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Polycystic ovary syndrome (PCOS) is one of the most common endocrine

diseases in reproductive-aged women, and it affects numerous women

worldwide. This study aimed to identify potential diagnostic markers and

explore the infiltration of immune cells in PCOS, contributing to the

development of potential therapeutic drugs for this disease. We identified

five key genes: CBLN1 (AUC = 0.924), DNAH5 (AUC = 0.867), HMOX1 (AUC

= 0.971), SLC26A8 (AUC = 0,933), and LOC100507250 (AUC = 0.848) as

diagnostic markers of PCOS. Compared with paired normal group, naïve B

cells, gamma delta T cells, resting CD4 memory T cells, and activated CD4

memory T cells were significantly decreased in PCOS while M2 macrophages

were significantly increased. Significant correlations were presented between

the five key genes and the components of immune infiltrate. The results of

CMap suggest that four drugs, ISOX, apicidin, scriptaid, and NSC-94258, have

the potential to reverse PCOS. The present study helps provide novel insights

for the prevention and treatment of PCOS, and immune cell infiltration plays a

role that cannot be ignored in the occurrence and progression of the disease.

KEYWORDS

polycystic ovary syndrome, bioinformatics analysis, diagnostic markers, CIBERSORT,
immune infiltration, potential therapeutic compounds

Introduction

Polycystic ovary syndrome (PCOS), defined as one of the most common endocrine

abnormalities, is characterized by hyperandrogenism, chronic ovulatory dysfunction and

polycystic ovaries and has become a global health burden (Escobar-Morreale, 2018).

PCOS is not only a high risk factor for infertility but is also a leading cause of insulin

resistance, type 2 diabetes, obesity, hypertension, metabolic syndrome, adverse

cardiovascular risk disease, and endometrial cancer (Chan et al., 2017; Cooney and

Dokras, 2018). Recently, a diagnosis of PCOS has been mainly based on Rotterdam

criteria and clinical symptoms (Ehrmann, 2005); thus, a precise diagnosis of PCOS

remains lacking. Because the mechanisms of development and progression of PCOS

remain unclear, many patients are misdiagnosed or experience a missed diagnosis (March
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et al., 2010). Hence, it is necessary to explore biomarkers for the

diagnosis of PCOS, so as to improve the prognosis of patients

with PCOS by timely detection and intervention.

Recently, a plethora of studies have found that chronic

low-grade inflammation has a critical relationship and

interaction with PCOS (Barrea et al., 2018; Gong et al.,

2018; Li et al., 2019). The discovery of leukocytosis in

polycystic ovaries may provide the first clue that

polycystic ovaries were a pro-inflammatory condition

(Bukulmez and Arici, 2000; Shi et al., 2013). The results

of Gong et al. showed that, the expression of IFN-c, a

cytokine produced by Th1, was significant increased and

Th1/Th2 ratio were significantly higher in PCOS patients

than control group (Gong et al., 2018). Regulation of

Granulosa cells (GCs) and immune cells is impaired in

PCOS patients, may accelerating anovulation (Dewailly

et al., 2016). Hence, it is of great value to analyze the

infiltration of immune cells and the relationship between

infiltrating immune cells and hub genes in order to elucidate

the molecular mechanism of PCOS. CIBERSORT is an

analytical method used to characterize immune cell

composition and expression based on RNA sequencing

(RNA-seq) data from samples (Newman et al., 2015). An

increasing numbers of studies used CIBERSORT as a

computational algorithm for the infiltration of immune

cells in various diseases such as pediatric acute

myocarditis (Kawada et al., 2021), colorectal cancer (Ye

et al., 2019), melanoma (Huang et al., 2020), and lung

adenocarcinoma (Mo et al., 2020). However, few studies

have used this algorithm to explore the relationship

between immune cell infiltration and PCOS.

In our study, clinical information and gene expression of

patients with PCOS were downloaded from the Gene

Expression Omnibus (GEO) database. Genes differentially

expressed between healthy controls and patients with PCOS

were screened out by constructing a weighted gene co-

expression network analyses (WGCNA) network and using a

LASSO method. We then used a CIBERSORT algorithm to

analyze immune infiltration between RNA-seq data from

patients with PCOS and normal controls. Through the

CMap database, we further explored the potential drugs for

PCOS treatment, predicting the compounds that can be used to

treat PCOS based on the differentially expressed genes (DEGs)

in PCOS.

