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An adequate imputation of missing data would significantly preserve the statistical power

and avoid erroneous conclusions. In the era of big data, machine learning is a great tool

to infer the missing values. The root means square error (RMSE) and the proportion

of falsely classified entries (PFC) are two standard statistics to evaluate imputation

accuracy. However, the Cox proportional hazards model using various types requires

deliberate study, and the validity under different missing mechanisms is unknown.

In this research, we propose supervised and unsupervised imputations and examine

four machine learning-based imputation strategies. We conducted a simulation study

under various scenarios with several parameters, such as sample size, missing rate,

and different missing mechanisms. The results revealed the type-I errors according to

different imputation techniques in the survival data. The simulation results show that the

non-parametric “missForest” based on the unsupervised imputation is the only robust

method without inflated type-I errors under all missing mechanisms. In contrast, other

methods are not valid to test when the missing pattern is informative. Statistical analysis,

which is improperly conducted, with missing data may lead to erroneous conclusions.

This research provides a clear guideline for a valid survival analysis using the Cox

proportional hazard model with machine learning-based imputations.

Keywords: machine learning, k-nearest neighbors imputation, random forest imputation, survival data simulation,

cox proportional hazard model

BACKGROUND

Before statistical analysis, data management plays a crucial role and missing data occur frequently.

If there are too many missing values, excluding the missing data from the analysis is not ideal
since the loss of information is substantial. In addition to the reduced power, missing data may
introduce potential biases or an unsolvable issue in statistical modeling. There are three significant
missingness mechanisms (1). They are missing completely at random (MCAR), missing at random
(MAR), and missing not at random (MNAR). Under MCAR, one could simply exclude the missing
data from the analysis. However, it may introduce bias if the missing pattern is MAR or MNAR.

To preserve statistical power, one should conduct missing data imputation techniques before
the analysis. The single imputation is a simple way that substitutes the mean, mode, or median
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for the missing data. Unfortunately, this intuitive concept
may not capture the variability in the study sample and
underestimate the variance, which reduces the correlation
between variables or introduces a bias in the inference of the
population distribution (2).

TheU.S. Census Bureau developed the hot-deck imputation to
investigate the missing value of current population income (3),
a non-parametric imputation based on Euclidean distance (4).
A new way of finding the donor is the random hot-deck, cold-
deck, or sequential hot-deck imputation (5). The imputation does
not require strong assumptions about the distribution, and it is
applied to different types of variables. However, the primary issue
is the assumption of MCAR.

The multiple imputations perform better than the simple
imputation, but it still requires the assumption ofMCAR orMAR
(6) based on the multivariate imputation by chained equations or
the Markov chain Monte Carlo.

The k-nearest neighbors (KNN) is a simple discriminatory
analysis (7). Algorithms of the KNN were studied, and the
minimum probability of error was pointed out (8). The KNN also
implemented the direct gradient analysis (9). The concept of the
training and testing sets using the KNN was further proposed
(10). Later, the iterative KNN imputation based on the gray
relational analysis was carried out (11). Regarding the truncated
data, a previous work developed the KNN-truncated imputation
to deal with the chemical compound (12).

The randomness of a decision tree could enhance predictive
accuracy (13), and a random forest is a powerful tool for
classification problems (14). The missing data imputation is
the “rfImpute” function of the “randomForest” package. We
denoted it as RFprx in the simulation study. It is based on the
proximity matrix to update the imputation of the missing values.
For continuous predictors, the imputed value is the weighted
average of the non-missing observations, where the weights are
the proximities.

The “missForest” imputation is non-parametric missing value
imputation using the random forest (15). We denoted it as RFmf

in the simulations. The fast unified random forests for survival,
regression, and classification (RF-SRC) solved the problem when
estimating the missing data with out-of-bag errors (16). This
method not only applies to classification problems and the
regression model but also fits the survival analysis. The random
forest on-the-fly is the missing data imputation of RF-SRC.
We denoted it as RFotf in the simulation study. Despite the
promising development of missing data imputation, none of the
strategies further examined the validity of imputed data using the
Cox proportional hazard model. In this research, four machine
learning-based imputation strategies were compared, including
the KNN, RFprx, RFmf , and RFotf .

