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Fatigue in assemblies of indefatigable  
carbon nanotubes
Nitant Gupta, Evgeni S. Penev, Boris I. Yakobson*

Despite being one of the most consequential processes in the utilization of structural materials, fatigue at the 
nano- and mesoscale has been marginally explored or understood even for the most promising nanocarbon 
forms—nanotubes and graphene. By combining atomistic models with kinetic Monte Carlo simulations, we show 
that a pristine carbon nanotube under ambient working conditions is essentially indefatigable—accumulating no 
structural memory of prior load; over time, it probabilistically breaks, abruptly. In contrast, by using coarse-grained 
modeling, we demonstrate that any practical assemblies of nanotubes, e.g., bundles and fibers, display a clear 
gradual strength degradation in cyclic tensile loading due to recurrence and ratchet-up of slip at the tube-tube 
interfaces, not occurring under static load even of equal amplitude.

INTRODUCTION
Low-dimensional carbon nanomaterials came to prominence largely 
because of their remarkable mechanical properties and as potential 
lower-density replacements of predominant structural materials 
such as metals and ceramics. Besides strength, a crucial characteris-
tic of these materials is the fatigue (1), which is often linked directly 
to their usable life. Fatigue in three-dimensional (3D) bulk materials 
is closely related to the propagation and accumulation of structural 
defects that seem to preexist inadvertently but inevitably. On the 
contrary, it is now possible to achieve arbitrarily large pristine/
perfect low-dimensional carbon forms (2). An important question 
thus arises as to how “fatigue” can be defined for a perfect carbon 
nanotube (CNT) or graphene and what are the underlying atomistic 
mechanisms. This remains a challenging problem, and only very 
recently, attempts have been made toward quantitative measurements 
of individual CNTs (3) and graphene (4, 5).

All credible definitions of materials fatigue explicitly mention 
cyclic loading (1), a repeated application of stresses (load-control) 
or strains (displacement-control), as a necessary condition. It is 
asserted that plasticity must be induced in each cycle, arising from 
dislocation motion, and leading to increase in dislocation density 
along the so-called persistent slip bands (6). This then causes strain 
localization along these bands, acting as nucleation sites for micro-
cracks. Subsequently, the opening up of these microcracks leads to 
further stress concentration and eventual failure of the material.

If carbon forms such as CNTs are pristine, defects and micro-
cracks are absent and cannot be formed spontaneously under typi-
cal working conditions (T ≲ 1500 K). Moreover, their cyclic loading 
is restricted to tension-tension mode because CNTs with their high 
length-to-diameter (L/d) aspect ratio do not sustain compression 
and will instead buckle with no structural damage (7). Under these 
circumstances, a single cycle at typical frequencies, e.g., ~1 to 1000 Hz, 
does not provide sufficient time to nucleate a crack or defect, and a 
tube remains intact even after multiple cycles. As a consequence, 
over a long time, such a tube should behave no differently than 
under static loading, and the time scale for crack/defect nucleation 

should thus be similar. It may be more appropriate to characterize 
the temporal failure of nanotubes as a form of “creep” failure. 
However, the experimental studies on the fatigue of pristine carbon 
forms (3, 4) do use cyclic loading and unanimously term the 
observed failure as “fatigue failure.” It is important to clearly stipu-
late the underlying failure mechanism and settle this ambiguity, 
especially as experimental efforts are just emerging; the proper 
identification of fatigue is critical for the design and utilization of 
CNT-based structural materials/applications.

The strength limits of an ideal CNT and even the dependencies 
on its helicity and temperature are well understood in theory (8), 
supported also by experiment (9). In contrast, their assemblies into 
bundles or fibers remain much weaker (10–12). In this context, 
where the interfaces between nanotubes have frictional load trans-
fer, the fatigue failure of CNT assemblies is very different from its 
constituents. Since their interfacial interactions are much weaker 
than their cohesive interactions, cyclic loading of CNT fibers and 
yarns (13) produces irreversible slips with each cycle. As a conse-
quence, the time and length scales pertinent to individual CNTs and 
their assemblies may vastly differ, calling for a multiscale modeling 
approach. At the level of an individual CNT, atomistic simulations 
using density functional theory–based tight binding (DFTB) (14) 
and long-range bond-order potential (LCBOP) for carbon (15) to 
quantify the energetics of defects formation are combined with 
kinetic Monte Carlo (kMC) to bridge an inherent time scale gap. 
On the other hand, representing mesoscale CNT assemblies, such as 
bundles and ropes, mandates the bridging of a wide length-scale 
gap. Adopting an expedient coarse-grained CNT model (10) thus 
makes it possible to probe the mechanical behavior upon cycling 
load of micrometer-scale CNT bundles (see also section S1 for a 
figure panel schematic of the multiscale approach).

We show that individual pristine CNTs appear indefatigable 
under typical cyclic load, not accumulating internal structural 
damage; instead, probabilistic mechanical failure occurs via abrupt 
brittle fracture and therefore cannot be qualified as fatigue. On the 
contrary, in CNT bundles, a fatigue behavior, with definitive 
damage accumulation, is revealed and its mechanism is identified: 
a strain ratcheting, resulting from the interplay between slip and 
incomplete elastic recovery upon loading/unloading, leading to 
damage accumulation, not occurring under static load even of equal 
amplitude.
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RESULTS
CNTs can follow two routes to mechanical failure (8, 16, 17): (i) a 
purely brittle one and (ii) a route with some plastic deformation 
before nanotube rupture. Both routes depend on various parame-
ters, among which crucial are the strain, temperature, and the chiral 
angle. In brief, tensile strain reduces the thermal activation barriers 
for breaking the most strained bonds (closely aligned to the tube 
axis) and the barriers for rotation of the highly sheared bonds 
(aligned near perpendicular to the tube axis) (8). Therefore, zigzag 
and near-zigzag tubes have lower breaking strain for brittle failure, 
while armchair and near-armchair tubes rather fail by plastic yield. 
Under cyclic loading, if neither mechanism is activated during each 
cycle, the resulting failure may not be ascribed to fatigue, as is 
explored further below.