Materials and methods

Data collection and processing

GSE34526 (Kaur et al., 2012) and GSE137684 datasets were

downloaded from the GEO database. The GSE34526 dataset

contained mRNA expression profiles from the GCs of seven

PCOS samples and three healthy controls, while the

GSE137684 dataset contained mRNA expression profiles

from the GCs of eight PCOS samples and four healthy

controls. We used a “limma” package (Ritchie et al., 2015)

for R to search out DEGs. We set significance expressed as a p

value <0.05 and |log2FC|>1.

Consensus weighted gene co-expression
network analysis and LASSO algorithm for
searching the target markers

We detected co-expressed gene modules and explored the

association between gene networks and phenotypes of interest

through WGCNA analysis (Langfelder and Horvath, 2008).

WGCNA analysis involved four major steps: 1) Constructing co-

expressed gene networks and gene modules from gene expression

datasets (GSE34526) and (GSE137684). Genes with a variance in the

top 5000 were selected for co-expression network analysis and

further analyzed. The soft threshold power, R-squared, was set to

3; 2)We transformed the acquired weighted adjacency matrix into a

topological overlap matrix to assess network connectivity. 3)

Topological overlap matrix was then used to perform an

average-linkage hierarchal clustering method generating a

clustering tree. Diverse cluster tree branches represented different

gene modules, which were labeled with different colors. 4) Based on

the weighted correlation coefficient of genes, we classified all genes

by their expression patterns. Genes with similar patterns were

classified into a module; in this way, all genes were divided into

dozens of modules. We used the receiver operating characteristic

(ROC) curves to assess diagnostic value of genes in PCOS. The

“glmnet” package was used to apply the LASSO algorithm to reduce

the variables.

Functional analysis of mRNAs

The R package “clusterProfiler” (Yu et al., 2012) was used to

conduct functional annotations and explore the functional relevance

of DEGs. We used Gene Ontology (GO) and KEGG (Kyoto

Encyclopedia of Genes and Genomes) to assess the relevant

functional categories through a “clusterProfiler” package. Combined

p < 0.05 and q < 0.05 were considered significant enrichment.

Evaluation of immune cell infiltration

Based on the RNA-seq data of different subgroups,

CIBERSORT algorithm was used to estimate the abundances of

22 leukocyte subtypes. The interactive relationship between immune

cells was analyzed by using a “corrplot” package to further investigate

the influence of interaction between immune cells. A “vioplot”

package was used to draw a violin plot to visualize immune cell
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distribution.We used Spearman’s rank correlation coefficient for the

correlation analysis of gene expression and the content of immune

cells, identifying a p value <0.05 as statistically significant.

Statistical analysis

All statistical analyses were performed using R software

(version 4.0). The differences between different groups were

compared by a Mann–Whitney–Wilcoxon test. p

Value <0.05 was considered statistically significant.

Results

Preprocessing of data and identification of
DEGs

GSE34526 and GSE137684 datasets were downloaded from

the GEO database to explore the key genes that may have

important roles in PCOS. All uploaded data passed the

integrity check. Characteristics of the two datasets included

in the analysis was shown in Supplementary Table S1. A spatial

variant apodization algorithm was used to remove batch effects

FIGURE 1
PCA cluster plot before and after batch effect adjustment and volcano plot of DEGs. (A) PCA cluster plot of the GSE34526 and
GSE137684 datasets without batch effect adjustment. (B) PCA cluster plot of the GSE34526 and GSE137684 datasets with batch effect adjustment.
(C) Volcano plot of DEGs between PCOS and normal samples; red shows upregulated DEGs, black shows no significant DEGs, and green shows
downregulated DEGs. PCA, principal component analysis; DEGs, differentially expressed genes; PCOS, Polycystic ovary syndrome.
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among different datasets. We normalized and processed the

merged gene expression matrix, and then showed it in a

principal component analysis (PCA) plot before and after

normalization (Figures 1A,B). Using “limma” package for R

to filter out DEGs, 168 DEGs between response and non-

response PCOS groups were obtained according to the criteria

of adjusted |log2FC|>1 and p value <0.05. The 142 upregulated
genes and 26 downregulated genes are shown in a volcano plot

and heat map (Figure 1C, Supplementary Figure S1).

