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Abstract

Interest in reconstructing demographic histories has motivated the development of methods to 

estimate locus-specific pairwise coalescence times from whole-genome sequence data. Here we 

introduce a powerful new method, ASMC, that can estimate coalescence times using only SNP 

array data, and is orders of magnitude faster than previous approaches. We applied ASMC to 

detect recent positive selection in 113,851 phased British samples from the UK Biobank, and 

detected 12 genome-wide significant signals, including 6 novel loci. We also applied ASMC to 

sequencing data from 498 Dutch individuals to detect background selection at deeper time scales. 

We detected strong heritability enrichment in regions of high background selection in an analysis 

of 20 independent diseases and complex traits using stratified LD score regression, conditioned on 

a broad set of functional annotations (including other background selection annotations). These 

results underscore the widespread effects of background selection on the genetic architecture of 

complex traits.
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Introduction

Recently developed methods such as the Pairwise Sequentially Markovian Coalescent 

(PSMC)1 utilize Hidden Markov Models (HMM) to estimate the coalescence time of two 

homologous chromosomes at each position in the genome1–6, leveraging previous advances 

in coalescent theory7–11. These methods have been broadly applied to reconstructing 

demographic histories of human populations12–20. More generally, methods for inferring 

ancestral relationships among individuals have potential applications to detecting signatures 

of natural selection21, genome-wide association studies22–24, and genotype calling and 

imputation25–28. However, all currently available methods for inferring pairwise coalescence 

times require whole genome sequencing (WGS) data, and can only be applied to small data 

sets due to their computational requirements.

Here, we introduce a new method, the Ascertained Sequentially Markovian Coalescent 

(ASMC), that can efficiently estimate locus-specific coalescence times for pairs of 

chromosomes using only ascertained SNP array data, which are widely available for 

hundreds of thousands of samples29. We verified ASMC’s accuracy using coalescent 

simulations, and determined that it is orders of magnitude faster than other methods when 

WGS data are available. Leveraging ASMC’s speed, we analyzed SNP array and WGS data 

sets with the goal of detecting signatures of recent positive selection and background 

selection using pairwise coalescence times along the human genome. We first analyzed 

113,851 British individuals from the UK Biobank data set29, detecting 12 loci with 

unusually high density of very recent coalescence times as a result of recent positive 

selection at these sites. These include 6 known loci linked to nutrition, immune response, 

and pigmentation, as well as 6 novel loci involved in immunity, taste reception, and other 

aspects of human physiology. We then analyzed 498 unrelated WGS samples from the 

Genome of the Netherlands data set30 to search for signals of background selection at deeper 

time scales and finer genomic resolution. We determined that SNPs in regions with low 

values of average coalescence time are strongly enriched for heritability across 20 

independent diseases and complex traits (average N=86k), even when conditioning on a 

broad set of functional annotations (including other background selection annotations).

Results

Overview of ASMC method

We developed a new method, ASMC, that estimates the coalescence time (which we also 

refer to as time to most recent common ancestor, TMRCA) for a pair of chromosomes at 

each site along the genome. ASMC utilizes a Hidden Markov Model (HMM), which is built 

using the coalescent with recombination process7–11; the hidden states of the HMM 

correspond to a discretized set of TMRCA intervals, the emissions of the HMM are the 

observed genotypes, and transitions between states correspond to changes in TMRCA along 

the genome due to historical recombination events. ASMC shares several key modeling 

components with previous coalescent-based HMM methods, such as the PSMC1, the 

MSMC2, and, in particular, the recently developed SMC++3. In contrast with these methods, 

however, ASMC’s main objective is not to reconstruct the demographic history of a set of 

analyzed samples. Instead, ASMC is optimized to efficiently compute coalescence times 
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along the genome of pairs of individuals in modern data sets. To this end, the ASMC 

improves over current coalescent HMM approaches in two key ways. First, by modeling 

non-random ascertainment of genotyped variants, ASMC enables accurate processing of 

SNP array data, in addition to WGS data. Second, by introducing a new dynamic 

programming algorithm, it is orders of magnitude faster than other coalescent HMM 

approaches, which enables it to process large volumes of data. Details of the method are 

described in the Online Methods section; we have released open-source software 

implementing the method (see URLs).