The brittle route to CNT failure
We consider first the pure brittle route using a pristine (10,0) nano-
tube as a representative. Under uniform axial strain , the shortest 
path to complete tube failure is when its bonds are broken in a way 
that the crack propagates along the circumference, in any cross 
section. The smallest possible initial crack for such a path is a single 
broken C─C bond along the tube axis, schematically shown in the 
bottom inset of Fig.  1A. To mimic thermal fluctuations in the 
strained lattice, the length of such a bond is gradually increased in 
increments of ≃0.1 to 0.2 Å, while the remaining lattice is relaxed, 
at a DFTB level (see Materials and Methods for details), which is 
similar to the procedure adopted in (18). This stepwise elongation is 
continued even as the neighboring bonds break and eventually 
leads to the cleavage of the tube into two disconnected fragments 
(Fig. 1A, top inset). The energy change due to this process can be 
used to estimate the thermal barrier for the crack initiation/
propagation at different  as shown in Fig. 1A. A piecewise, nearly 
linear relationship is apparent, where the transition point at 
 ≃ 13.5% represents the breaking strain b, as the activation barrier 
above b is much smaller than kBT. For  < b, a linear fit E*() = 
E0 − E1 gives E0 ≡ E*( → 0) ≃ 14.4 eV. Although approximate, 
this estimate makes it clear that E0 ≫ E*(0.1) ≃ 3.7 eV, and there-
fore, the time scales, viz. the rates of these processes, will differ by 
many orders of magnitude.

A crucial observation from the bond elongation plots (top inset 
in Fig. 1A) is that all the curves (at least for  < b) are monotonic 
and without any local minima, indicating an absence of metastable 
cracks or lattice trapped states (16–18). Some minor features such 
as small kinks appear whenever the neighboring bonds are presumably 
broken. This suggests that failure of a pristine tube can only be 
abrupt, brittle (i.e., no discernible nucleation or development), and 
below its breaking strain it simply takes time t. In this scenario, 
strain (t) is the sole parameter controlling the barrier for nanotube 
fracture, and the failure probability is cumulative

   P(t ) = 1 − exp [   −  ∫0  
t
   ( ) d ]     (1)

where (t) = 𝜈 exp{−[E0 − E1 (t)]/kBT}, with 𝜈 ~ 1013 Hz; a barrier- 
strain linearity has long been empirically established and applied in 
the kinetic theory of the strength of solids (19, 20) [some attempts 
to apply the same concept to time-dependent CNT fracture have 
used a quadratic strain dependence also, without a clear physical 
justification (21)]. In a state of fluctuating (or cyclic) strain, the 

maximum likelihood of failure occurs whenever the strain peaks. 
During tensile cyclic loading with a sine profile, (t) = 0[1 + cos(t)]/2 
(Fig. 1B, inset), the integrand (t) decays rapidly away from the 
peaks, where /0 ≃ 1 − (t)2/4. Over one cycle, denoting  = ∫0

2/ 
(t) dt, the failure probability of a tube simplifies to 1 − exp(−) ≃ , 
for  ≪ 1. Therefore, the survival probability over n cycles is 
(1 − )n ≃ 1 − n. The number of cycles until failure can then be 
estimated from n ~ 1, by saddle-point integration of (t), which gives

  n(   0  ; T ) = ( / 2 )  ( E  1   /   k  B   T)   1/2      0     1/2  exp [ ( E  0   −  E  1      0   ) /  k  B   T]  (2)

plotted in Fig. 1B. The relation is formally akin to “strain-life” 
curves that characterize the fatigue life of a typical material (1). 
Notably, at low strain amplitude up to ≃5%, a pristine CNT has 
practically infinite life (n ≫ 1020) and, in this sense, behaves more 
like a macromolecule (rather than a material), exhibiting no fatigue 

A

B

Fig. 1. Brittle failure of a CNT. (A) Bond-breaking barrier E* for a (10,0) CNT 
computed using DFTB. Each data point is determined from the maxima of the 
energy versus bond elongation curves shown in the inset, calculated for a tube 
under tensile strain in the range of 10 to 16%. The line is a linear fit to the data for 
 ⩽ 13%, E*() ≃ 14.4 − 106.9 (eV). (B) Logarithmic-scale plot of the strain amplitude 0 
versus number of cycles n until failure obtained from Eq. 2 for T = 100 to 1000 K at two 
different frequencies,  = 1 Hz (solid lines) and 1 MHz (dashed lines). The inset illustrates 
the (t) (gray) and failure rate (red) profiles over the time span of two cycles.
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under cyclic tensile loading. Under this brittle route, with no pre-
existing or nucleated defects and the inability to sustain stable 
cracks, no plastic strain is accumulated, and the nanotube after, 
say ≃1020 cycles, is no different from a pristine “brand new” nano-
tube. This behavior reflects the stochastic nature of a CNT’s brittle 
failure, rather than representing its fatigue life.

