations of quantum theory, quantum lan-
guage models have drawn increasing attention. Words in such models can be projected as physical
particles in quantum systems, and naturally represented by representation-rich complex-valued
vectors in a Hilbert Space, rather than real-valued ones. In this paper, the Hilbert Space representation
for ABSA models is investigated and the complexification of three strong real-valued baselines are
constructed. Experimental results demonstrate the effectiveness of complexification and the outper-
formance of our complex-valued models, illustrating that the complex-valued embedding can carry
additional information beyond the real embedding. Especially, a complex-valued RoBERTa model
outperforms or approaches the previous state-of-the-art on three standard benchmarking datasets.

Keywords: quantum language model; complexification; aspect-based sentiment analysis

1. Introduction

Aspect-Based Sentiment Analysis (ABSA) is a fine-grained sentiment analysis task,
whose aim is to classify the sentiment polarities of a sentence over one or more aspects [1–5].
The fundamental sentiment elements involved in the ABSA tasks are aspect category, aspect
term, opinion term, and sentiment polarity. Aspect category defines into which category an
aspect term should fall. For example, in the restaurant domain, “Food” and “Service” are
the aspect categories. Aspect term is the opinion target shown in the given text. Opinion
term expresses one’s sentiment towards the aspect term. Sentiment polarity depicts the
orientation of the sentiment on an aspect category or an aspect term which usually be
positive, negative, or neutral. For instance, given a sentence “the food was great and the
service was severely slow”, the first aspect term is “food” which belongs to category “Food”,
and the opinion term is “great”. Therefore, the sentiment polarity for aspect term “food”
and aspect category “Food” is positive. The second aspect term is “service” which falls
into category “Service”, and the opinion term is “slow”. Hence, the sentiment polarity for
aspect term “service” and aspect category “Service” is negative. Generally, ABSA consists
of two subtasks: aspect extraction (AE) and aspect-level sentiment classification (ALSC).
Our paper only focuses on ALSC, which is to predict the exact sentiment polarities of
different aspect terms in their context, instead of classifying the overall sentiment polarity
on a sentence level or document level. That is, our task is to classify the sentiment polarities
of aspect terms, such as “food” and “service” mentioned in the above example, in a given
context. Such sentiment polarity classification over aspects can be used to better investigate
the fine-grained emotional tendency in reviews and hence can provide more accurate
recommendations to decision makers.
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Previously, to avoid designing hand-crafted features, a large number of deep-learning-
based neural network models have been proposed to solve ALSC tasks, such as RNN-based
models [6–9], CNN-based models [10,11]. In order to better classify aspect-level sentiment,
target information has also been taken into account when constructing neural networks.
Attention mechanism, which has been proven effective in image recognition, machine trans-
lation, sentence summarization, etc. [12–14], has also been introduced to ALSC tasks [9],
with the attention weight of different words dynamically calculated considering the re-
lationship between words and aspects. Recently, dominating across various NLP tasks,
pre-trained transformer-based models have also received a lot of attention in ALSC tasks.
BERT and RoBERTa-based models achieve outstanding success on various ABSA bench-
mark datasets [15–19].

However, the vector representations used in most of those models are constrained
to real values. As a fundamental concept widely applied in various fields, such as signal
processing, quantum physics, and medical image processing, complex-valued vectors are
composed of a pair of correlated real and imaginary vectors in orthogonal dimensions. Due
to the richer representational capacity of complex-valued vectors, complexified neural net-
works have already been applied in numerous fields, for instance, signal processing [20,21],
computer vision [22], and natural language processing [23]. Multi-dimensional real-valued
input vectors can be naturally expressed as complex-valued ones when mapped into
frequency or wavevector space from a quantum theory perspective.

Inherently featuring compatibility with complex-valued vectors, quantum language
models (QLMs) inspired by quantum theory are drawing more and more attention. In
quantum language models, every word is naturally represented as an observed state
in a quantum system in the Hilbert Space, and is represented by a superposition of se-
memes [24,25]. From such quantum perspective view, one can build neural network in
a more principled approach by drawing analogies between quantum operators and neu-
ral network calculation, and applying the methods developed by quantum physicistis
to make up for the lack of interpretability of neural networks in NLP. Based on such
background, Li et al. [25] constructed a complex-valued network for question answering
task, and Zhao et al. [26] proposed a quantum expectation value-based language model.

Motivated by the excellent work in quantum language models and their compatibility
with complex-valued vectors, we investigate employing the complex-valued representa-
tions from the mathematical framework of quantum physics to solve ABSA tasks. To this
end, complex-valued neural networks are built by introducing a semantic Hilbert space,
where a word of a ABSA model is viewed as a physical state, encoded as a complex-valued
vector. To benchmark the resulted models’ performance, each model is evaluated against
its corresponding real-valued baseline. In this study, we construct the complexification
of three strong real baselines, namely, complex-valued LSTM model, complex-valued
attention-based LSTM model, and complex-valued BERT/RoBERTa model. From mathe-
matical perspective, the complexification of a real vector space V is defined by taking the
tensor product of V with a complex number. Here, the complexification of real-valued
baseline is following the similar operation. Noteworthily, by setting the imaginary parts
of complex-valued vectors to zero, the complex-valued models just shrink to their real-
valued equivalent.