Functional enrichment analyses of DEGs

We performed pathway analysis on the 168 differential genes,

of which pathways were involved in PCOS development, as

presented in Figure 2. Results from GO analysis showed that

DEGs were mainly related to specific biological processes

“neutrophil degranulation”, “neutrophil activation involved in

immune response”, “regulation of immune effector process”,

“positive regulation of cytokine production”, “humoral

immune response”, “lymphocyte proliferation” “regulation of

leukocyte mediated immunity”, and “regulation of leukocyte

proliferation”. In aspect of cellular component, DEGs were

highly involved in “secretory granule lumen”, “cytoplasmic

vesicle lumen”, “vesicle lumen”, “endocytic vesicle”, “external

side of plasma membrane”, “specific granule”, “endocytic vesicle

membrane”, “tertiary granule”, “specific granule lumen” and

“tertiary granule membrane”. Immune receptor activity, IgG

binding and immunoglobulin binding were the major

molecular functions of these DEGs. The results of KEGG

analysis showed that DEGs were mainly correlated to

pathways such as “Staphylococcus aureus infection”,

“phagosome”, “Neutrophil extracellular trap formation”,

“Systemic lupus erythematosus”, “Inflammatory bowel

disease”, “Complement and coagulation cascades”,

“Rheumatoid arthritis”, and “Intestinal immune network for

IgA production”.

Weighted gene co-expression network
analyses combined with LASSO analyses
of DEGs in patients with andwithout PCOS

We constructed co-expression networks through weighted

gene co-expression network analyses (WGCNA) based on

GSE34526 and GSE137684 datasets to explore associated

co-expression networks in PCOS. A total of

5,000 differentially expressed genes in eight gene co-

FIGURE 2
GO and KEGG analyses of DEGs. (A) GO enrichment analysis, bubble plot of the functional enrichment analysis including BP, CC, and MF. (B)
KEGG enrichment analysis, bubble plot of the functional enrichment analysis. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; DEGs, differentially expressed genes; BP, biological processes; CC, cellular component; MF, molecular functions.
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expression modules, such as black module (244 DEGs), blue

module (696 DEGs), brown module (566 DEGs), green

module (364 DEGs), pink module (152 DEGs), red module

(284 DEGs), turquoise module (2,314 DEGs), and yellow

module (380 DEGs) were screened. The threshold power of

β was determined by the function “sft$powerEstimate”

(Supplementary Figure S2). Through a further estimate of

the relationship between modules and characteristics, we

identified that the turquoise module had the closest

correlation with PCOS (cor = 0.53, p = 0.01; Figure 3A).

The genes of the turquoise module with the highest

correlation were intersected with 10 gene pairs screened by

LASSO (Supplementary Figure S3), in the end, we identified

five important target genes (CBLN1, DNAH5, HMOX1,

SLC26A8, LOC100507250; Figure 3B).

Screening and verifying candidate
biomarkers by ROC curves

The receiver operating characteristic (ROC) curve is a

graphical plot described by plotting the true versus false

positive probabilities as a function of the discrimination

threshold (Cao and López-De-Ullibarri, 2019). The area under

the curve (AUC) has been proposed as a summarized accuracy

index (Martínez-Camblor et al., 2021). Hence, we used ROC

curve analysis to predict candidate biomarkers; AUC values

indicated a good predictive performance. Of all these hub

genes, CBLN1 (AUC = 0.924), DNAH5 (AUC = 0.867),

HMOX1 (AUC = 0.971), SLC26A8 (AUC = 0.933), and

LOC100507250 (AUC = 0.848) were highly predictive of the

occurrence and development of PCOS (Figure 3C).