Mechanism of plastic deformation in a CNT
The other alternative route to CNT failure involves plastic deforma-
tion by incorporation of dislocation dipoles (22), as typically ob-
served in low cycle fatigue of metals (1, 6). Such a possibility arises 
when a Stone-Wales (SW) defect spontaneously nucleates by rota-
tion of a C─C bond, resulting in a coupled pentagon-heptagon 
dislocation dipole 5|7/7|5. The SW defect also happens to be the 
prime point defect that can form in the pristine sp2-carbon lattice, 
with energy lower than any other—vacancies, interstitials, or a pair 
of single dislocations (23). These defects are chirality preserving, viz. 
not disrupting the CNT lattice, unlike a single isolated dislocation; as 
a result, their presence may be virtually undetectable, at least by 
standard spectroscopies, which detect a chirality change or appre-
ciable defect density.

The investigation of the plastic route to failure is performed 
using a (6,6) tube, without loss of generality, and stress-controlled 
load (see Materials and Methods). Figure 2 summarizes the results 
from DFTB calculations for an initially pristine tube of L ≃ 5.2 nm 
(with periodic boundary conditions applied axially to avoid edge 
effects) and depicts the enthalpy changes and enthalpy barriers of a 
sequence of bond rotations, which eventually form the shear band 
of the CNT (akin to persistent slip bands in metals) (24, 25). An 
initially pristine armchair CNT has two families of identical bonds: 
perpendicular and slanted (±30°) to the tube axis. During axial 
loading, the former are under the highest shear and therefore have 
a lower barrier to rotate than the slanted bonds. This preference is 
observed for all 0 > 0 and leads to the first SW defect as shown in 
Fig. 2A (second image on the top). The energy and enthalpy barriers, 
E‡ and H‡, respectively, for these transformations are evaluated 
using the nudged elastic band (NEB) method together with Bell- 
Evans-Polanyi (BEP) principle (Fig  2A, inset), as explained in 
Materials and Methods.

Evidently, the first SW defect always lowers the CNT symmetry 
and (partially) lifts the degeneracy in bond rotation barriers for the 
two bond families, thereby localizing the activation site for the 
subsequent bond rotations to its immediate vicinity. To explore 
subsequent transformations, rotation barriers for all bonds in the 
tube need to be evaluated individually. These extensive calculations 
of strain-dependent E‡ from the second to the fifth bond rotations 
revealed that the kinetically most favored pathway for nonzero 
strain is along the shear band of the nanotube, as shown in the top 
images of Fig. 2A (for details, see section S2). At 0 = 0, the forma-
tion enthalpy H monotonically increases with each bond rotation 
(at least up to the fifth bond) and is not the preferred pathway, even 
as the barriers decrease slightly. However, for 0 ≳ 0.05, the shear 
band pathway becomes more favorable in both energy and kinetics. 
At 0 = 0.14, the DFTB results show that the configurations from 
the second SW defect onward are unstable, and therefore, a tube 
should break as soon as the first SW defect has formed.

Although the shear band formation is the preferred kinetic 
pathway, other competing pathways do exist at every bond rotation, 
especially when the applied strain is reduced. This is shown in 

Fig. 2B for the second bond rotation at two strain values. Here, the 
two-SW shear band has lower energy and barrier, among other pos-
sibilities with slightly different bond rotations where the two 5|7 
dislocations split apart or incorporate an octagonal ring (for brevity, 
we will refer to the three configurations as “sheared,” “split,” and 

A

B

Fig. 2. Energetics and kinetics of CNT plastic failure. (A) Diagram of enthalpy 
change H (horizontal bars, relative to a pristine CNT) for sequential bond 
rotations forming a shear band (top images, with 5|7 highlighted) at different 
tensile strains in the range of  = 0 to 0.14. The inset shows the relation between 
the DFTB-computed bond rotation barriers E‡ and energy differences E for final 
configurations as indicated in (B) with the corresponding symbols; the line is a 
linear regression to the computed points, E‡ ≃ 5.7 eV + 0.9E. The energy barriers E‡ 
obtained from this expression are indicated (in electron volts) for all transitions 
(shown schematically as thin parabolic segments). (B) Comparison of other possible 
configurations after two bond rotations, close in energy to a shear band: SW-defect 
splitting (5|7⋯7|5) and defects configuration including an octagon (5|7/5|8|5/5|7) (22).
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“octagonal,” respectively). Considering the multiplicity of these 
configurations (viz. 4 for sheared, 4 for split, and 2 for octagonal), 
the relative probabilities of these paths can be evaluated, e.g., at 
1000 K. At 0 = 0.05, the sheared:octagonal:split configurations are 
81.4:18.0:0.6% probable, whereas at 0 = 0.1, the relative probabili-
ties are 88.9:11:0.02%, respectively.

The results in Fig. 2 highlight the early steps a pristine nanotube 
undergoes toward plastic deformation, which essentially sets its 
overall time scale. An expedient way to propagate the CNT in time 
along the plastic route and capture failure is to use (on-the-fly) 
kMC (26, 27) using the LCBOP potential (15). kMC has been in-
strumental in bridging the time scale gap in other problems involving 
CNTs, from catalytic growth (28) to electron irradiation (29). Ideal-
ly, the kMC simulations should include all possible processes such 
as bond rotations and bond breaking. However, as discussed earlier, 
single-bond cracks were never found to be stable at low strain levels, 
and barriers to break several bonds simultaneously, which may be 
necessary to form a stable crack, are exorbitant. Therefore, only 
bond rotations are considered as feasible processes in the kMC 
simulations.