Experiment results evaluated on three benchmarking datasets, namely, Twitter, Restau-
rant 14, Laptop 14, demonstrate the outperformance of our complex-valued models, and
illustrate that the complex-valued embedding could carry additional information beyond
the real embedding. Specifically, both of the complex-valued versions of LSTM model
and attention-based LSTM model outperform the original ones. Meanwhile, the complex-
valued RoBERTa model outperforms or nears to the previous SOTA on the three standard
benchmarks. The results imply that the complexification extended from quantum physical
particle representation has a potential to be encapsulated to general language models
in ABSA.
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2. Related Work

In this section, the related studies on ALSC tasks and QLMs will be introduced.
To solve ALSC tasks, recurrent neural networks and convolutional neural networks

are among the most commonly used deep neural network architectures. Incorporating
information from target words, Tang et al. [8] first proposed two single-directional LSTMs
(TD-LSTMs), which handle the left and right context of the target word independently. Af-
terwards, attention mechanism was adopted in the ALSC task. Designed by Tang et al. [27],
MemNet uses a multi-hop attention to reveal the importance of each context word with re-
spect to aspect targets. Wang et al. [9] designed ATAE-LSTM which takes the concatenation
of aspect and context word embedding as an input and applies the attention mechanism to
dynamically computing attention weight. Utilizing multiple-attention mechanism with
memory layers, Recurrent Attention on Memory (RAM) released by Chen et al. [28] is a
bidirectional LSTM to obtain global semantic features.

Recently, transformer-based models which have dominated across various NLP tasks,
have also drawn much attention to ALSC task. Song et al. [15] proposed BERT-SPC which
is a pure BERT text pair classification model and achieves outstanding performance. With a
pre-trained BERT supplying input word embeddings, they simultaneously designed an
Attentional Encoder Network (AEN), which could derive semantic word-context interac-
tions using the attention mechanism. Yang et al. [16] proposed a local context focus (LCF)
mechanism based on multi-head self-attention. BERT-ADA shows that the pre-trained
BERT adapted only to specific tasks can be further improved through a fine-tuning process
on a task-related corpus [17].

The first QLM is proposed by Sordoni, Nie and Bengio [29] in Information Retrieval
(IR), by simplifying the Hilbert space to a real space. Inspired by their work, a wide range
of research on quantum language models has been studied [24,30]. Limited to real space,
Zhang et al. [24] proposed an end-to-end Neural Network-based Quantum-like Language
Model (NNQLM) to solve question answering task. In the model, every word is viewed as
a pure quantum state in the system, and question and answer sentences are respectively
characterized by their corresponding density matrices. Adopting tensor product to describe
the interaction among an entire word sequence, Zhang et al. [31] built a Quantum Many-
body Wave Function-inspired language model with only real-valued embeddings.

It is noteworthy that the vector representations used in the aforementioned models
are only constrained to real-value neural networks. Especially for QLMs, they oversimplify
the Hilbert space as a real sub-space. Therefore, complex-valued quantum language
models were proposed afterwards, by representing the physical state of a quantum system
properly as a complex-valued function. In question-answering tasks, the complex-valued
quantum language models have been successfully applied, and demonstrates that a word
representation in a complex form could feature more information beyond the real one,
supported by the additional imaginary part. Among these models, Li et al. [25] built a
Complex-valued Network for Matching (CNM), in which each word is encoded in a polar
coordinate system as a complex-valued vector, with its length and direction representing
the relative word weight and a superposition, respectively. Applying complex embedding,
Zhao et al. [26] proposed a quantum expectation value-based language model. Under this
framework, a language model can have excellent interpretability and performance. Li et al.
also investigated complex-valued neural network in video sentiment analysis tasks and
their model achieves comparable results with state-of-the-art models [32].

However, to the authors’ knowledge, the complex-valued framework has not given rise
to any applications in ABSA. Therefore, inspired by the exciting work in quantum language
models and their compatibility with complex-valued vectors, we study the application of
complex-valued representation from the mathematical framework of quantum physics to
ABSA tasks.
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3. Background

In quantum probability [33], the probabilistic space is naturally represented in a Hilbert
space, denoted as Hn.

In this section, we briefly introduce some basic concepts in quantum probability theory.
As a generalization of the classical probability theory, quantum probability theory provides
a mathematical interpretation on physics phenomena involving quantum particles, such as
electrons and photons. The probabilistic space describing the wave-function of particles
is represented in a Hilbert space, denoted as Hn, which is an infinite-dimensional inner
product space over complex numbers [33]. In this Hilbert space, a complex-valued unit
vector ~u ∈ Hn and its Hermitian conjugate ~u† can be expressed as ket |u〉 and a bra 〈u|
respectively, following Dirac notation. The inner product of two unit vectors |u〉 and |v〉 is
written as 〈u|v〉. Given an orthonormal bases {|ei〉}n

i=1 for Hn, an arbitrary vector |u〉 can
be expanded as a linear combination of basis vectors as follows:

|u〉 =
n

∑
i=1

ui|ei〉, (1)

where ui is the probability amplitude along |ei〉 and satisfies ∑i |ui|2 = 1.