Simulations

We assessed ASMC’s accuracy in inferring locus-specific pairwise TMRCA from SNP array 

and WGS data via coalescent simulations using the ARGON software31. Briefly, we 

measured the correlation between true and inferred average TMRCA for all pairs of 300 

individuals simulated using a European demographic model3, for a 30 Mb region with SNP 

density and allele frequencies matching those of the UK Biobank data set (Figure 1; see 

Online Methods). As expected, ASMC achieved high accuracy when applied to WGS data 

(r2=0.95). When sparser SNP array data were analyzed, the correlation remained high (e.g. 

r2=0.87 at UK Biobank SNP array density), and increased with genotyping density. Similar 

relative results were obtained when comparing the root mean squared error (RMSE) between 

true and inferred TMRCA at each site, and the posterior mean estimate of TMRCA attained 

higher accuracy than the maximum-a-posteriori (MAP) estimate (Supplementary Figure 
1). Inferring locus-specific TMRCA is closely related to the task of detecting genomic 

regions that are identical-by-descent (IBD), which we define as regions for which the true 

TMRCA is lower than a specified cut-off (other, related definitions have been proposed32). 

ASMC attained higher IBD detection accuracy (area under the precision-recall curve) than 

the widely used Beagle IBD detection method33 (Supplementary Table 1).

We evaluated the robustness of ASMC to various types of model misspecification, including 

an inaccurate demographic model, inaccurate recombination rate map, and violations of 

assumptions on allele frequencies in SNP ascertainment. To evaluate the impact of using an 

inaccurate demographic model, we simulated data under a European demographic history, 

but assumed a constant effective population size when inferring TMRCA (see Online 
Methods). As expected, this introduced biases, decreasing the accuracy of inferred TMRCA 

as measured by the RMSE, but had a negligible effect on the correlation between true and 

inferred TMRCA (Supplementary Table 2). An inaccurate demographic model is thus 

likely to result in biased TMRCA estimates, but has little effect on the relative ranking of 

TMRCA along the genome. Consistent with this observation, IBD detection remained 

accurate when an incorrect demographic model was used (Supplementary Table 3). We 

used a similar approach to evaluate the impact of using an inaccurate recombination rate 

map (see Online Methods), observing only negligible effects on the accuracy of inferred 

TMRCA (Supplementary Table 4). We next tested the robustness of ASMC to violations of 

the assumption that observed polymorphisms are ascertained solely based on their 

frequency, by instead ascertaining more rare variants in certain regions (mimicking genic 

regions; see Online Methods). We found that the distribution of inferred TMRCA in these 

“genic” regions did not deviate substantially from other regions (Supplementary Figure 2). 
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Next, we evaluated the impact of varying the number s of discrete TMRCA intervals (i.e. 

states of the HMM); we observed that increasing s had only a minor impact on posterior 

mean estimates of TMRCA, although the higher resolution led to noisier MAP estimates 

(Supplementary Table 5). Finally, we evaluated the effects of ancestry-specific 

ascertainment of SNPs, mimicking an analysis where ASMC is used to infer coalescence 

times in individuals that have been genotyped using an array designed for a different, highly 

diverged population (see Online Methods). Ascertainment of SNPs in a highly diverged 

population leads to a depletion of informative (high frequency) markers. Consistent with 

previous simulations with low SNP density (Figure 1B), this leads to reduced accuracy and 

creates an upward bias in the inferred TMRCAs (Supplementary Figure 3). ASMC should 

thus be utilized with particular care in the analysis of multi-ethnic cohorts.

We next evaluated the running time and memory cost of ASMC. ASMC can be run on both 

SNP array and WGS data. When used to infer coalescence times in WGS data, ASMC is 

equivalent to the SMC++ method, although it runs considerably faster, making 

approximations that have only a small impact on accuracy (Figure 1). Letting s be the 

number of discrete TMRCA intervals (i.e. states of the HMM) and m be the number of 

observed polymorphic sites, ASMC has asymptotic running time O(sm). In comparison, the 

SMC++ method, which was shown to be more computationally efficient than other 

coalescent-based methods3, has asymptotic running time O(s3m). Accordingly, we observed 

that the running time of ASMC was 2 to 4 orders of magnitude faster than SMC++ when 

applied to simulated WGS data, depending on the number of discrete TMRCA intervals 

(Figure 2). For example, analysis of a pair of simulated genomes using 100 discrete time 

intervals required 7.4 seconds on a single processor for ASMC, compared to 3.3 hours for 

SMC++. This speedup in the analysis of WGS data leverages approximations that do not 

result in a significant loss of accuracy (Supplementary Figure 4). The memory cost of 

ASMC was also efficient compared to SMC++, scaling linearly with s (Supplementary 
Figure 5).

Signals of recent positive selection in the UK Biobank

ASMC’s computational efficiency enables its application to analyses of TMRCA in large 

data sets. We thus used ASMC to infer locus-specific TMRCA in 113,732 unrelated 

individuals of British ancestry from the UK Biobank, typed at 678,956 SNPs after QC and 

phased using Eagle34 (see Online Methods); we note that phasing accuracy in this data set 

is very high, with average switch error rate on the order of 0.3% (one switch error every ∼10 

cM34). We partitioned the data into batches of approximately 10,000 samples each and 

inferred locus-specific TMRCA for all haploid pairs within each batch, analyzing a total of 

2.2 billion pairs of haploid genomes.