FIGURE 3
Identification and ROC curves of diagnostic markers. (A) Heat map showed positive and negative correlation of the gene module in the PCOS
and normal samples, respectively. (B) Venn plot was performed to show the intersection of potential target genes using WGCNA and Lasso. (C) The
ROC curve of the diagnostic power of five target genes (CBLN1, DNAH5, HMOX1, SLC26A8, LOC100507250). ROC curves, receiver operating
characteristic curves; PCOS, Polycystic ovary syndrome; WGCNA, weighted gene co-expression network analyses; LASSO, least absolute
shrinkage and selection operator.
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Immune cell infiltration analysis

We analyzed the relationship between DEGs and immune

cells in datasets related to PCOS. The potential molecular

mechanism of DEGs influencing the progression of PCOS was

further explored. To ensure the accuracy of the analysis, we

excluded samples with a calculated p value >0.05. The results

were illustrated in a bar plot (Figure 4A), different immune cells

were colored differently, and the sum of the immune scores for

each sample was equal to one. The proportions of 22 infiltrating

immune cells were weakly-to-strongly correlated in PCOS. Mast

cells resting and T cells follicular helper showed the strongest

positive correlation (Pearson correlation = 0.76), while

Neutrophils and Monocytes showed the strongest negative

correlation (Pearson correlation = 0.74); Macrophages

M2 indicated moderate negative correlation with resting

CD4 memory T cells (Pearson correlation = 0.57) while

gamma delta T cells showed moderate positive correlation

with activated CD4 memory T cells (Pearson correlation =

0.70) and resting CD4 memory T cells (Pearson correlation =

0.64) (Figure 4B).

Our study showed that compared with paired normal group,

naïve B cells, gamma delta T cells, resting CD4 memory T cells,

and activated CD4 memory T cells were significantly decreased

in PCOS while M2 macrophages were significantly increased,

which met with expected results (Figure 4C). The CBLN1 was

correlated positively with activated CD4 memory T cells, resting

CD4 memory T cells and gamma delta T cells (Figure 5A).

FIGURE 4
Differential distributions of immune cells in PCOS and normal samples. (A) Bar plot of fractions of 22 immune cells. (B)Heat map of correlations
between 22 types of infiltrated immune cells in PCOS and normal samples. (C) Violin plot depicted the different infiltrated immune cells between
PCOS and normal samples.
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LOC100507250 was negatively correlated with gamma delta

T cells and activated CD4 memory T cells (Figure 5B). The

DNAH5 showed a significant positive correlation with

M2 macrophages and monocytes but was negatively related

to activated CD4 memory T cells (Figure 5C). The HMOX1

showed a significant positive correlation with M2 macrophages

and monocytes while was negatively related to resting

CD4 memory T cells, plasma cells, naïve B cells, and

activated CD4 memory T cells and gamma delta T cells

(Figure 5D). The SLC26A8 was positively related to

M2 macrophages, Eosinophils and CD8 T cells but was

negatively correlated to gamma delta T cells, Plasma cells,

activated CD4 memory T cells and resting CD4 memory

T cells (Figure 5E).

Identification of potential drugs for PCOS

We further explored potential drugs for PCOS treatment

through a connectivity map (CMap) (https://clue.io). CMap is a

computational screening approach which predict biochemical

interactions of small molecules with their respective targets

(Lamb et al., 2006). Genes with significant differential

expression in PCOS were analyzed to predict compounds that

might have a therapeutic effect in PCOS. It was found that ISOX,

apicidin, scriptaid, and NSC-94258 might have a potential effect

in reversing the development of PCOS. In addition, we used a

PubChem database (http://pubchem.ncbi.nlm.nih.gov/) to

explore the structure diagram of four compounds shown in

Figure 6.

FIGURE 5
Correlation between CBLN1, DNAH5, HMOX1, SLC26A8, LOC100507250 and infiltrating immune cells. (A) Correlation between CBLN1 and
infiltrating immune cells. (B) Correlation between LOC100507250 and infiltrating immune cells. (C) Correlation between DNAH5 and infiltrating
immune cells. (D) Correlation between HMOX1 and infiltrating immune cells. (E) Correlation between SLC26A8 and infiltrating immune cells.
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Discussions

Polycystic ovary syndrome is a heterogeneous and

complicated endocrinopathy that has both adverse

reproductive and metabolic implications for women of

reproductive age (Dumesic et al., 2015). Unfortunately,

existing epidemiologic and/or basic research data have not

been sufficient in providing the foundation needed to derive

an evidence-based definition of the syndrome (Lizneva et al.,

2016). Because of the insufficiency of diagnostic indicators,

patients with PCOS often miss a suitable time for diagnosis

and treatment. Recent studies have showed that immune

infiltration is critically correlated with PCOS (Barrea et al.,

2018; Gong et al., 2018; Li et al., 2019). Hence, it is of great

significance to identify specific diagnostic markers and analyze

immune cell components in PCOS. In the current study, we

attempted to identify diagnostic markers for PCOS and provide

the description of the role of immune cell infiltration in PCOS

through the CIBERSORT. In addition, we performed CMap

analysis to investigate potential therapeutic agents for PCOS.