In this research, we define supervised and unsupervised
missing data imputation as the following. The supervised

Abbreviations: RMSE, root means square error; PFC, proportion of falsely

classified entries; MCAR,missing completely at random;MAR,missing at random;

MNAR, missing not at random; KNN, k-nearest neighbors; RF-SRC, Random

Forests for Survival, Regression, and Classification; SVM, support vector machine;

XGBoost, Extreme Gradient Boosting Machine; ANN, artificial neural network.

imputation techniques refer to methods that included the
outcome variable as predictors to infer the missing data. In
contrast, the unsupervised missing imputation is the one that
excludes the outcome of interest in the process. The impact
of various missing mechanisms, including MCAR, MAR, and
MNAR, would be carefully examined under numerous scenarios.
In addition to the conventional approach that evaluated the root
mean square error (RMSE) or the proportion of falsely classified
entries (PFC) of imputed values, we further analyzed the whole
imputed data by the Cox proportional hazard model. Type-I
errors of the Cox model using imputed data reveal how the
imputation technique performs in the survival analysis. If the
Type-I error is over 5% of the nominal level, then, the method
is invalid.

METHODS

We want to assess how machine learning-based missing data
imputation techniques perform in the survival analysis. The
Cox proportional hazard model would incorporate the imputed
data, and the results under various scenarios demonstrate overall
type-I error. Therefore, the first step is to simulate the survival
data under the null hypothesis, including the time to the
event, censoring status, six continuous, and four categorical
predictive variables. It is noted that the 10 predictors denoted
as x1, x2, · · · , x10 are uncorrelated, and they are not associated
(independent) with the two outcome variables. One of the
outcome variables, t, denotes the time to the event, and e
denotes the censoring status. Note that if “e = 1,” then the
subject has an event, and it also means that the individual is not
censored. Thus, “e = 0” identifies the censored subject. Each of
the four categorical predictors (x1, x2, x3, x4) follows a binomial
distribution with p = 0.5. Each of the six continuous predictors
(x5, x6, · · · , x10) follow a normal distribution with the mean of
zero and SD of one. The censoring status “e” follows a uniform
distribution between zero and one, representing the random
censoring. The time to the event “t” follows the exponential
distribution with λ = 0.5. We employed four categorical and
six continuous unrelated variables to assess the validity of
various methods. The reason is that if under such a simplistic
scenario, a strategy could not yield a valid estimate or result,
it is unrealistic that the method would be valid under a more
complicated structure.

The second step is to assign missing values for the two
predictors. One of the predictors (x1) is categorical, and the
other one (x5) is continuous. Each scenario simulated 1,000
repetitions. Parameters included the sample size (100, 250, 500,
and 1,000), the overall missing rate (10, 20, and 30%), andmissing
mechanisms (MCAR, MAR, and MNAR). Hence, we carefully
examined a total of 36 scenarios for the 4 imputation strategies.
It is noted that within each overall missing rate, the weights of
missingness are 0.2 (x1 is missing), 0.4 (x5 is missing), and 0.4
(both x1 and x1 are missing), respectively.

Two statistics evaluate the four machine learning-based
imputation methods, including the RMSE for the continuous
variable and the PFC for the categorical variable. This research
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examines the performance of imputed data in survival analysis
based on the overall type-I error of the Cox model.

Root mean square error is a measure used to measure the
difference between the imputed value and the actual value
for continuous outcomes. A smaller RMSE indicates a smaller

prediction error. The equation is RMSE =

√

1
m

∑m
i=1

(

yi − ŷi
)2
,

where m represents the number of missing values, yi is the actual
value, and ŷi is the imputed value.