We sought to identify genomic regions with an unusually high density of very recent 

inferred TMRCA events (i.e. within the past several thousand years). Such signals are 

expected at sites undergoing recent positive selection, since a rapid rise in frequency of a 

beneficial allele causes all individuals with the beneficial allele to coalesce to a more recent 

common ancestor than under neutral expectation35; approaches to detect selection based on 

distortions in inferred coalescence times have been recently applied at different time 
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scales21. We thus computed a statistic, DRCT, reflecting the Density of Recent Coalescence 
(within the past T generations), averaged within 0.05 cM windows. To compute approximate 

p-values, we noted that the DRCT statistic under the null is approximately Gamma-

distributed. We thus obtained approximate p-values for the DRCT statistic by fitting a 

Gamma distribution to the null 18% of the genome obtained by conservatively excluding 

500Kb windows around regions previously implicated in scans for positive selection (see 

Online Methods). Using coalescent simulations, we determined that DRC150 is highly 

sensitive in detecting signals of positive selection within the past ~20,000 years, as 

compared to other methods36,37 (see Online Methods, Supplementary Figure 6).

Analyzing 63,103 windows of length 0.05cM in the UK Biobank data set, we detected 12 

genome-wide significant loci (p < 0.05 / 63,103 = 7.9 × 10−7; see Figure 3A and Table 1). 

The loci that we detected exhibited strong enrichment of recent coalescence events spanning 

up to the past 20,000 years (Figure 3B, 3C and Supplementary Figure 7), consistent with 

our simulations (Supplementary Figure 6). Of the 12 loci, 6 are loci known to be under 

recent positive selection, harboring genes linked to nutrition (LCT38), immune response 

(HLA39, TLR40, IGHG41), eye color (GRM541), and skin pigmentation (MC1R41). We also 

detected 6 novel loci, harboring genes involved in immune response (STAT442, associated 

with autoimmune disease43–45); mucus production (MUC5B46 within cluster of mucin 

genes, involved in protection against infectious disease43, associated with several types of 

cancer47 and lung disease48); taste reception (PKD1L349, associated with kidney 

disease50,51); cardiac and fetal muscle (MYL4, associated with atrial fibrillation52); blood 

coagulation (ANXA353, associated with cancer54 and immune disease55); and brain-specific 

expression and immune response (FAM19A556). We note that suggestive loci implicated by 

the DRC150 statistic (p < 10−4; Supplementary Table 6) include known targets of selection 

linked to eye color (HERC257,58), retinal and cochlear function (PCDH1541), celiac disease 

(SLC22A458,59) and skin pigmentation (SLC45A258).

Heritability enrichment in regions under background selection

We next sought to detect signals of natural selection at deeper time scales. To accomplish 

this, we used ASMC to estimate locus-specific TMRCA for all ~0.5 million pairs of haploid 

genomes from unrelated individuals in the Genome of the Netherlands (GoNL) WGS data 

set (498 samples and 19,730,834 variants after QC; see Online Methods); we note that 

WGS data are required to achieve accurate resolution at deeper time scales (Figure 1A). 

Motivated by the fact that natural selection modulates the effective population size along the 

genome35,60, we set out to estimate its strength by measuring average pairwise TMRCA at 

each site, which is proportional to effective population size61. We refer to this annotation as 

ASMCavg. Forward-in-time simulations confirmed that the ASMCavg annotation captures 

the presence of unusual TMRCA variation due to background and positive selection, which 

leads to lower values of ASMCavg (see Online Methods, Supplementary Figure 8). We 

expect much or most of the variation in the ASMCavg annotation to be driven by deleterious 

effects, as supported by several recent studies60,62–66, and thus interpret ASMCavg as an 

annotation of background selection. We note, however, that in general ASMCavg can be 

affected by several types of selection that have an impact on effective population size35,60, 

including background, positive, and balancing selection, and that some authors suggested 
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that positive selection plays an important role in shaping genomic diversity37,67. The 

genome-wide average of ASMCavg in the GoNL data was 17,399 generations (s.d. = 9,957 

generations), consistent with several recent analyses of human effective population size 

variation1–3,19 , and with an effective size of ~10k commonly assumed in the literature68,69 

(we note, however, that our analysis is limited to obtaining posterior TMRCA estimates, 

which are driven by the demographic model provided in input). We thus expect the 

ASMCavg annotation to capture background selection occurring within the past several 

hundred thousand years. As expected, ASMCavg was highly correlated with other measures 

of background selection, including nucleotide diversity (r=0.50), the McVicker B-statistic60 

(r=−0.28), and allele age predicted by ARGWeaver6, quantile-normalized within 10 minor 

allele frequency bins70 (r=0.26, see Supplementary Table 7).