According to our results, five DMGs (CBLN1, DNAH5,

HMOX1, SLC26A8, LOC100507250) were the potential

diagnostic markers of PCOS. PCOS patients who seeking the

help of assisted reproduction technology because of ovulation

dysfunction often have poor quality and the low maturation rate

of oocytes in vitro (Qiao and Feng, 2011). The expression of

CBLN1 is thought to increase with follicle development and reach

a peak before ovulation (Zhang et al., 2018); therefore, we suggest

that theCBLN1 expression level in GCsmight affect the quality of

oocytes. According to the literature, it has been shown that the

mutations in dynein axonemal heavy chain 5 (DNAH5) have

been accepted as one of the most common causes of Primary

FIGURE 6
Chemical structures of the four molecules. (A) Structure diagram of ISOX. (B) Structure diagram of apicidin. (C) Structure diagram of scriptaid.
(D) Structure diagram of NSC-94258.
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ciliary dyskinesia (PCD) (Failly et al., 2009). The complex PCD

phenotype involving various organ systems is explained by

dysfunction of motile cilia and flagella (Hornef et al., 2006).

Hyperandrogenism is one of the most common complications of

PCOS (Escobar-Morreale, 2018). As the results showed by

Jackson-Bey et al. (2020), human fallopian tube epithelium

(hFTE) exposed to the 2 nM testosterone displayed slower

cilia beating, inhibited estrogen signaling. We speculate that in

the high levels of androgen environment of PCOS patients,

DNAH5 may mutate which leading to reduced cilia motility.

Increased oxidative stress is a key mechanism of obesity-related

insulin resistance (Furukawa et al., 2004), playing an important

part in PCOS patients with obesity (Cortón et al., 2007; Cortón

et al., 2008). HMOX1 is a facultative gene induced by

inflammatory mediators and oxidative stress. It is suggested

that the upregulation of HMOX1 might have anti-

inflammatory effects and protect cells from oxidative damage

(Mannerås-Holm et al., 2014). Hence, it is speculated that the

increased expression of HMOX1 in PCOS might represent a

compensatory or protective mechanism for reducing oxidation

and inflammation. SLC26A8 mainly affects sperm motility and

capacitation events by regulating Ca2+, Cl−, and HCO3− influxes

in the testes (El Khouri and Touré, 2014), which are homologous

with ovaries (Houmard et al., 2009). Ca2+, Cl−, and HCO3−

influxes are responsible for increasing the intracellular cAMP

concentration and the subsequent activation of PKA and

phosphorylation cascades (Xie et al., 2006). Here is our

inference: SLC26A8 may be downregulated in PCOS, affecting

Ca2+, Cl− influxes and HCO3− activation thus leading to the

development of cystic or multifollicular ovaries (Johannesson

et al., 1998; Chen et al., 2012). Through analysis of the human

tissue-specific expression by genome-wide integration of

transcriptomics and antibody-based proteomics,

LOC100507250 is highly expressed in ovaries and lymph

nodes (Fagerberg et al., 2014). This indicated that

LOC100507250 linked the ovary function and immune system.

Combined with our results, although research on LOC100507250

is very limited, it is our speculation that LOC100507250 may

interact with immune lymphocytes, especially gamma delta

T cells and activated CD4 memory T cells, involving in the

pathological process of polycystic ovary.