The PFC is used to determine the imputation situation of
category variables. The PFC equation is given by, PFC =
∑

count(yi 6=ŷi)
∑

count(yi)
. The denominator is the number of missing values

of the categorical variable, and the numerator is the number
of imputed values that are not identical to the actual values.
The PFC ranges from 0 to 1, and the smaller the value means
better imputation.

In addition to the RMSE and PFC, this research further
examines the type I error of the Cox model using the imputed
data. The likelihood ratio test derives the type-I error. In this
way, the type-I error could reveal the impact of imputation on
the correlation structure between the predictors and the two
survival outcome variables. Finally, we recorded the computation
speed that tells the practicality of the different strategies. In
this research, we selected machine learning-based imputation
strategies that may or may not be suitable for the survival
data. In addition, we considered models that any researcher
could implement effortlessly. Thus, the KNN and random forest
were selected.

The programming language used in this study is R language,
version 3.6.1 [(17). R: A language and environment for
statistical computing. R Foundation for Statistical Computing].
The Supplementary Materials of the R code (user_utility.r
and main.r) listed packages used to simulate the study
samples, missing mechanisms, and the imputation methods.
The “VIM” package implemented the KNN. The three packages
“randomForest,” “randomForestSRC,” and “missForest” are the
random forest-based imputation methods. We clarified some
notations as to the following: RFprxt included time to the event
as the continuous outcome to generate the proximity matrix.
RFprxe treated the censoring status as the categorical outcome

and calculated the proximity matrix. RFmf excluded both time to
the event and the censoring status in the imputation procedure.
RFmfy included both time to the event and the censoring status
as two more predictors when inferring the missing values in the
dataset. RFotf is designed for survival analysis; thus, it included
both time to the event and the censoring status when inferring
the missing values. In summary, RFmf is an unsupervised
imputation, RFprxt and RFprxe are partially supervised imputation
methods, and KNN, RFmfy, and RFotf are the three supervised
imputation techniques.

RESULTS

The simulations were conducted under the null hypothesis
that 10 predictors and the survival outcome are independent.
However, themissingmechanism,MNAR, altered the correlation
structure that introduced the dependence between the complete

data and imputed values. When the model failed to adjust for
the condition, the independent variables and the outcome are
correlated under MAR. Therefore, this study has 36 scenarios,
and each presents a comparison between four methods. Figure 1
displays the distribution of the PFC using 500 samples.
Supplementary Materials displayed results based on different
sample sizes and missing rates that yielded a similar pattern. The
RFotf has the best performance in the absence of MCAR and
MAR. The RFprxe has the best performance in the absence of
MNAR, but the accuracy is∼0.5, whichmeans that the predictive
accuracy is not satisfying.

Figure 2 shows that the RMSE evaluates the imputation
accuracy of a continuous variable and the distributions of the
RMSE using 500 samples. The results with different sample
sizes and missing rates yielded a similar pattern (refer to
Supplementary Materials). KNN performs the best in each
scenario, but the differences between the KNN and other random
forest-based imputation methods are not discernable. The size of
RMSE is approximately one SD. When the missing rate is higher,
the gap of RMSE among the four methods will be smaller. The
RMSE decreased from 0.08 to 0.01. The RFotf is similar to the
KNN. The higher the missing rate is, the higher the PFC and
RMSE, which means that the higher missing rate decreases the
imputation accuracy.

The KNN consistently performs better in RMSE, but the
superiority is minor. It is not easy to identify the most prominent
method in Figure 2. Regarding the PFC, the best performer is the
RFotf , because the two outcome variables, “time to the event, t”
and “censoring status, e,” are incorporated in the random survival
forest. Table 1 summarizes the best performer of the RMSE and
PFC under different scenarios.