4. Complex-Valued Language Models

Inspired by the quantum language models, a word is viewed as a physical observ-
able in a quantum system, and it is represented by a complex-valued vector. Under this
scope, three QLMs, which all take complex-valued embeddings as inputs, are furthermore
constructed as the complexification of three strong real-valued baselines, namely complex-
valued LSTM models, complex-valued attention-based LSTM model, and complex-valued
BERT/RoBERTa model. The resulted three complex-valued models are compared with the
corresponding real-valued ones to benchmark their performance. Via the comparison, we
hope to see that the imaginary part of embedding can carry additional information beyond
the real part and further emphasize the importance of introducing quantum language
models. First, we would like to make a clarification. In our paper, three complex-valued
language models are built based on three typical real baselines. However, in addition to the
chosen ones, there are still a large number of different types of neural networks for language
tasks. We hope the three types of models can shed light on the effect of complex-valued
structure on improving a model’s performance, and show the possibility to further explore
the structure in other types of neural networks.

In this section, we first introduce complexification of a real vector space, the procedure
to encode a word as a complex-valued vector, and then present the approach to construct
the complexification of the three real baselines.

4.1. Complexification of a Real Vector Space

If V is a real vector space, the complexification of V is defined by taking the tensor
product of V with complex numbers C [34,35] :

VC = V ⊗ C. (2)

Alternatively, rather then using tensor products, the complexification of a real space can be
defined as follows:

VC = V ⊕ iV. (3)

Therefore, every vector vc in VC can be written in the form

vc = v1 ⊗ 1 + v2 ⊗ i, v1 ∈ V, v2 ∈ V, (4)
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where v1 and v2 are vectors in V. Generally, one can drop the tensor product symbol and
just write

vc = v1 + iv2. (5)

4.2. Complex-Valued Word Embedding

In quantum language models, the Hilbert space is the mathematical foundation of
physical events studied. Based on this background, our proposed models are constructed.

Since a quantum state is usually complex-valued, we therefore introduce the Semantic
Hilbert Space Hn on a complex vector space Cn, spanned by a set of orthogonal bases states
{|ej〉}n

j=1. |ej〉 represents a sememe which is the minimum semantic unit of word meanings
in language universals [36], and is an one-hot vector with only the j-th element in |ej〉 being
one while all the other elements being zero. A word w is viewed as a physical state in
such semantic Hilbert space, and hence can be represented as a superposition of sememes,
written as follows:

|w〉 =
n

∑
j=1

(wrj + iwmj)|ej〉 = |wr〉+ i|wi〉, (6)

where |wr〉 = ∑n
j=1 wrj|ej〉 and |wi〉 = ∑n

j=1 wmj|ej〉 are the real part and imaginary part of
the state |w〉, respectively. {wrj}n

j=1 and {wmj}n
j=1 are the real part and imaginary part of

probability amplitudes along sememes.
To encode the complex-valued word embedding, we follow the method of the com-

plexification of a real vector as Equation (5). In the conventional standard neural network,
a word is encoded as a vector containing rich semantic information in word embedding
lookup table. Following the same encoding convention, we first choose a real space E
formed by vectors in the lookup table, and then consider as the complexification of E as the
semantic Hilbert space. Therefore, an arbitrary word |w〉 is embedding as:

|w〉 = |wr〉+ i|wi〉, wr ∈ E, wi ∈ E, (7)

where both |wr〉 and |wi〉 are vectors in the real word embedding space E. Know that a
word w in conventional neural network is embedded using the lookup table as vector
X belonging to E. To carry useful semantic information, we set |wr〉 and |wi〉 as a linear
transformation of X. Then we have

wr = Ur · XT , (8)

wi = Um · XT . (9)

Here, Ur and Um are linear transformation parameters.
We can utilize a L2 normalization to restrict every word w to a unit length as follows:

|w〉 = ~w
‖ ~w ‖ , (10)

where ‖ ~w ‖ is the L2-norm of ~w.

4.3. Complex-Valued Models
4.3.1. Complex-Valued LSTM Model

As a typical recurrent neural network, LSTM [37] which can learn context information
and abstract low-dimensional representations of words and sentences, has achieved great
success in various NLP tasks. To assess the effectiveness of the complexification of neural
networks in ABSA, we first construct a complex-valued LSTM model (C-LSTM), whose
overall architecture is shown in Figure 1.
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Figure 1. Complex-valued LSTM model (C-LSTM).

In the modified model, each word is embedded as a complex-valued vector following
Equation (8). Since word embedding matrix E is trained on a large-scale corpus rich in
semantic information, we assume that both of the real and imaginary probability amplitudes
{wrj}n

j=1 and {wmj}n
j=1 are linear with the word vector from E. Meanwhile the embedding

matrix E is a |V| × d square matrix in a real space, viz. E ∈ R|V|×d, where |V| is the size of
the vocabulary and d is the dimension of the word embedding.