The CIBERSORT algorithm showed that an increased

infiltration of M2 macrophages and a decreased infiltration

of naïve B cells, gamma delta T cells, resting CD4 memory

T cells, and activated CD4 memory T cells might be related to

the occurrence and progression of PCOS. Insulin resistance is

one of the most common characteristics of PCOS. Chronic

exposure to insulin caused mouse macrophages to develop

insulin resistance characterized by increased glycolysis and a

unique M2-like phenotype (Ieronymaki et al., 2019), which

explains changes in macrophage response and a trained

immune status associated with PCOS. Gamma delta T cells,

a primary source of the pro-inflammatory cytokine,

interleukin (IL)-17a, are generally resident in adipose tissue

(Zúñiga et al., 2010). Interleukin-17 has an inhibitory effect on

adipogenesis, and regulates the accumulation of adipose tissue

(AT) and glucose metabolism in mice (Zúñiga et al., 2010). In

contrast to our study, the greater numbers and proportions of

peripheral naïve B cells were found to exist in PCOS than in

the control group (Xiao et al., 2019). We speculate that the

transient reduction of naive B cells was caused by accelerated

differentiation into memory cells after activation. Previous

studies have shown reduced staining of the T lymphocyte

markers, CD3, CD4, and CD45RA, in the ovarian

endometrium of PCOS (Wu et al., 2007). The expression of

CD4+ T cells in PCOS was significantly decreased compared

with that of a normal ovulation group (Li et al., 2019). One of

the possible explanations is that a high expression of

programmed cell death protein 1 in CD4+ T cells in the

follicular fluid of PCOS may not induce the activation or

recruitment of T cells, leading to the failure of dominant

follicle selection and development (Benedict et al., 2008;

Chikuma, 2016). Programmed cell death protein 1 is an

inducible receptor that can inhibit the antiviral T cell

response by interacting with two ligands, programmed

death ligand 1 (PD-L1) and PD-L23. T cells may

reasonably assist the survival of follicles by providing

trophic growth factors or by inhibiting adverse immune

activity (Wu et al., 2007). The above function requires

sufficient and appropriately distributed T lymphocytes. If

T cell populations are deficient or lacking, this might lead

to an abnormality in follicle selection and development, which

may promote the occurrence of PCOS. Interleukin-2 is

involved in the development of CD4+ T cell memory and

studies have shown that patients with PCOS had lower IL-2

(Krishna et al., 2015; Demir et al., 2019). Interleukin-2

produced by adjacent CD4+ T cell populations triggered

CD62L expression, which served as a marker for T cell

memory (Tubo et al., 2013), indicating that IL-2 mediates

local signals between adjacent CD4+ T cells, which can affect

T cell memory fates. The above literature evidence combined

with our analysis shown that these immune cells play a

significant role in PCOS.

By analyzing the correlation between DMGs and immune

cells, we found that DNAH5 showed a positive correlation

with M2 macrophages and a negative correlation with

activated CD4 memory T cells; HMOX1 was positively

correlated with M2 macrophages while it negatively

correlated with resting CD4 memory T cells, naïve B cells,

activated CD4 memory T cells, and gamma delta T cells;

SLC26A8 was positively correlated with M2 macrophages,

and negatively correlated with gamma delta T cells,

activated CD4 memory T cells and resting CD4 memory

T cells; CBLN1 showed a positive correlation with activated

CD4 memory T cells, resting CD4 memory T cells CD4 and

gamma delta T cells; LOC100507250 showed a negative
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correlation with gamma delta T cells and activated

CD4 memory T cells. Kabil Kucur et al. (2016) reported

that PCOS with hyperandrogenism is associated with

prolonged nasal mucociliary clearance time (NMCT), which

may lead to respiratory tract and middle ear infections. The

middle ear infections is characterized by the upgraded

macrophages cells and dendritic cells according to an rat

study (Jecker et al., 1996). We found that DNAH5 showed

a positive correlation with M2 macrophages. Combined with

the above results, the mutation of DNAH5 in PCOS may lead

to the PCD with infections, which characterized by the

upgraded macrophages M2 cells. As we mentioned above,

HMOX1 was correlated with oxidative stress and might had

anti-inflammatory effects in obese PCOS patients, which was

consistent with our results: HMOX1 showed a negative

relation with resting CD4 memory T cells, naïve B cells,

activated CD4 memory T cells, and gamma delta T cells.

CBLN1 contains a globular C1q domain characteristic of

the C1q family of target recognition proteins of the

classical complement pathway (Yuzaki, 2008), and the

deletion of C1q impairs CD4 T cell immunity (Kerdidani

et al., 2022). Forouhi et al. (2016) provided evidence that C1q/

tumornecrosis factor (TNF)-related protein 9 levels were

higher in PCOS patients as compared to their age and

BMI-matched controls, indicating that C1q may be an

intermediate mediator of the interaction between CBLN1

and immune cells in PCOS. Although there were currently

no related studies on SLC26A8 and immune infiltration in

PCOS, SLC26A8 was correlated to many diseases (Dirami

et al., 2013; El Khouri and Touré, 2014), being involved in

some regulatory pathways, including the immune response,

T cell activation, Toll-like receptor binding, granulocyte

activation, and GTPase regulator activity (Han et al., 2021).