Analyses using stratified LD score regression (S-LDSC)71 have shown that regions under 

background selection are enriched for disease and complex trait heritability70; enrichment 

was observed for the nucleotide diversity, McVicker B-statistic, and ARGWeaver predicted 

allele age annotations, as well as three other annotations linked to LD and recombination. 

We evaluated the ASMCavg background selection annotation for heritability enrichment by 

applying S-LDSC to summary association statistics from 20 independent diseases and 

complex traits (Supplementary Table 8, average N=86k). We performed both an 

unconditioned analysis using only the ASMCavg annotation, and a joint analysis conditioned 

on the 75 annotations from the baselineLD model70 (which includes a broad set of 

functional annotations, in addition to the six annotations linked to background selection and 

LD), in order to specifically assess whether our annotation provides additional signal. 

Focusing on the ASMCavg annotation, we computed the τ* metric70, defined as the 

proportionate change in per-SNP heritability resulting from a 1 standard deviation increase 

in the value of the annotation, conditional on other annotations included in the model.

In the unconditioned analysis, lower ASMCavg was associated with higher per-SNP 

heritability for all 20 traits analyzed (Figure 4A), confirming that regions under background 

selection are enriched for disease heritability. Meta-analyzed across the 20 traits, the τ* for 

ASMCavg had a value of −0.81 (s.e. = 0.01; Z-test p < 10−300). After conditioning on the 

baselineLD model, the τ* for ASMCavg remained strongly significant at −0.25 (s.e. = 0.01; 

Z-test p = 7×10−153), implying that ASMCavg remains informative for disease heritability 

after conditioning on other annotations linked to background selection as well as a broad set 

of functional annotations. Furthermore, ASMCavg attained a larger value of τ* than each of 

the other six annotations linked to background selection (Figure 4B), implying that it was 

the most disease-informative background selection annotation in this analysis; we note that 

adding ASMCavg to the baselineLD model reduced the |τ*| of the nucleotide diversity 

annotation from 0.13 to 0.00 and reduced the |τ*| of the ARGWeaver6 predicted allele age 

annotation from 0.25 to 0.13, indicating that ASMCavg subsumes signals from these 

annotations. We computed the proportion of heritability explained by each quintile of the 

ASMCavg annotation, which provides a more intuitive interpretation of the strength of the 

annotation’s effect (Figure 4C). We observed that SNPs in the smallest quintile of the 

annotation explained 33.1% (s.e. 0.5%) of heritability, 3.8x more than SNPs in the highest 

quintile (8.7%, s.e. 0.5%), the largest ratio among annotations linked to background 
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selection (Supplementary Table 9) (tied with the nucleotide diversity annotation, whose 

effect was however subsumed by the ASMCavg annotation; Figure 4B). Annotations 

constructed based on average pairwise TMRCA conditional on the allele present on each 

chromosome were further informative for disease heritability (Supplementary Figure 9 and 

Supplementary Figure 10; see Online Methods).

Discussion

We have introduced a new method for inferring pairwise coalescence times, ASMC, that can 

be applied to either SNP array or WGS data and is highly computationally efficient. 

Exploiting ASMC’s speed, we analyzed ~2.2 billion pairs of haploid chromosomes from 

113,851 British samples within the UK Biobank data set, and detected strong evidence of 

recent positive selection at 6 known loci and 6 novel loci linked to immune response and 

other biological functions. We further used ASMC to detect background selection at deeper 

time scales, estimating the average TMRCA at each position along the genome of 498 WGS 

phased samples from the Netherlands. Using this annotation in a stratified LD score 

regression analysis of 20 diseases and complex traits, we detected a strong enrichment for 

heritability in regions predicted to be under background selection; our annotation had the 

largest effect among available annotations quantifying background selection.

High-throughput inference of ancestral relationships has a number of applications beyond 

those related to recent positive selection and disease heritability that we have pursued in this 

work. Genotype calling and imputation methods25–28, for instance, infer unobserved 

genotypes relying on ancestral relationships, which are usually estimated using 

computationally efficient approximations of the coalescent model (e.g. the copying 
model72). Related ideas have been applied to detect phenotypic associations22–24. The 

processing speed achieved by the ASMC approach, on the other hand, enables making 

minimal simplifications to the full coalescent process, while retaining high computational 

scalability. In addition, accurate detection of very recent common ancestors (IBD regions) 

across samples is a key component of several other types of analysis, including long-range 

phasing34,73,74, estimation of recombination rates using haplotype boundaries75–77, 

haplotype-based association studies78, estimation of mutation and gene conversion rates79. 