To minimize the impact of complexification on the LSTM backbone and highlight the
effect of imaginary parts on carrying extra semantic information, two separate LSTMs are
utilized to generate the real and imaginary parts of a hidden vector individually, instead of
blending the complex pipe inside the original LSTM workflow.

For the real part, we have

wr = Ur · XT , (11)

ftr = σ(W f r · wr + U f rh(t−1)r + b f r), (12)

itr = σ(Wir · wr + Uirh(t−1)r + bir), (13)

otr = σ(Wor · wr + Uorh(t−1)r + bor), (14)

ctr = ftr � c(t−1)r + itr � tanh(Wcr · wr + bcr), (15)

htr = otr � tanh(ctr), (16)

where X is the vector from the lookup embedding matrix. As shown in (7), by performing
a linear transformation via Ur, we obtain the real embedding vector wr. The subscript r for
vectors refers to vectors for the real part. ftr is the forget gate’s activation vector. itr denotes
the input and update gate’s activation vector. otr is the output gate’s activation vector.
ctr is the cell state vector. htr represents hidden state vectors. W f r ∈ Rh×d, Wir ∈ Rh×d,
Wor ∈ Rh×d, Wcr ∈ Rh×d, U f r ∈ Rh×h, Uir ∈ Rh×h, Uor ∈ Rh×h are the weight matrices and
b f r ∈ Rh, bir ∈ Rh, bor ∈ Rh, bcr ∈ Rh are biases of LSTM to be trained. Here, d and h refer
to the dimension of the real embedding vector and number of hidden units, respectively. σ
is the sigmoid function and � indicates element-wise multiplication.
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On the imaginary part, the similar operations are performed:

wm = Um · XT , (17)

ftm = σ(W f m · wm + U f mh(t−1)m + b f m), (18)

itm = σ(Wim · wm + Uimh(t−1)m + bim), (19)

otm = σ(Wom · wm + Uomh(t−1)m + bom), (20)

ctm = ftm � c(t−1)m + itm � tanh(Wcm · wm + bcm), (21)

htm = otm � tanh(ctm). (22)

wm is the imaginary embedding vector via a linear transformation matrix Um. Subscript
m is used to indicate a vector for the imaginary part. ftm, itm and otm are the forget gate’s
activation vector, the input and update gate’s activation vector and the output gate’s
activation vector, respectively. Considering the real part LSTM and imaginary LSTM
having the same size of word embedding vector and hidden units, weight matrices W f m,
Wim, Wom, and Wcm have the shape h× d. U f m, Uim and Uom have the shape h× h. Biases
b f m, bim, bom, and bcm are h-dimensional vectors.

Therefore, the real and imaginary LSTMs produce the final output hidden state hnr
and hnm, respectively. Omitting n subscript, they join together to form a complex hidden
state hcomplex as follows:

hcomplex = hr + ihm. (23)

The complex state vector is then fed to a dense layer to perform the last polarity classification.

4.3.2. Complex-Valued Attention-Based LSTM Model

The attention mechanism has been demonstrated to be effective to obtain better per-
formance in various fields, for example, image recognition [12], machine translation [13],
sentence summarization [38], and so on. By enhancing the important portions and di-
minishing the irrelevant words of a sentence with weights upon the aspects concerned,
attention also provides effectiveness gain on aspect-based sentiment classification. As a
typical attention-based LSTM model, ATAE-LSTM has been treated as a standard base-
line [9]. Therefore, to manifest the influence of the complex-valued scheme on an attention
model, we construct the complexification of ATAE-LSTM (C-ATAE-LSTM), with its sketch
illustrated in Figure 2.

Figure 2. Complex-valued attention-based LSTM model (C-ATAE-LSTM).
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The real and imaginary parts of word embeddings are obtained in the same way
with Equation (11). Then concatenated with complex-valued aspect information, word
representations are fed to LSTM layers as follows:

λα =

[
aα

wα

]
, α ∈ {r, m}, (24)

wα = Ur · λT
α , α ∈ {r, m}, (25)

ftα = σ(W f α · wα + U f αh(t−1)α + b f α), α ∈ {r, m}, (26)

itα = σ(Wiα · wα + Uiαh(t−1)α + biα), α ∈ {r, m}, (27)

otα = σ(Woα · wα + Uoαh(t−1)α + boα), α ∈ {r, m}, (28)

ctα = ftα � c(t−1)α + itα � tanh(Wcα · wα + bcα), α ∈ {r, m}, (29)

htα = otα � tanh(ctα), α ∈ {r, m}. (30)

Here, α takes value from {r, m}. r and m denote the real and imaginary components,
respectively. Therefore, when α = r, aα is ar, which is the real embedding of aspect; when
α = m, aα is am, which is the imaginary embedding of aspect. wr and wm are the real and
imaginary embeddings for a word; λα is the concatenation of wα and aα; W f α ∈ Rh×d,
Wiα ∈ Rh×d, Woα ∈ Rh×d, Wcα ∈ Rh×d, U f α ∈ Rh×h, Uiα ∈ Rh×h, Uoα ∈ Rh×h are the
weight matrices. b f α ∈ Rh, biα ∈ Rh, boα ∈ Rh, bcα ∈ Rh are biases of LSTM to be trained. d
and h refer to the dimension of the real embedding vector and the number of hidden units,
respectively. After concatenating all the output vectors of hidden states, we write the final
output of the hidden layer as follows:

Hr = Concat{h1r, h2r, · · · , hnr}, (31)

Hm = Concat{h1m, h2m, · · · , hnm}, (32)

H = Hr + iHm. (33)

With the contribution of the real part output Hr and imaginary output Hm, H ∈ Cd×N is the
matrix consisting of complex-valued hidden vectors, where d is the dimension of hidden
vectors and N is the length of the given sentence. Now, we apply the attention mechanism
on the complex-valued hidden vectors.

M = tanh(Wh+a

[
H
a

]
), (34)

α = so f tmax((uT M).real), (35)

Houtput = HαT , (36)

where Wh+a and u are trainable complex-valued transformation matrices. As the final
attention weight can be viewed as the probability of Houtput on the corresponding hidden
vector which is real, we project uT M to a real number.

4.3.3. Complex-Valued BERT/RoBERTa Model

As a state-of-the-art pre-trained language model, transformer-based BERT (Bidirec-
tional Encoder Representations from Transformers) has achieved tremendous success in
many natural language processing tasks [39], and has become a fundamental component
in various models. To investigate the influence of complex-valued representation on such
model, we study the complexification of pure BERT and RoBERTa models (C-BERT and
C-RoBERTa) [15,40], whose sketch is shown in Figure 3.
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Figure 3. Complex-valued BERT/RoBERTa model (C-BERT/C-RoBERTa).

Here, the input sequence of C-BERT is formed as “[CLS] + context + [SEP]” and
“[CLS] + target + [SEP]” following BERT’s standard. Similar to the former construction
of complex-valued word embeddings, we view the real and imaginary context representa-
tions as a linear function of the dropout of BERT’s output vectors as follows:

X = BERT(input), (37)

hα = UαX, α ∈ {r, m}, (38)

hcomplex = hi + ihm, (39)

where X is the direct output vector from BERT possessing the context’s representation.
Context, as a collection of words, can be viewed as a superposition of word states, and
hence is also a physical state in the quantum system. After obtaining the fundamental
semantic and context information X for a sentence, we assume that the real and imaginary
part, hr and hm, of a sentence is a linear transformation of X, following the same method to
construct a word representation.

4.4. Model Training

The final sentence representations, derived from the above three models, are for-
warded into a dense layer to produce the polarity classification. We train the three models
independently. For every model, the final output is projected to the probabilities over the
three classes (positive, neutral, negative) via a softmax layer. We denote the predicted
sentiment distribution as ŷ and the ground truth label as y. The complete models are
trained in an end-to-end way with cross-entropy as the loss function. The training goal is
to minimize the negative cross entropy loss as follows:

L = −∑
i

∑
i

yj
i log ŷj

i + λ||θ||2, (40)

where i is the index of sentence, j is the index of class, λ is the coefficient of the L2
regularization term, and θ is the parameter set.

5. Experiment
5.1. Experimental Setup

As the target task of our study, ALSC is to determine whether the polarity of every
aspect term is positive, negative, or neutral, for a given set of aspect terms in a sentence.
The experiments are conducted on three widely used benchmarking datasets for ABSA,
whose statistics are summarized in Table 1:

• Twitter is a dataset gathered by Dong et al. [41];
• Restaurant and Laptop are downloaded from SemEval 2014 task 4 [4], which contains

sentiment reviews for restaurant and laptop domains.

These datasets are labeled with three sentiment polarities: positive, neutral, and neg-
ative. Similar to the previous works [7], samples with conflicting polarities and “NULL”



Entropy 2022, 24, 621 10 of 17

aspects in datasets are removed. It is worth mentioning that there are also other datasets
for ABSA tasks. However, only the above three benchmarking datasets are widely used in
the ALSC task, for which plenty of ALSC models are implemented [2]. In order to have a
better comparison with those models, we also evaluate our models on those benchmark-
ing datasets.

Table 1. Statistics of datasets.

Dataset
Positive Neutral Negative

Train Test Train Test Train Test

Twitter 1561 173 3127 346 1560 173
Restaurant 2164 728 637 196 807 196
Laptop 994 341 464 169 870 128

5.2. Baselines for Comparison

A comprehensive comparison with a wide range of models is conducted, in order
to comprehensively evaluate our models’ performance. We compare our models with
basic RNN baselines including LSTM, TD-LSTM, and ATAE-LSTM, followed by typical
transformer-based BERT/RoBERTa models.

• LSTM [37]: it is a standard LSTM.
• TD-LSTM [8]: it is a target-dependent LSTM learning context and target information.
• ATAE-LSTM [9]: to carry aspect information, an aspect vector is concatenated to each

of word embedding vectors. An attention mechanism is used to construct a sentence’s
representation against different aspects.

• BERT-SPC [15]: it feeds sequences in the form of “[CLS] + context + [SEP] + target + [SEP]”
into a basic BERT model for the sentence pair classification task.