Figure 3 summarizes the results of the kMC simulations (see 
Materials and Methods) for different initial strain levels, compris-
ing a total of more than 100 trajectories. A sample kMC trajec-
tory for each of the 0 values in the range 6 to 14% is shown in 

Fig. 3 (A to E). Animations of these trajectories are also provided in 
movie S1. As expected from the DFTB results (Fig. 2), the kMC 
trajectories show preference to the formation of the shear band in 
the first few steps in most cases (0 = 10 to 14%). However, for 0 ≲ 
8%, the splitting of the first SW was found to be kinetically favored. 
This is perhaps an undesirable consequence of the LCBOP potential, 
where further investigation revealed that the energetic preferences 
at lower strain are in a different order than DFTB results. Generally, 
the formation energies of various SW defect configurations in 
LCBOP are found to be underestimated by up to a few electron volts 
compared to DFTB, an uncertainty known even for different flavors 
of DFT (30) (an expedient correction scheme is outlined in Materials 
and Methods and section S3). Nonetheless, the two defect configu-
rations (Fig. 2B) are very closely related, and the SW splitting 
(5|7⋯7|5) simply presents a different pathway of nonvanishing 
probability. A more general observation from Fig. 3 (A to E) is the 
ductile to brittle transition as strain is increased, where lower 0 
results in larger plastic strain (at 0 = 6%, Fig. 3A, the tube may not 
break for the entire duration of the simulation), while at higher 
strain, e.g., 0 = 14%, the tube fails after two to three bond rotations. 
The plastic strain in the final geometry (after 100 bond rotations) in 
Fig. 3A is 43% due to substantial necking, with (6,6)→(5,0) chirality 
change, viz. twofold reduced diameter, commonly associated with 
CNT “superplasticity” (22, 31).

A

F G H

B C D E

Fig. 3. kMC trajectories of CNT plasticity. (A to E) Representative CNT geometry evolution from kMC trajectories for initial strains in the range of 6 to 14% at 1000 K. The 
number of bond rotations (viz. number of kMC steps) is indicated under the individual images. (F) Enthalpy change H due to bond rotations along the kMC trajectories 
for stress-controlled loading at different values of initial strain 0 (full lines, left axis). The inset is a zoom-in view of the gray-framed area above. Dashed lines (right axis) 
correspond to strain-controlled loading. Both stress-controlled and strain-controlled trajectories are shown as animations in movie S1. (G) Time increment t for kMC 
trajectories at different strains for two temperatures. (H) Strain-life curves at different temperatures.
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All kMC trajectories for a given 0 with random initialization 
display very similar quantitative trends even as T is varied, as 
demonstrated by the nearly identical H evolution (overlapping 
curves) in Fig. 3F. The solid curves, for the stress-controlled load-
ing, show that after the first few bond rotations, the enthalpy 
decreases almost linearly. This decrease may not be intuitively obvi-
ous especially since E  >  0, because creation of more defects is 
energetically costly, while simultaneously there is no strain relief 
due to the application of a constant stress (0) on the boundaries 
of the simulation cell. The decrease stems from the second term 
(boundary work) in H = E − 0V, whose magnitude (V ~ ) is 
much larger than the change in energy (E ~ 2).

For additional context, the dashed curves in Fig.  3F are the 
results for strain-controlled loading, where the tube length is kept 
fixed after elongation to the initial strain 0 at the beginning of the 
simulation. It is seen that at least for the first few bond rotations 
the E energy trend closely resembles that for H in the stress- 
controlled loading. However, E soon saturates to a stationary value, 
whereupon no previously unidentified configurations are created, 
and the system oscillates between a few select configurations. This is 
demonstrated in movie S1. The E saturation can be explained 
by the ability of plastic deformation to mitigate the initial elastic 
strain in the tube. From Fig.  2, the bond rotation barriers E‡ are 
expected to be much larger when the tube strain is low. Thus, with 
each kMC step, the strain in the tube decreases, slowing down the 
kinetics of new bond rotations, and eventually the system behaves 
almost like an unstrained tube.

The key differences in the kinetics of these trajectories can be 
seen in Fig. 3G, where the time increments t for each kMC step are 
plotted for T = 500 and 2000 K. As can be expected, higher T signifi-
cantly accelerates the plastic deformation, reducing the time scale 
from astronomical to 10−9 to 1 s. Even then, one invariant observa-
tion across all temperatures is that the nucleation of the first SW 
defect is always the slowest (by several orders of magnitude) and 
pivots the entire time scale of failure through the plastic route. This 
suggests that starting from a pristine CNT, the longest mean 
waiting time, 〈t〉 = 1/R, with R the (total) cumulative rate, is almost 
entirely for the formation of the first SW defect, and all subsequent 
steps are much faster. For illustration, t values along strain-controlled 
trajectories are also shown (dashed lines for T = 500 K; Fig. 3G), 
revealing that the time scale of plastic deformation initially follows 
the stress-controlled behavior but subsequently deviates and be-
comes comparable to that for the first SW defect. This demonstrates 
that as soon as the plastic strain mitigates the elastic strain, there is 
a lack of a driving force to cause any further plastic deformation.

Notably, for stress-controlled loading, t is nonmonotonous, 
with a number of characteristic “bumps” (substantial slowdowns), 
which occur whenever a new SW defect is nucleated instead of 
further propagation of an existing defect. This is possibly because 
further propagation at those stages has a similar barrier as a new SW 
nucleation, away from the activation site. However, because of the 
local stress enhancement (due to stress concentration) caused by 
the existing defects that reduce E‡, such a process occurs markedly 
faster than in a pristine tube.