In addition, ASMC’s linear-time forward-backward algorithm can be leveraged to scale up 

demographic inference in both WGS and SNP array data. The use of this approach in large 

SNP data sets, in particular, will allow to accurately infer fine-scale demographic history 

within the past tens of generations, improving on methods that focus on summary statistics 

of shared long-range haplotypes80–82, rather than directly estimating recent coalescence 

rates.

Although the ASMC offers new opportunities for inference of pairwise coalescence times, 

we note several limitations. First, the ASMC can operate either on pairs of unphased 

chromosomes within a single diploid individual, or on pairs of phased chromosomes across 

individuals. To prevent biases3, the latter application requires haplotypes phased with 

extremely high accuracy, which may be difficult to obtain. In this work, extremely accurate 

phasing was possible in the UK Biobank data set due to the very large sample size paired 

with the Eagle phasing algorithm34 (on the order of one switch error every ~10cM; also see 
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ref. 72,82), and also possible in the GoNL data set due to leveraging trio information. Second, 

ASMC assumes a demographic model that includes a single panmictic population, and does 

not allow for the presence of samples from multiple ethnic backgrounds. Analyses of multi-

ethnic samples will require extending the current approach so that it can accommodate 

demographic models involving multiple populations. Furthermore, ancestry-specific SNP 

ascertainment may lead to a depletion of high-frequency markers, creating an upward bias 

(Supplementary Figure 3). Third, ASMC is not currently applicable to imputed data. We 

have shown that higher genotyping density leads to higher accuracy in the inference of 

coalescence times. However, our preliminary tests involving the use of ASMC on imputed 

data where only markers with high-quality imputation accuracy are retained (e.g. imputation 

r2>0.99) resulted in substantial upward biases of the inferred coalescence times, which are 

due to spurious genotype calls. Effectively extending the ASMC to handle imputed data will 

thus require additional modeling of imputation accuracy. Fourth, our approach to assess the 

statistical significance of loci under recent positive selection is based on approximate p-

value calculations. The use of approximate p-values has previously been adopted in 

detecting signals of positive selection37, and is more conservative than the widespread 

approach of simply ranking top loci36; nonetheless, the construction of an improved null 

model is a desirable direction of future development83. Finally, we note that although 

ASMC’s speed enables the analysis of large data sets, the computational costs of inferring 

pairwise coalescence times scale quadratically with the number of analyzed individuals. It 

may be possible to improve on this quadratic scaling given that at each location in the 

genome the ancestral relationships of a set of n samples can be efficiently represented using 

a tree-shaped genealogy containing n-1 nodes. The task of efficiently reconstructing a 

samples’ ancestral recombination graph (ARG)6,24,84, however, is substantially more 

complex than that of estimating pairwise TMRCA, and remains an exciting direction of 

future research. Despite these limitations and avenues for further improvement, we expect 

that ASMC will be a valuable tool for computationally efficient inference of pairwise 

coalescence times using SNP array or WGS data.

Online Methods

We provide an overview of the main components of the ASMC approach. An extended 

description can be found in the Supplementary Note.

ASMC model overview.

The ASMC is a coalescent-based HMM1-4 (see Supplementary Note for background on 

related methods). At each site along the genome, hidden states represent the time at which a 

pair of analyzed haploid individuals coalesce, which we also refer to as their time to most 

recent common ancestor (TMRCA). In this model, time is discretized using a set of s user-

specified time intervals, each representing a possible hidden state. The TMRCA may change 

between adjacent sites whenever a recombination event occurs along the lineages connecting 

the two individuals to their MRCA. The transition probability between states is modeled 

using a Markovian approximation5 of the full coalescent process. Observations are obtained 

using genotypes of the pair of analyzed samples, as well as a set of additional samples, as 

detailed below, and emission probabilities reflect the chance of observing a specific 
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genotypic configuration, conditional on the pair’s TMRCA at a site. Calculations of the 

initial state distribution, the transition, and the emission probabilities consider the 

demographic history of the analyzed sample, which is separately estimated (e.g. using other 

coalescent HMMs run on available WGS data for the analyzed population) and provided as 

input. The main goal of the ASMC is to perform high-throughput inference of posterior 

TMRCA probabilities along the genome for many pairs of haploid individuals genotyped 

using either WGS or SNP array platforms.

Emission model.