Type-I error of the Cox proportional hazard model under
different situations further evaluated the overall performance of
each imputation strategy (Table 2). This step is crucial since the
comparisons between the PFC and RMSE after imputation could
not warrant a valid Cox regression analysis. There are some
scenarios where the results of RFotf and RFmf are very close,
but the RFotf is consistently larger than the RFmf . In conclusion,
the overall performance of the RFmf method is the best, a non-
parametric and unsupervised imputation method that excludes
the two survival outcome variables (t and e). It is noted that
the RFprxe and RFprxt have much inflated type-I error, since
this type of imputation considers only one dependent variable
(time to the event or censoring status) when constructing the
proximity matrix. However, the simulation study was based on
survival data with two outcome variables. Therefore, including
one of the two survival outcome variables will result in an
inflated type-I error. We highly recommended avoiding the
“rfImpute” function in survival data. The KNN imputation also
demonstrated inflated type-I errors and should not be used for
survival analysis.

The RFotf includes both times to the event and censoring
status in the random survival forest to impute missing values
under MCAR or assumption of MAR. Thus, the RFotf is valid for
survival data, and the type-I error behaves well under MCAR and
MAR. However, when the missing pattern is MNAR, the RFotf
showed an inflated type-I error.
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FIGURE 1 | The proportion of falsely classified (PFC) using 500 subjects.

Frontiers in Public Health | www.frontiersin.org 4 July 2021 | Volume 9 | Article 680054

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Guo et al. The Optimal Machine Learning Imputation

FIGURE 2 | The root means square error (RMSE) using 500 subjects.
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TABLE 1 | The best performer for proportion of falsely classified (PFC) and root means square error (RMSE).

n Missing rate Missing pattern PFC RMSE

100 0.1 MCAR RFotf (0.3062) KNN (0.8781)

100 0.1 MAR RFotf (0.3147) KNN (0.8744)

100 0.1 MNAR RFprxe (0.4983) KNN (1.0584)

100 0.2 MCAR RFotf (0.3071) KNN (0.9522)

100 0.2 MAR RFotf (0.3184) KNN (0.9519)

100 0.2 MNAR RFprxe (0.4862) KNN (1.1101)

100 0.3 MCAR RFotf (0.3049) KNN (0.9871)

100 0.3 MAR RFotf (0.3058) KNN (0.9942)

100 0.3 MNAR RFprxe (0.4998) KNN (1.0973)

250 0.1 MCAR RFotf (0.396) KNN (0.9603)

250 0.1 MAR RFotf (0.3069) KNN (0.9669)

250 0.1 MNAR RFprxe (0.4987) KNN (1.1751)

250 0.2 MCAR RFotf (0.3022) KNN (0.9977)

250 0.2 MAR RFotf (0.3079) KNN (0.9938)

250 0.2 MNAR RFprxe (0.4999) KNN (1.1489)

250 0.3 MCAR RFotf (0.3107) KNN (1.0083)

250 0.3 MAR RFotf (0.3143) KNN (1.0099)

250 0.3 MNAR RFprxe (0.4971) KNN (1.1278)

500 0.1 MCAR RFotf (0.3114) KNN (0.98)

500 0.1 MAR RFotf (0.3057) KNN (0.9852)

500 0.1 MNAR RFprxe (0.5072) KNN (1.2091)

500 0.2 MCAR RFotf (0.3069) KNN (1.0045)

500 0.2 MAR RFotf (0.307) KNN (1.0044)

500 0.2 MNAR RFprxe (0.5046) KNN (1.1735)

500 0.3 MCAR RFotf (0.3073) KNN (1.01)

500 0.3 MAR RFotf (0.3087) KNN (1.0098)

500 0.3 MNAR RFprxe (0.502) KNN (1.1367)

1,000 0.1 MCAR RFotf (0.3093) KNN (0.9958)

1,000 0.1 MAR RFotf (0.3067) KNN (0.9963)

1,000 0.1 MNAR RFprxe (0.5272) KNN (1.2208)

1,000 0.2 MCAR RFotf (0.3074) KNN (1.0034)

1,000 0.2 MAR RFotf (0.3102) KNN (1.0056)

1,000 0.2 MNAR RFprxe (0.5274) KNN (1.1766)

1,000 0.3 MCAR RFotf (0.3089) KNN (1.0081)

1,000 0.3 MAR RFotf (0.31) KNN (1.0102)

1,000 0.3 MNAR RFprxe (0.5142) KNN (1.1385)

The type-I error of the RFmf is lower than RFmfy, which
also included time to the event and censoring status as the
predictors. This phenomenon is probably due to the missing
mechanism of the MNAR, and the conditional missingness
introduced correlation between the observed predictors and the
two survival outcome variables, time to the event and censoring.