• AEN-BERT [15]: it is an attentional encoder network based on the pre-trained BERT
model, which draws hidden states and semantic interactions between target and
context words.

• RoBERTa-MLP [40]: it is a pure RoBERTa model.
• BERT-ADA [17]: it is a domain-adapted BERT-based model finetuned on a task-related

context.
• LCF-ATEPC [16]: it is a multi-task learning model for AE and ALSC, based on BERT-

SPC model and local context focus mechanism, and is the state-of-the-art model on
the Restaurant dataset.

It is worth mentioning that the baselines chosen for comparison are all published
well-known classical neural networks. The reason why we do not compare our model with
other quantum language models is that this work is the first attempt of quantum-inspired
complex-valued model in ABSA field and hence there is a lack of information on other
QLMs’ performance. Moreover, unlike other models such as CNM which introduces a
complex-valued structure for a specific task [25], we focus more on the investigation of the
complexification framework and its performance over the corresponding real baselines.
Therefore, the comparison is mainly performed on its real counterparts.

5.3. Implementation Details

Comparing with a trainable word embedding, we find that a fixed embedding can
lead to a better performance. Therefore, word embeddings in our model do not get
updated in the learning process. For C-LSTM and C-ATAE-LSTM, word vectors, aspects
and hidden states are 300-dimensional and complex-valued. For all word vectors and
aspect embeddings, the real part and imaginary part are both initialized by Glove [42]
with dimension 300, which are pre-trained on an unlabeled corpus. The dimension of the
LSTM hidden complex vector is set to 300. For the C-BERT and C-RoBERTa models, the
embedding dimension is 768. Hidden states are 300-dimensional complex-valued vectors.
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We adopt the Adam optimizer with the learning rate among [1× 10−5, 2× 10−5, 1× 10−4]
and choose the batch size to be 16.

5.4. Experimental Result

Tables 2–4 show the experimental results for the Twitter, Restaurant, and Laptop
datasets, respectively. From the results, we can draw a conclusion that the three types of
complex-valued models for ABSA achieve better performance than the corresponding real
ones. Therefore, a complex-valued structure indeed can carry more semantic information,
and hence has an ability to improve a real counterpart’s performance.

Table 2. Results on Twitter dataset. The results with “∗” are retrieved from [8]; those with “∗∗” are
retrieved from [15]; and those with “‖” are from [40]. The best performed values are in bold.

Models
Twitter

Accuracy F1

RNN baselines TD-LSTM ∗ 0.7080 0.6900

Ours
C-LSTM 0.6922 0.6729
C-ATAE-LSTM 0.7124 0.6913

Ablation

C-LSTM-random 0.6387 0.5881
C-ATAE-LSTM-random 0.6503 0.6165
C-LSTM-polar 0.6922 0.6698
C-ATAE-LSTM-polar 0.7153 0.6962

Transformer-based BERT-SPC ∗∗ 0.7355 0.7214
AEN-BERT ∗∗ 0.7471 0.7313

baselines RoBERTa-MLP ‖ 0.7717 0.7620

Ours C-BERT 0.7529 0.7380
C-RoBERTa 0.7745 0.7657

Ablation C-BERT-polar 0.7572 0.7455
C-RoBERTa-polar 0.7702 0.7586

Specifically, compared with LSTM, C-LSTM works better on the Restaurant and Laptop
datasets, with a higher accuracy and a better F1 value. It also outperforms TD-LSTM on
Restaurant and Laptop datasets. This means that with an extra imaginary LSTM added,
C-LSTM can carry additional information beyond the real embedding. When attention is
added to an LSTM model, the complex-valued attention-based LSTM model outperforms
ATAE-LSTM and achieves the best results within all of the chosen RNN baselines. The
results where C-ATAE-LSTM exceeds the performance of C-LSTM show that the attention
mechanism can improve a complex-valued model, and the better performance of C-ATAE-
LSTM over ATAE-LSTM means that an attention mechanism can also benefit from the
complex-valued framework. The results of C-BERT and C-RoBERTa models manifest that
complex-valued representations can also improve a transformer-based model. Especially,
the complex-valued RoBERTa model achieves the state-of-the-art performance on the
Twitter and Laptop datasets. With comparisons ranging from standard RNN baselines to
transformer-based models, the results imply that the quantum-inspired complexification
framework has potential to be encapsulated to general language models in ABSA task and
achieves better performance for predicting aspect-based sentiment. Moreover, since our
complex-valued models are all quantum-inspired models, our results can also highlight
the importance of quantum language models, which have a more fundamental theoretic
background and also have an ability to improve the performance of traditional language
models, due to their more complicated structures.
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Table 3. Results on Restaurant dataset. The results with “]” are retrieved from [9]; those with “∗”,
“∗∗” or “‖” are retrieved from the same papers as Table 2; those with “†” are retrieved from the
paper [16]. “/” means not reported. The best performed values are in bold.