ASMC’s emission probability calculations rely on the recently developed Conditioned 

Sample Frequency Spectrum (CSFS)4, which is extended to handle non-randomly 

ascertained genotype observations (e.g. SNP array data). Consider a sample of n individuals, 

and define 2 of them as distinguished, (n-2) of them as undistinguished. We are interested in 

estimating posterior TMRCA probabilities at a set of observed sites in the genome of the 2 

distinguished samples. At each site, the CSFS model4 allows computing the HMM emission 

probability P(d,u|τ), i.e. the probability that d ∈{0,1,2} derived alleles are carried by the 

distinguished pair of samples, while u ∈[0, n-2] derived alleles are observed in the (n-2) 

undistinguished samples, conditioned on the fact that the distinguished pair’s TMRCA (the 

HMM’s hidden state) is τ. Intuitively, this approach enables exploiting the relationship 

between an allele’s frequency and its age, which is modeled using the set of undistinguished 

samples and used to improve the inference of TMRCA for the distinguished pairs4. Because 

the set of undistinguished samples is solely used to obtain allele frequencies, their ancestral 

relationships need not be tracked, leading to a substantially simplified and tractable model. 

In the ASMC, this approach is extended to accommodate the fact that the observed sites may 

not be a randomly ascertained subset of polymorphic variants in the sample. To this end, we 

write the emission probability as P(obs|d+u)×P(d,u|τ), where the additional term P(obs|d+u) 

represents the probability that a site with (d+u)∈[0, n] carriers of the derived allele is 

observed in the ascertained data. In the ASMC, this probability is estimated using the ratio 

between the empirical allele frequency spectrum obtained from the analyzed data and the 

allele frequency spectrum that is expected under neutrality for the demographic model 

provided in input. Details are provided in the Supplementary Note. The emission model 

enables handling both major/minor and ancestral/derived genotype data encoding. We 

verified using coalescent simulation (see Simulations), that the number of individuals used 

when computing the CSFS model does not have a substantial impact on accuracy 

(Supplementary Table 10).

Transition model.

The transition model describes the probability of transitioning along the genome between 

any pair of the s possible time intervals for the TMRCA of the two analyzed samples (which 

we referred to as distinguished individuals in the emission model). These transition 

probabilities are computed using the conditional Simonsen-Churchill model (CSC)5,6. In 

contrast to previously proposed Markovian approximations of the coalescent process, such 

as the SMC7 and the SMC’8, the CSC model remains accurate even if the observed 

genotypes are distant from one another5. This is an important requirement in the analysis of 

SNP array data, as markers in this type of data are separated by substantially larger genetic 
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distances than in the case of WGS data. Details on the calculation of transition probabilities 

can be found in the Supplementary Note. ASMC supports variable recombination rates 

along the genome through a genetic map provided in input.

Inference.

The standard HMM forward-backward algorithm to perform posterior inference has 

computational cost O(s2m) for analysis using s hidden states in a sequence of length m9. 

Current analyses making use of coalescent HMMs to infer demographic histories utilize a 

number of hidden states in the order of 102. When human WGS data is analyzed, the number 

of observed sites is in the order of 109. Thus, the computational cost of applying the 

standard HMM approach is very high, and a number of solutions to speed up the inference 

have been proposed (see Supplementary Note for an overview). Here, we devise a new 

approach that uses dynamic programming to reduce the computational dependence on the 

number s of hidden states from quadratic to linear, resulting in a gain of 2 orders of 

magnitude for the average analysis compared to the standard algorithm. A related procedure 

exists for the SMC transition model10, but cannot be applied to the more accurate and more 

complex CSC approach used in this work. The speed-up in the HMM forward algorithm is 

obtained by simplifying the key operation of computing an updated α′ vector of forward 

probabilities using the current forward vector, α, and the transition matrix, T, which is 

obtained from the CDC model. Computing the i-th entry of this vector normally requires 

performing the summation αi′ = ∑k = 1
s αkTk, i , which has computational cost O(s). This 

operation, however, can be rewritten as a linear combination of three terms, each of which 

can be recursively computed in time O(1), reducing the cost of computing the entire forward 

vector from O(s2) to O(s) (see the Supplementary Note for a detailed derivation). An 

equivalent speed-up can be obtained for the backward algorithm. Furthermore, to reduce the 

dependence of ASMC’s running time on sequence length when WGS data are analyzed, we 

make the following approximation. Consider two polymorphic sites separated by a stretch of 

n monomorphic sites. Computing an updated forward probability vector α′ using the 

standard approach would require performing the operation α′ = α(TE0)nTEp, where E0 is a 

diagonal matrix with emission probabilities for a monomorphic site in its diagonal entries 

and Ep is the equivalent matrix for the emission at the next polymorphic site in the sequence. 