A complete summary of all kMC results in the form of strain-life 
curves for the plastic route is shown in Fig. 3F, obtained by integra-
tion of all time increments giving the total time to failure. At 500 K, 
a CNT will survive from a few hours at 0 = 0.14, to indefinitely at 
0 = 0.06, while at 2000 K, it will fail within ≲1 s for any strain above 

0.04. At 0 ≲ 0.04, for all temperatures, the CNT behaves as a 
two-state system, oscillating between the initial pristine state and 
the tube with one SW defect. This is because, at these low strain 
levels, after the nucleation of the first SW, which in itself is very 
improbable, the next favored step is to always heal the SW back to 
the pristine configuration. This then suggests that 4% strain is a 
limit, akin to the endurance limit of the nanotube, where the tube 
has a truly infinite life.

From Fig. 3, it is clear that at ambient conditions, not too high T, 
an individual CNT is indefatigable, i.e., it does not undergo fatigue 
failure especially because of the huge disparity between the relevant 
time scales of defect kinetics t and any kind of cyclic loading with 
frequency , because it can always be shown that 1/ ≪ t. However, 
if a nanotube is already defective, fatigue may occur on a more prac-
tical time scale. This is, in fact, suggested by the strain-controlled 
loading simulations, where the defect accumulation stops after tube 
strain is mitigated. If this specimen is removed and used later in 
another strain-controlled loading, it will have a memory of its prior 
“experience,” and subsequent defects and their time scales will 
depend on its prehistory. Further discussion about the strain-life 
curves for already defective tubes are also provided in section S4.

Fatigue in “bulk” CNT assemblies
The indefatigability of nanotubes is only relevant if they are 
defect-free and ultralong (centimeter to meter range), to be directly 
tested or used in structural applications, either individually, as in 
CNT coils (32), or in the form of macrobundles where each tube 
spans the entire length, as in (3). However, practice (10–12) often 
prevents these realizations, and instead, the tubes are shorter and 
much thinner than the bundle comprising them, typically with 104 
to 105 of similar hexagonal close-packed CNTs over cross section. 
For simplicity, one assumes that they all have the same length L and 
diameter d and are arranged in a 3D face-centered cubic (fcc)–like 
lattice (10, 33). This constitutes a finite yet representative volume 
element that can be used to characterize the bulk behavior of a CNT 
bundle. In a bundle, a crucial aspect is, of course, the load transfer 
at the interfaces of adjacent CNTs, characterized by the interface 
frictional force per unit length, f (10). The intertube friction can be 
a bottleneck to the strength of the entire bundle, allowing its ele-
ments to slip under any load above ~fL, commonly well below sid2, 
with si being the tube’s intrinsic strength. However, whether this 
dissipative interface itself could cause fatigue in CNT bundles is 
nonobvious and is important to explore.

In the stress-controlled cyclic loading (Fig. 4A), the stress is 
ramped up to nearly full tensile strength s of the bulk bundle ele-
ment, to stress amplitude 0 = 0.98s. The results differ notably from 
a single tube because during unloading a slightly different path is 
followed, and plastic (permanent) strain is accumulated after each 
cycle. The choice of this high 0 allows us to track a complete life 
cycle of this system, which in this particular case is n = 46, after 
which the bundle fails because of complete slippage of some of the 
tubes in the cross section of the bulk bundle. The failure due to this 
type of loading is further explored in Fig. 4C, where the mean gap 
length 〈〉 between axial neighbors [along the same thread, cf. (10)] 
is plotted as a function of the simulation time. The saw-tooth shape 
of the curve is due to the cyclic expansion-contraction of the gaps, 
synchronous with load cycle, because the tubes adjacent to the gap 
experience local stress enhancement causing a higher strain 
amplitude than anywhere else in the bundle. The amplitude of the 
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saw-tooth curve is thus directly controlled by the stress level in the 
tube and the stiffness of the nanotubes. The lower envelope tracks 
the permanent cumulative change in 〈〉, which initially increases 
almost linearly, but then grows exponentially, until failing after the 
46th cycle.

Figure 4C and movie S2 also showcase that if the same bulk 
bundle element is subjected to static loading for the same duration, 
〈〉 and  saturate after reaching the maximum applied load 0. This 
is perhaps nonobvious and even counterintuitive, since cyclic load 
when time-averaged is half of the static load in this case, and yet 
leads to failure of the bulk bundle element much earlier. The reason 
for this different behavior is due to the interplay of slips at the 
extension phase, and an incomplete recovery caused by elastic force 
push-back at the load-release phase, a particular ratchet-up mecha-
nism that operates and results in gradual damage accumulation (in 
the form of increasing gaps between the CNTs) and eventual failure 
after large number of cycles.

In the case of strain-controlled loading (Fig. 4B), three instances 
of strain amplitude are demonstrated, 0 = 0.03, 0.05, and 0.15. In 
each case, during the loading phase of the cycle, the box is elongated 
to match the prescribed strain value, while during the unloading 

phase, the stress is relaxed back to zero. As a result, the initial length 
of the bundle changes with each cycle since whatever plastic strain 
accumulates during the loading phase becomes permanent, and 
therefore, the remaining end-to-end displacement diminishes with 
each cycle, asymptotically approaching zero. This is further demon-
strated in the corresponding plots for 〈〉, where the amplitude of 
the saw-tooth curves reduces as the cycles progress, indicating a 
reduction in the overall stress level. Here, the three strain values 
demonstrate that this fatigue behavior shows no significant differ-
ence whether the strain amplitude lies below, at, or above the critical 
strain * (strain at maximum stress *; cf. Fig. 4B), which also 
marks the transition from an elastic interface to a plastic interface 
(10). Note that for the stress-controlled loading, the interface is 
always elastic, as this transition point * can never be crossed.