For a small sample study, estimators, in general, have a large
variance. As a result, the missing data imputed by RFmf also
showed an inflated type-I error in the Cox model. When the
sample size increases, the type-I error decreases and approaches
the significance level of 0.05.

Finally, the run time is also studied. In each scenario, the
fastest method is the KNN, followed by RFotf , and the rest
of the methods are similar. When the sample size is 100, the

simulation time of each method is within 0.5 s, where the KNN
and RFotf only spend 0.1 s. When the missing rate is higher and
the missing mechanism is MNAR, the run time of two methods
is almost identical.

When the sample size is 250, the run time of KNN and RFotf
is <0.5 s, but the other methods take 1–2 s. If the sample size
is 500, the KNN only requires 0.5 s, RFotf takes 1.5 s, and the
rest methods take about 5–6 s. When the number of samples
is 1,000, the KNN takes about 1 s, RFotf takes about 5 s, and
the other methods take about 15–23 s. The greater the sample
size, the more significant difference in the run time between
various methods.

In summary, according to the type-I error of the Cox
model, the RFmf strategy that excludes the two survival outcome
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TABLE 2 | The type-I error of the Cox model.

Sample Missing rate Missing mechanism Complete data KNN RFprxt RFprxe RFotf RFmfy RFmf

100 0.1 MCAR 0.079 0.088 0.085 0.092 0.082 0.088 0.08

100 0.1 MAR 0.084 0.095 0.094 0.098 0.09 0.094 0.085

100 0.1 MNAR 0.087 0.093 0.095 0.093 0.09 0.091 0.089

100 0.2 MCAR 0.091 0.092 0.102 0.113 0.081 0.095 0.079

100 0.2 MAR 0.076 0.083 0.089 0.105 0.073 0.085 0.073

100 0.2 MNAR 0.075 0.08 0.09 0.106 0.075 0.082 0.074

100 0.3 MCAR 0.085 0.101 0.12 0.134 0.094 0.114 0.086

100 0.3 MAR 0.072 0.092 0.114 0.13 0.087 0.107 0.078

100 0.3 MNAR 0.085 0.105 0.114 0.136 0.092 0.104 0.086

250 0.1 MCAR 0.055 0.057 0.063 0.069 0.051 0.059 0.051

250 0.1 MAR 0.06 0.066 0.079 0.089 0.064 0.072 0.064

250 0.1 MNAR 0.054 0.059 0.072 0.083 0.054 0.058 0.053

250 0.2 MCAR 0.052 0.065 0.082 0.095 0.055 0.068 0.055

250 0.2 MAR 0.062 0.078 0.093 0.117 0.069 0.087 0.067

250 0.2 MNAR 0.054 0.072 0.087 0.115 0.059 0.068 0.056

250 0.3 MCAR 0.069 0.094 0.125 0.169 0.075 0.097 0.07

250 0.3 MAR 0.059 0.09 0.126 0.153 0.073 0.09 0.064

250 0.3 MNAR 0.07 0.083 0.126 0.165 0.069 0.089 0.059

500 0.1 MCAR 0.061 0.057 0.073 0.082 0.058 0.062 0.057

500 0.1 MAR 0.051 0.059 0.062 0.077 0.055 0.061 0.055

500 0.1 MNAR 0.068 0.066 0.08 0.096 0.069 0.071 0.066

500 0.2 MCAR 0.05 0.065 0.105 0.141 0.055 0.062 0.053

500 0.2 MAR 0.056 0.069 0.113 0.141 0.055 0.067 0.055

500 0.2 MNAR 0.063 0.072 0.102 0.147 0.064 0.067 0.061

500 0.3 MCAR 0.046 0.065 0.137 0.201 0.053 0.074 0.046

500 0.3 MAR 0.047 0.078 0.154 0.224 0.058 0.079 0.054

500 0.3 MNAR 0.057 0.068 0.131 0.204 0.061 0.071 0.056

1,000 0.1 MCAR 0.053 0.059 0.074 0.094 0.055 0.057 0.053

1,000 0.1 MAR 0.042 0.049 0.077 0.1 0.044 0.048 0.044

1,000 0.1 MNAR 0.047 0.054 0.07 0.081 0.052 0.056 0.051

1,000 0.2 MCAR 0.043 0.054 0.121 0.173 0.048 0.057 0.043

1,000 0.2 MAR 0.048 0.057 0.127 0.191 0.052 0.06 0.051

1,000 0.2 MNAR 0.053 0.065 0.151 0.217 0.06 0.069 0.055

1,000 0.3 MCAR 0.047 0.061 0.21 0.32 0.047 0.07 0.046

1,000 0.3 MAR 0.043 0.066 0.237 0.362 0.049 0.069 0.049