For short genetic distances that are observed between polymorphic sites, the matrix T is 

close to diagonal, and we can thus effectively approximate this product as αTnEn
0TEp (see 

Supplementary Figure 4). Using the previously described dynamic programming approach, 

this operation can be computed in time O(s), and only needs to be performed at a subset of 

polymorphic sites, resulting in a further speedup of 2-3 orders of magnitude compared to the 

standard forward/backward approach operating on all sites. This approximation is not 

needed when SNP array data are analyzed, as we need not integrate over large stretches of 

monomorphic sites, treating instead all sites between a pair of genotyped SNPs as 

unobserved. In addition to this, most quantities involved in the O(ms) forward/backward 

operations can be precomputed and stored in a cache, substantially reducing constant terms 

in the computation.
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ASMC simulations.

We performed extensive coalescent simulations to assess the accuracy of the ASMC method. 

Unless otherwise specified, all simulations use the setup described in this section (standard 

setup). We used the ARGON simulator11 (v0.1.160415), incorporating a human 

recombination rate map (see URLs) and a recent demographic model for European 

individuals4. We simulated 300 haploid individuals and a region of 30Mb. To simulate SNP 

array data, we subsampled polymorphic variants to match the genotype density and allele 

frequency spectrum observed in the UK Biobank data set (described below). We used 

recombination rates from the first 30Mb of Chromosome 2, whose average rate of 1.66 

cM/Mb well represents the recombination rates observed along the genome (mean 1.45 

cM/Mb, s.d. 0.33 cM/Mb across autosomes). The demographic model and genetic map used 

to simulate the data were used when running ASMC, unless otherwise specified.

Time discretization.

We ran ASMC using different numbers of discrete time intervals, which were chosen to 

correspond to quantiles of the pairwise coalescence distribution induced by the demographic 

model. To achieve increased resolution into the recent past, some simulations utilized 160 

discretization intervals chosen as follows: 40 intervals of length 10 between generations 0 

and 400, 80 intervals of length 20 between generations 400 and 2,000, and 40 intervals 

corresponding to quantiles of the coalescence distribution, starting at generation 2,000. 

While using a larger number of time intervals provides increased resolution, the choice of 

time discretization should take into account that a larger number of time intervals typically 

results in noisier MAP estimates of TMRCA (see Supplementary Table 5).

Accuracy evaluation.

ASMC’s inference accuracy was evaluated using two metrics. For a given region, and for all 

pairs of samples in a simulated data set, we computed the squared correlation (r2) between 

the true and inferred sum of TMRCA at each site within the region. This metric captures the 

accuracy of inferred genetic kinship, but is unchanged by potential scaling factors and 

possible systematic biases in the TMRCA estimates. We thus also measured the root mean 

square error (RMSE) between true and inferred TMRCA at individuals sites, which we 

usually report as a percent difference compared to analysis of WGS data for improved 

readability. For our analysis of IBD detection accuracy, we defined as true IBD regions all 

sites for which pairwise TMRCA were lower than a specified time threshold (note that 

several definitions exist for IBD sharing among unrelated individuals12, and that IBD is also 

sometimes defined as the set of sufficiently long genomic regions where two chromosomes 

share a common ancestor uninterrupted by recombination13,14). We ran Beagle15 (v4.1) 

providing the true genetic map and using default parameters, and used threshold values for 

the output LOD score (ibdlod) to select the set of inferred IBD sites. To detect IBD using 

ASMC, we obtained MAP estimates of TMRCA at all sites using 160 discretization intervals 

(see Time discretization), and used thresholds on the inferred TMRCA values to select the 

set of inferred IBD sites. For both methods, we computed accuracy using the precision-recall 

curve. Neither Beagle nor ASMC enable obtaining recall values in the full [0,1] range, due 

to the presence of a lower bound for Beagle’s admissible LOD threshold values, and 
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ASMC’s time discretization. To compare the two methods’ accuracies in each simulation, 

we computed the area under the precision-recall curve (auPRC) only within the range in 

which the accuracy of both methods could be measured, and reported the percent difference 

between the two methods’ auPRC (see Supplementary Figure 11 for an illustration). The 

PRC curve between observed points was interpolated using the method of ref 16.

Model misspecifications.