Fatigue of CNT bundles
The fatigue of a bulk bundle serves as a guideline for the more prac-
tical realization of the bundles where the width is finite, and the 
lengths of the nanotubes are normally distributed. The same protocol 
as in the preceding section is applied for a bundle of finite diameter 
(see the inset image in Fig. 5D). Although reaching the fatigue life of 

A

C

B

D

Fig. 4. Fatigue of bulk CNT assemblies. (A and B) Representative - curve (full line) for a bulk bundle element of length L = 100 nm and friction f = 0.01 nN/Å subject to 
cyclic loading: (A) stress control with a constant amplitude 0 = 0.98s (dashed line) and (B) strain control with constant strain amplitudes of 0 = 0.03, 0.05, and 0.15. For 
comparison, the monotonic loading of the same system is given as a dotted line in both (A) and (B), with the maximum indicating the strength of the bulk bundle s from 
(10), and the labeled red line in (A) shows the hysteresis-free - curve for an individual CNT. Note the logarithmic scale of the -axis. The ⨉ mark indicates the bundle 
failure, occurring after n = 46 cycles in (A). The inset in (B) shows the - curves for both loading conditions with linear -axis for comparison. (C) Mean gap length 〈〉 
versus simulation time t for a bulk bundle element corresponding to (A). The dotted line connects the valleys of each cycle to indicate the permanent changes in 〈〉. The 
inset shows the simulation snapshots (with color-coded stress distribution) of the initial configuration (t = 0) and subsequent changes in gap length after the cycles as 
labeled on the right, for both the peak and the valley of the cycle. These points are also marked by black dots on the 〈〉 curve. For reference, the blue dashed curve shows 
〈〉 of a statically loaded bulk bundle element. (D) The same as in (C), but for the case of strain-controlled loading in (B).
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such a realistic-size bundle is hardly computationally feasible, even 
in a coarse-grained simulation, characteristic behavior is revealed 
already in the first few cycles, as illustrated in Fig. 5A, where we 
have been able to realize 21 cycles at maximum load approaching 
the bundle strength, 0/s = 0.99. Notably, a large permanent strain, 
p = 0.4%, is accumulated already in the first cycle. In the subse-
quent 20 cycles, plastic strain ratchets up at a nearly constant rate 
of ≃0.005% per cycle. This process can be seen in the top inset in 
Fig. 5A, where the maxima of the stress curve are incrementally 
offset in strain. However, in practical applications design, load 
amplitudes 0 are prescribed to be well below the ultimate tensile 
strength s. Tests of the p dependence on 0 (Fig. 5A, bottom inset) 
show that p is vanishing for any 0/s ≲ 0.5, and no residual strain 
could be detected even after 10 cycles for 0/s ⩽ 0.3. This also 
suggests that the endurance limit of this bundle can be ~0.3 to 0.5s, 
in surprising accord with the rule of thumb for most steels and copper 
alloys (1). Even so, the endurance limit of these metal alloys (0.2 to 
0.5 GPa) is far lower than the bundle (2.3 to 3.5 GPa) in Fig. 5A.

The burst-like behavior of p is due to the incomplete elastic 
recovery of the nanotubes as the load is released, which leads to 

some parts of the tubes being stretched and even compressed as 
found for the bulk bundle element in Fig. 4C (inset). This has also 
been experimentally observed for graphene interfaces (5) and is 
common in various bulk (3D) materials [associated with strain 
ratcheting (34, 35)]. Because we consider a single finite-width bun-
dle (fixed geometry parameters and maximum loading level), p is 
expected to depend also on the tube-tube interface shear properties, 
characterized by the interface friction f. This is demonstrated in 
Fig. 5B where two cycles are realized for a range of f = 0.0001 to 
0.002 nN/Å, with the respective residual strain after the first cycle p 
plotted in the inset. Overall, for the larger f values, scaling is essen-
tially linear, p ~ f, while for vanishing but finite friction, p falls off 
slightly faster. This can be attributed to decreasing slope/stiffness 
upon unloading, reflecting the ease of restoring interface contact 
when friction is reduced, aided by the ubiquitous capillary action.

Figure 5C further reveals a very similar trend in 〈〉 as in the bulk 
case for the stress-controlled loading, namely, the initial almost 
linear increase with the number of cycles. However, with distributed 
nanotube lengths and their specific spatial arrangement, all the gaps, 
initially of the same length, undergo different levels of increments 

A B

C D

Fig. 5. Cyclic loading of a CNT bundle. (A) Representative - curve for a CNT bundle of variable-length CNTs with mean length 〈L〉 = 1 m and friction f = 0.001 nN/Å. The 
dashed line shows the monotonic loading of the same system (10). The top inset shows a zoom-in view of the plot around the stress amplitude of 0 = 0.99s. The bottom 
inset shows the permanent strain after the first cycle p versus 0/s (dotted lines mark the limits p = 0 and 0/s = 1). (B) Stress-strain curves for a few cycles to capture p 
as f is varied. Dotted lines correspond to 0.99s, where s is the strength determined from the corresponding monotonic curves for the same product fL as in (10). The red 
solid line shows the hysteresis-free - curve for an individual CNT. Inset shows the relationship between p and f. (C) Mean gap length 〈〉 as a function of simulation time. 
The dotted line is a linear fit to the  values at the end of each cycle, and the horizontal dashed line marks the 〈〉 value after the first cycle. The inset shows a histogram of 
 for all 110 gaps after the first (gray) and last (violet) cycles. (D) Average gap length (dots) and its variation (error bars) due to the proximity to the periphery; color coding 
is the same as in (C). The inset illustrates the shell indexing.
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due to very different stress concentrations. This is demonstrated in 
the inset of Fig. 5C, showing the histogram of  after the first and 
last cycle. Some noticeable shifts of peaks are observed especially for 
the larger gaps (as marked by the arrow).