1,000 0.3 MNAR 0.045 0.07 0.217 0.351 0.061 0.071 0.055

variables in the imputation procedure is the optimal method.
However, if the run time is the only concern, the random forest
on-the-fly imputation is better.

DISCUSSIONS

This research examined four machine learning-based imputation
methods, including the KNN, and three strategies based on
the random forest. We proposed the concepts of supervised
and unsupervised imputations. Although the RMSE and PFC
are similar for the four machine learning-based imputation
strategies, type-I error of the Cox model could be inflated
dramatically for the different methods under MNAR. Hence,
the validity of the Cox model using imputed data changes

dramatically under different settings. The simulation results
showed that the RFmf performs the best even under the most
challenging situation, MNAR. Therefore, this strategy would be
valid under all types of missing mechanisms.

One of the most significant advantages of machine learning
is that it is suitable for high-dimensional data, time-series
data, or complex data interactions. Although this study focuses
on survival data with 10 predictive variables, the concept of

supervised or unsupervised imputation and the structure of
predictors could be easily extended for different study designs.

Finally, the simulation study is the null hypothesis of the
Cox model, where the predictive and survival outcomes are
independent. Therefore, the type-I error is the essential tool
when comparing performances of the four imputation strategies.
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Power study is not meaningful since the only valid imputation
method is the RFmf . In addition, the rest strategies revealed
inflated type-I errors under MNAR.

The R code implemented in the simulations is freely available.
We have included the code as Supplementary Materials. The file
“USER_UTILITY” is the first program that generates the study
samples, missing mechanisms, and imputation strategies. The
second file, “MAIN,” generates all statistical results and figures.
Researchers could quickly adopt supervised and unsupervised
imputations for the four methods by using the two R codes for
future applications.

Limitations
In machine learning, there are many methods for prediction and
classification, such as the support vector machine (SVM) (18),
extreme gradient boosting machine (XGBoost) (19), and artificial
neural network (ANN) (20). In future studies, thesemethodsmay
also develop novel imputation strategies. Therefore, we did not
include the three methods in this research. We simulated the
four dichotomous and six continuous predictors as independent
variables. A high correlation among them may cause more bias
in type-I errors. The categorical predictors could have more
levels in simulations, but we expect that the comparisons and
patterns between the methods studied in this research are likely
to be similar.

This machine learning-based research revealed a robust
missing data imputation strategy for survival analysis under
various missing mechanisms. The non-parametric “missForest”

imputation (RFmf ), that excludes the survival time and censoring
status from the imputation scheme, could provide valid results
using the Cox proportional hazard model under the impact of
MCAR, MAR, and MNAR.
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