Models
Restaurant

Accuracy F1

RNN baselines
LSTM ] 0.7430 /
TD-LSTM ∗ 0.7563 /
ATAE-LSTM ] 0.7720 /

Ours C-LSTM 0.7643 0.6337
C-ATAE-LSTM 0.7866 0.6948

Ablation
C-LSTM-random 0.6777 0.4120
C-ATAE-LSTM-random 0.6804 0.4494
C-LSTM-polar 0.7634 0.6283
C-ATAE-LSTM-polar 0.7866 0.6775

BERT-SPC ∗∗ 0.8446 0.7698

Transformer-based AEN-BERT ∗∗ 0.8312 0.7376
BERT-ADA † 0.8714 0.8009

baselines RoBERTa-MLP ‖ 0.8737 0.8096
LCF-ATEPC † 0.9018 0.8588

Ours C-BERT 0.867 0.8141
C-RoBERTa 0.8848 0.8260

Ablation C-BERT-polar 0.8616 0.7946
C-RoBERTa-polar 0.8821 0.8295

Table 4. Results on Laptop dataset. “]”, “∗”, “∗∗”, “‖”, “†” et al. indicate the same models in papers
referred in Table 3. “/” means not reported. The best performed values are in bold.

Models
Laptop

Accuracy F1

RNN baselines
LSTM ] 0.6650 /
TD-LSTM ∗ 0.6813 /
ATAE-LSTM ] 0.6870 /

Ours C-LSTM 0.6959 0.6280
C-ATAE-LSTM 0.7100 0.6591

Ablation

C-LSTM-random 0.5831 0.4929
C-ATAE-LSTM-random 0.5846 0.4952
C-LSTM-polar 0.6944 0.6284
C-ATAE-LSTM-polar 0.7085 0.6523

BERT-SPC ∗∗ 0.7899 0.7503

Transformer-based AEN-BERT ∗∗ 0.7993 0.7631
BERT-ADA † 0.8023 0.7577

baselines RoBERTa-MLP ‖ 0.8378 0.8073
LCF-ATEPC † 0.8302 0.7984

Ours C-BERT 0.7994 0.7635
C-RoBERTa 0.8480 0.8172

Ablation C-BERT-polar 0.7993 0.7601
C-RoBERTa-polar 0.8495 0.8249

6. Discussion

To explicitly investigate the impact of our quantum-inspired complex-valued repre-
sentation, we conduct several comparison studies.
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6.1. Comparison with Random Imaginary Embedding

The comparison with the corresponding real baselines has already demonstrated
that the complex-valued embedding could carry additional information beyond the real
embedding. We encode the imaginary embedding as a linear function of sememes in the
above models. To investigate the influence of such embedding, we build the ablation
model where the imaginary embedding is trainable and initialized with a random normal
distribution. The ablation models are named with the corresponding complex-valued
models with suffix “-random”, as shown in Tables 2–4.

Experiment results in Tables 2–4 show that the disordered imaginary part will greatly
diminish the performance of models, which is even much weaker than that of the real
baselines. This further demonstrates that a semantic related embedding, free from harmful
noise introduced by a random input embedding, can improve a model’s performance.
Therefore, this further demonstrates in the following section that preserving the correlation
information comprehended in the relative ratio between different embedding dimensions
is important.

6.2. Hilbert Space Represented in Polar Coordinate System

Our semantic Hilbert Space is represented in a Euclidean coordinate system, where
an arbitrary word can be decomposed as in Equation (8). A word in a quantum language
model is treated as a physical state in a quantum system, whose physical property should
be independent of the chosen coordinate system. To explore whether our complex-valued
model’s performance depends on a specifically chosen coordinate system, we investigate
another commonly used coordinate system, namely, a polar coordinate system, which
is widely applied to representing the Hilbert Space Hn. Using a polar system, a word is
expanded as:

|w〉 =
n

∑
j=1

rje
iφj |ej〉, (41)

where rj is a non-negative real-valued amplitude of the state |w〉 along the radius direction,
satisfying ∑n

j=1 r2
j = 1, and φj ∈ [−π, π] is the corresponding phase of the state |w〉

in the polar coordinate system [25]. We initialize the rj with the 300-dimension Glove
vectors, and all {φj}n

j=1 are chosen be to the same within [−π, π]. It is noteworthy that φj
share a same value φ, which is independent of j, to preserve the correlation information
comprehended in the relative ratio between different dimensions. Otherwise, uncorrelated
random rotation will scarify the model performance by diminishing meaningful knowledge
in word embedding, which is not trainable in our cases. For C-BERT model and C-RoBERTa
model, we perform similar operations for the complex-valued context representation.