LOC100507250 is highly expressed in ovaries and lymph

nodes, hence we assumed that LOC100507250 may interact

with immune lymphocytes, especially gamma delta T cells and

activated CD4 memory T cells, involving in the pathological

process of PCOS. These speculations require further research

to clarify the complex relationships between SLC26A8,

LOC100507250, and immune cells.

We predicted that ISOX, apicidin, scriptaid, and NSC-94258

would be useful in the treatment of PCOS. ISOX and apicidin are

histone deacetylase 6 (HDAC6) inhibitors and scriptaid is a

potent HDAC8 inhibitor (Janaki Ramaiah et al., 2017).

Previous studies showed that HDAC6 and HDAC8 promoted

insulin resistance in animal models (Winkler et al., 2012; Tian

et al., 2015). Insulin resistance is a very common complication in

PCOS patients, according to the WHO criteria for defining

insulin resistance, about 75% of PCOS women have impaired

insulin sensitivity (Tosi et al., 2017). The insulin resistance have

the capacity to induce both the endocrine and reproductive traits

of PCOS (Moghetti and Tosi, 2021). We inferred that ISOX,

apicidin, and scriptaid may play a preventive role in the PCOS by

improving insulin resistance. In addition, scriptaid may alleviate

PCOS by inhibiting the secretion of TC androstenedione

(Vanhaecke et al., 2004). NSC-94258, as an antineoplastic

agent, its protein targets are AKR1B1, CYP19A1, HSD17B1.

Aldo-ketoreductase family 1, member B1 (AKR1B1), can

prevent complications of diabetes and improve insulin

sensitivity by catalyzing the reduction of glucose to sorbitol

(Zhan et al., 2019; Syaifie et al., 2022). In GCs,

androstenedione and testosterone act as substrates and are

converted by CYP19A1 to estrogen, the mutation of CYP19A1

may lead to the occurrence and the development of

hyperandrogenemia in PCOS (Kumariya et al., 2021).

HSD17B1, a gene encode enzymes which are critical to

ovarian steroidogenesis, showed a decreased expression in

PCOS compared with the control group (Lerner et al., 2019).

These results indicated that NSC-94258 may ameliorate the

reduced insulin sensitivity and hyperandrogenemia of PCOS

by targeting and regulating AKR1B1, CYP19A1, HSD17B1. We

assumed that the correlation between DMGs and potential drugs

stems from insulin resistance. It was reported that variants within

or near DNAH5 modified glucose response in acute coronary

syndromes (Ellis et al., 2015). HMOX1 expression negatively

correlated with insulin resistance as assessed by the homeostasis

model assessment of insulin resistance (HOMA-IR) (Shakeri-

Manesch et al., 2009). Through the rat experiment, Strowski et al.

(2009) identified CER, a neuromodulatory hexadecapeptide that

originates from CBLN1, as an insulinostatic factor. These

assumptions need further research to explore the complex

relationship between DMGs and potential drugs.

It must be admitted that our research has certain limitations.

Our results are based on public databases and computational

algorithms, which involves the second mining and analysis of

previously released datasets. Second, several diagnostic markers,

immune cells, and potential drugs are more strongly associated

with insulin resistance. Although insulin resistance is an

important characteristic of PCOS, further experiments are

needed to characterize the role of diagnostic markers and

immune cells in this disease. Although the results of prior

research are in accord with our findings, these still need to be

verified in future experiments.

In a nutshell, we found that CBLN1, DNAH5, HMOX1,

SLC26A8, and LOC100507250 are diagnostic markers of

PCOS. Our analysis, based on a devolution algorithm, showed

significant differences in the cellular composition of infiltrating

immune cells in PCOS. In particular, M2 macrophages, naïve

B cells, gamma delta T cells, resting CD4 memory T cells CD4,

and activated CD4 memory T cells might be related to the

occurrence and progression of PCOS. Further research is

needed on these DEGs and immune cells may provide a

feasible direction for the diagnosis and immunotherapy of

PCOS in the clinic.
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