The distribution in gap lengths led us to a deeper exploration 
into the role of the peripheral/surface gaps (10), which should expe-
rience an overall heightened stress concentration effect due to re-
duced number of neighbors. The plot in Fig. 5D shows 〈〉 after the 
first and last cycle as a function of the shell index (gray levels in the 
inset), which defines equidistant sets of tubes from the bundle axis. 
The plot demonstrates that, in general, gaps become larger as the 
shell index increases, with peripheral gaps being the largest, after 
both the first and last cycles.

DISCUSSION
In light of our findings related to individual nanotubes, the recent 
experimental observations that “fatigue failure … is global and 
catastrophic without progressive damage” (3,  4) are difficult to 
reconcile with actual fatigue in pristine nanotubes and graphene 
under ambient conditions. The cyclic loading tests in (3) (via acoustic 
resonance) found a CNT to be “super-durable,” exhibiting excellent 
fatigue resistance. CNT failure, attributed to fatigue, is observed 
after ~103 to 107 cycles depending on the magnitude of the applied 
load, implying longitudinal strain that can be locally as high 
as ≃15%. This is admittedly an upper estimate based on specific 
simplifying assumptions (3) (e.g., lack of longitudinal displacement, 
resulting in zero strain at the point of maximum deflection and 
maximum strain at the supported CNT ends). More realistic con-
stant tension model and discrete elastic rod simulations (36) result 
in maximum strain ~5%, where we show that a pristine CNT is 
indefatigable. However, as it can be deduced from Fig. 3, preexisting 
defects (i.e., starting from an already defective tube; see section S4) 
can easily result in a gradual reduction in strength on minute or 
hour time scale. The reportedly strong friction between the sus-
pended CNT ends and the substrate can be associated eventually 
with covalent bonding, which presumably introduces sp3-“defects” 
in the pristine sp2-carbon lattice of the CNT wall (10). In addition, 
the interfaces between the decorating TiO2 nanoparticles, used in 
the experiment (3), and the CNT might be prone to covalent 
cross-linking (37). However, these possibilities may be difficult to 
corroborate in experiments.

In summary, by using atomistic computations in conjunction 
with kMC simulations, we establish a rigorous quantitative ground 
for CNT behavior: Individual pristine nanotubes, essentially 
macromolecules of sp2-C, do not undergo fatigue under ambient 
temperatures (as high as 500 K) for a wide range of loading frequencies 
[experimentally, ~500 Hz (3)]. This is because the time scale of 
defect formation in a pristine nanotube is always far greater than 
the time period of any mechanistically realizable cyclic process, 
with the bottleneck being the nucleation of the first SW defect. 
Exploring both brittle and plastic failure routes demonstrates that 
“defect free” nanotubes only experience brittle, abrupt failure. The 
tensile nature of loading used here is elementary, which can be fur-
ther applied to more complicated situations when nanotubes may 
undergo bending or buckling, and thus, the localized tensile stresses 
instead play a role in defect kinetics. Even under these conditions, 
the local strain should never reach the high levels (0 ≳ 14%) neces-
sary for spontaneous nucleation of SW defects (38). Graphene 

shares the same carbon honeycomb lattice and SW-defect energetics; 
thus, pristine graphene should be indefatigable as well (the presence 
of edge, however, will possibly play a role).

On the other hand, when assemblies of nanotubes undergo 
cyclic loading [experimentally, frequencies used so far are ~0.1 Hz 
(13, 39)], their interfaces, much weaker compared to intrinsic CNT 
strength, can register a permanent/residual slip during each cycle, 
which is a characteristic feature of fatigue failure [interfacial slip is 
operable also in multilayer graphene assemblies as revealed in both 
experiment and coarse-grained simulations (40, 41)]. Despite this, 
the endurance limit of these assemblies can be as high as ~30 to 50% 
of their strength, which for state-of-the-art nanotube fibers [with 
s ≃ 10 GPa (42)] could provide significant fatigue resistance, much 
higher than other commonly used structural materials, and for 
all conceivable working conditions. Thus, the present multiscale 
approach offers a new insight into a fundamental phenomenon, 
helping to interpret or predict nano- and mesoscale mechanical 
response of CNT assemblies upon cyclic loading.

MATERIALS AND METHODS
DFTB calculations
DFTB calculations (Figs. 1 and 2) are performed with the DFTB+ 
code (43), using the matsci-0-3 Slater-Koster parameter set for 
C. All bond-rotation barriers (Fig. 2A, inset) are determined by 
using the climbing-image NEB method (44) in the Atomic Simulation 
Environment (45) using seven images.

Stress-controlled loading
This mode is essential because in strain-controlled loading the tube 
length is kept fixed, and during the course of plastic deformation, 
the accumulated plastic strain will eventually be large enough to 
subdue the overall (far-field) elastic strain significantly. As a conse-
quence, since volume is not conserved, pressure, energies, and 
energy barriers should be replaced with enthalpy and enthalpy 
barriers [see section S2 and also discussion in (46)]. In this setup, 
the physically relevant quantity is deemed to be the strain of the 
pristine tube, as the numerical value of stress in a tube depends on 
its diameter. The stress-controlled loading is realized by first 
elongating the pristine tube (viz. the simulation box) according to a 
chosen strain 0 and maintaining the corresponding axial stress, 
z(0) ≡ 0 = const, during the simulation. The value of 0 is then 
referred to by the initial strain value 0, signifying the strain that 
was applied to the initial defect-free, pristine tube.