The results in Tables 2–4 show that the performance of all models in such a coordinate
system is comparable to those in a Euclidean one. The polar coordinate system-based
models are named as the corresponding complex-valued models with suffix “-polar”.
Actually, the two-coordinate systems are related as follows:

wrj = cos(φj)rj, (42)

wmj = sin(φj)rj. (43)

Moreover, the claim in Li et al.’s paper that the radius amplitude corresponds to the classical
word embedding with the lexical meaning is consistent with our assumption that the real
embedding and imaginary embedding are a linear combination of sememes [25]. Therefore,
our models’ performance is not closely related to the coordinate system chosen, which
is compatible with the physical state assumption for a word. That is, the property of a
physical state should be independent of coordination system chosen.
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6.3. Attention Visualizations and Comparison

Compared with the real attention-based LSTM, our complex-valued one has better
performance. To indicate the difference on attention weights between these two models,
we visualize two selected sentences as shown in Figure 4. Figure 4 shows the degree of
attention focusing on words with respect to a given aspect. The color density maps the
importance degree of the weight. We can see that the attention weights of ATAE-LSTM
have a wide spread over words, but those of C-ATAE-LSTM are more concentrated on the
words relevant to the target aspects. “Arrogant” in “the staff is arrogant, ...” has a dominant
weight with respect to aspect “staff”, as well as “very clean” with respect to “place” in
the second example. A possible explanation is that the real representation and imaginary
representation interfere with each other, resulting in vanishing information irrelevant and
hence boosting important information. Therefore, the important words “arrogant” and
“very clean” are got enhanced and have dominant weights.

Figure 4. Attention visualization and comparison. The color of a word indicates the relative weight
of attention for such word in each sentence, and the aspects are displayed in italic.

6.4. Case Study

In this section, we investigate some typical examples to explicitly show the advantage
of our complex-valued models. Without the vanishing of generality, we mainly discuss
cases for C-ATAE-LSTM and C-BERT. As shown in Table 5, the examples chosen are from
the test set whose polarity labels are incorrectly inferred by the real-valued language
models but correctly classified by the corresponding complex-valued models. All examples
are chosen from Restaurant dataset. For C-ATAE-LSTM, two typical examples are shown.
Sentence “the food was mediocre to be kind. the interior is small and average. the owners
are a tag-team of unpleasantries. so rude and snotty.” has three aspect items, which are
“food”, “interior” and “owners”. The whole sentence expresses a negative polarity on all
three aspects, and the complex-valued model C-ATAE-LSTM can obtain the correct polarity.
Sentence “not only is the food authentic, but the staff here are practically off-the-boat, they
are young and hip and know what they are doing.” uses a collocation “not only . . . but
. . . ” with a negation word “not”. Our model can predict the correct polarity for both
items “food” and “staff”. For C-BERT, the first sentence “although the restaurant itself is
nice, i prefer not to go for the food.” does not include a direct polarity for aspect “food”.
Especially, for “restaurant”, the polarity is quite positive, so the model needs to learn
some logic underlying the sentence. The second sentence “the food is just okay, and it’s
almost not worth going unless you’re getting the pialla, which is the only dish that’s really
good.” also contains complex logic. The aspect term “dish” is easy to classify because of
the obvious adjective word “good”. However, to correctly obtain the polarity for “pialla”, a
model needs to learn the logic between “pialla” and “dish” and recognise that the negative
polarity of words “not worth” is reversed by word “unless”.
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Table 5. Case study examples. A. Example includes examples inferred correctly by C-ATAE-LSTM. B.
Example includes examples inferred correctly by C-BERT. The aspects are displayed in italic. “Truth”
is the ground truth for an example.

A. Example Truth

the food was mediocre to be kind. the interior is small and average.
the owners are a tag-team of unpleasantries. so rude and snotty. 0

the food was mediocre to be kind. the interior is small and average.
the owners are a tag-team of unpleasantries. so rude and snotty. 0

not only is the food authentic, but the staff here are practically off-the
-boat, they are young and hip and know what they are doing. 2

not only is the food authentic, but the staff here are practically off-the
-boat, they are young and hip and know what they are doing. 2

B. Example Truth

although the restaurant itself is nice, i prefer not to go for the food. 0

the food is just okay, and it’s almost not worth going unless you’re
getting the pialla, which is the only dish that’s really good. 2

the food is just okay, and it’s almost not worth going unless you’re
getting the pialla, which is the only dish that’s really good. 2

7. Conclusions

In this paper, we have proposed quantum-inspired complex-valued language mod-
els for ABSA. The complexification of three typical real baselines is constructed. They
are complex-valued LSTM, complex-valued attention-based LSTM, and complex-valued
BERT/RoBERTa model. Experiments conducted on three benchmark datasets demonstrate
the effectiveness of our complex-valued structure, which manifests that a complex-valued
framework can improve a model’s performance in ABSA and shows that a complex-valued
structure has a potential to benefit general neural networks. To demonstrate such general-
ity, we can further investigate a complex-valued CNN model in the future, and construct
models with more complicated structures. Our work also shows that quantum language
model has not only a more fundamental mathematical and physical background, but also
good performance. Through a detailed discussion, we show that the performance of our
models is not closely relevant to the coordinate system chosen. This is consistent with the
finding that a physical event is independent of the coordinate chosen.

Our current study is restricted to the ABSA field. However, such a complex-valued
quantum language structure should have wider applications in various areas. Therefore,
a further research direction may be to explore the application of quantum-inspired com-
plexification in other NLP tasks. In addition, to manifest the influence of complex-valued
representations throughout the whole pipeline, we could study a LSTM with built-in
complex-valued cells and states.
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