Estimation of energy and enthalpy barriers
The SW bond rotation occurs on a time scale of ~0.1 ps (17), which 
is much faster than the typical speed of mechanical relaxation for 
the entire tube ~L/c, where L is the length of the tube and c ~ 104 m/s 
is the speed of sound in the CNT. L/c represents the characteristic 
time needed to undergo mechanical relaxation in response to the 
applied (far-field) stress 0 as soon as bond rotation occurs. Thus, 
the bond rotation (rapid degree of freedom) can be treated as an 
instantaneous process, which thus occurs at a constant volume 
(CNT length, slow degree of freedom) condition instead of constant 
pressure (stress), and therefore, the energy change E and E‡ are 
computed at constant tube length. One can invoke here a remote 
analogy with the Born-Oppenheimer approximation, where the 
electronic (fast) dynamics can be determined at fixed nuclear 
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coordinates (slow degrees of freedom). Once a bond rotation is 
executed, the tube is relaxed to equilibrate the stress back to 0, and 
the corresponding enthalpy change H (and enthalpy barrier H‡) is 
obtained by adding −A0l to E (and E‡), where A is the cross- 
sectional area and l is the change in length due to relaxation. Since 
the calculation of the barriers for all possible bond rotations is com-
putationally intensive, we use the BEP principle to estimate them 
directly from E. This simplification is well justified and can be gen-
eralized to all bond rotations here, as shown in the inset of Fig. 2A, 
where NEB barriers for three other bond rotations were also evaluated, 
showing fairly good linear correlation, E‡ ∝ E. It is noteworthy that 
the linear relationship holds for |E| ≲ 4 eV, which possibly encom-
passes all possible bond rotations considered here for all tensile strains. 
In addition, E and E‡ are found to depend linearly on tensile strain 
(8), i.e., corresponding rates (viz. time scale) will have exponential 
strain dependence spanning multiple orders of magnitude.

kMC simulations
kMC simulations (Fig. 3) are performed in LAMMPS (47) with 
the LCBOP potential (15), using a rejection-free scheme (26, 27). A 
kMC step includes evaluation of rates, ri = 𝜈 exp(−E‡

i /kBT), for all 
possible bond rotations (performed at constant volume to obtain 
Ei for the ith bond, from which the barrier E‡

i is estimated using 
the BEP principle), selection and execution of a single bond 
rotation, and incrementing the simulation clock by t = −ln()/R, 
where  ∈ (0,1) is a random number and R = Σi ri is the total cumu-
lative rate (26). Each kMC trajectory was performed for up to 100 
steps; if barriers become too low (E‡ ≪ kBT), this is taken as an 
implication of CNT failure, and the simulation is terminated. At 
each kMC step, the selected/mew configuration is first annealed at 
the given T for ~20 ps to ensure its stability. If the structure is not 
stable (broken bonds), it is considered as another instance of CNT 
failure and the simulation is terminated. The flowchart of the algo-
rithm is provided in section S5.

LCBOP correction
Bond-order empirical potentials such as the adaptive intermolecular 
reactive empirical bond order (AIREBO) potential and LCBOP are 
commonly used to model carbon nanoforms (48) and are expected 
to capture defects energetics and strain effects as long as the sp2 
hybridization is maintained. However, the energies of defect con-
figurations from these potentials can deviate significantly from 
those obtained by DFTB. This poses a problem for accurate estimates 
of barriers, and thereby, time scales for such processes as errors are 
exponentiated. Thus, the LCBOP-computed values were corrected 
through selective regression, as explained in section S3. The barriers 
are then obtained by assuming the same BEP relationship between 
H and H‡ as in Fig. 2A.

Coarse-grained model
The basic coarse-grained model (10) represents a CNT by a chain of 
beads, whose configuration is controlled by harmonic bonds and 
three-bead harmonic angular potential term. The bond and angular 
spring constants are fitted to represent a (5,5) nanotube, with a 
single bead representing a CNT segment of ≃20 carbon atoms. 
The nonbonded (intertube) interactions are represented by a 
Lennard-Jones potential with a shifted (from the center axis to the 
CNT wall) argument. In addition, a granular-type interaction po-
tential (49) is used to introduce interface friction. Further details of 

the coarse-grained model as implemented in LAMMPS are provided 
in section S6.

Coarse-grained simulations
The tensile cyclic loading tests of CNT bundles are simulated with 
LAMMPS (47). An example script is provided in section S7. Note 
that for f = 0, the bundle is only held together by capillary forces and 
any load exceeding the very low capillary stress ~0.45 GPa will cause 
the bundle to fail quickly. On the other hand, large f results in 
the interface strength comparable or surpassing the intrinsic tube 
strength, which has not yet been achieved experimentally, and may 
even be far-fetched to realize. These considerations led us to use as 
an appropriate value of f = 0.01 nN/Å and L = 100 nm for the bulk 
CNT bundle, which correspond to a strength of ≃12 GPa (10). For 
the bundle bulk, both load- and displacement-control modes are 
realized. The former is achieved by ramping up the longitudinal 
pressure in the simulation box up to desired value 0, while the 
latter is achieved by increasing the longitudinal simulation box size 
at a constant rate of 0.1 Å/ps. Typical - curves under cyclic loading 
are shown in Fig. 4 (A and B). The finite-width bundle of diame-
ter ≃7.5 nm comprises 110 CNTs (composed of more than ~5 × 105 
beads; 55 CNTs in the cross section), with periodic boundary 
conditions applied axially and corresponding simulation box length 
of 2 m. The CNT lengths are normally distributed, with mean 
〈L〉 = 1 m and SD of 0.3 m.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj6996
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