To mimic inaccuracies in the genetic map we simulated data using a human recombination 

map for the simulated region, but run ASMC using a map with added noise. To introduce 

noise, the recombination rate between each pair of contiguous markers in the map was 

altered by randomly adding or subtracting a fraction of its true value (see Supplementary 
Table 4). To test whether deviations from the assumption of frequency-based ascertainment 

introduce significant biases, we mimicked over-ascertainment of rare variants in genic 

regions of the genome. To this end, we randomly sampled ~25% of the markers from 10Kb-

long genes placed every 200Kb, while the remaining variants were sampled to match the UK 

Biobank frequency spectrum as in standard simulations, and compared the distribution of 

coalescent times within over-ascertained regions and the rest of the genome 

(Supplementary Figure 2). To test ASMC’s robustness to an accurate demographic model 

we simulated data under a European demographic history, but ran ASMC assuming a 

constant population size of 10,000 diploid individuals (see Supplementary Table 2). To test 

the effects of ancestry-specific SNP ascertainment, we simulated an analysis where a group 

of individuals is genotyped using an array that has been designed using a different, highly 

diverged population. To this end, we simulated two populations that split 2,000 generations 

(or ~60,000 years) in the past. The two populations have identical, European-like effective 

population size histories after the split, and a symmetric migration rate of 0.0, 3×10−5 or 

1×10−2 per generation. We simulated ancestry-specific marker ascertainment by selecting 

SNPs based on frequencies from only one of the two populations, matching the spectrum 

observed in the UK Biobank. We then inferred coalescence times in both populations 

independently as described in previous experiments involving a single population. Results 

are reported in Supplementary Figure 3.

UK Biobank (UKBB) data set.

The UK Biobank interim release data comprise 152,729 samples, from which we extracted 

113,851 individuals of British ancestry (as described in ref. 17). 95 trio parents were 

excluded and used to assess phasing quality with the Eagle18 software, leaving a total of 

113,756 samples. From these, we created 11 batches with 10,000 samples and 1 batch with 

the remaining 3,756 samples, which we analyzed using ASMC. Out of the original ~800k 

variants (for basic quality control details see URLs: UK Biobank Genotyping and QC), we 

analyzed a total of 678,956 SNPs that were autosomal, polymorphic in the set of analyzed 

samples, biallelic, with missingness ≤10%, and not included in a set of 65 variants with 

significantly different allele frequencies between the UK BiLEVE array and the UK 

Biobank array. We divided the genome in 39 autosomal regions from different chromosomes 

or separated by centromeres.
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Detection of recent positive selection.

To detect the occurrence of recent positive selection, we computed a statistic related to the 

Density of Recent Coalescence events within the past T generations (DRCT statistic). The 

DRCT statistic was measured as follows. At a given site along the genome, we first averaged 

all posterior TMRCA estimates obtained from all analyzed pairs of samples and 

renormalized these averages to obtain an average pairwise coalescence distribution at the 

site. The DRCT statistic was then obtained by integrating this distribution between 

generations 0 and T. The statistic was measured in windows of 0.05 cM, reporting an 

average of all SNPs within each window. We tested the sensitivity of the DRCT statistic in 

detecting recent positive selection using extensive simulation. Details for these simulations 

can be found in the Supplementary Note.

Null model calibration.

Given n samples from a population of recent effective size N, the DRCT statistic is 

approximately Gamma-distributed under the null for sufficiently small values of T and n⟨⟨N. 

The rationale of this approximation is that for n⟨⟨N, a small number of coalescence events 

will have occurred within the short time span of T generations. In this regime, the 

coalescence time of each pair of lineages may be modeled as independent and exponentially 

distributed, which allows approximating the total number of early coalescence events as a 

Gamma-distributed random variable. Similar approximations have been recently used 

elsewhere19,20. We thus computed approximate p-values for our selection scan in the UKBB 

data set using the following approach. We first extracted a subset of “neutral” genomic 

regions, spanning a total of 18% of the genome, and defined as any genotyped site at a 

distance greater than 500Kb from regions contained in a recent database of positive 

selection21 (see URLs: database of positive selection). We then built an empirical null model 

by fitting a Gamma distribution (using Python’s Scipy library, see URLs) to these putatively 

neutral regions, and used this model to obtain approximate p-values throughout the genome. 

We analyzed 63,103 windows, using a Bonferroni significance threshold of 0.05 / 63,103 = 

7.9 x 10-7. One of the genome-wide significant signals that we detected (PKD1L3 locus, 

chr16:70.89-71.80Mb) fell within the putatively neutral portion of the genome. We thus 

iterated this procedure, excluding this locus from the set of putatively neutral loci.

Genome of the Netherlands (GoNL) data set.

The data set consists of 748 individuals who passed quality control and were sequenced at 

an average of ~13x (quality control details for the Release 4 data are described elsewhere22). 

We analyzed 19,730,834 sequenced variants for 498 trio-phased unrelated parents, excluding 

centromeres and dividing the genome in the same 39 autosomal regions used for analysis of 

the UKBB data set.

ASMCavg annotation.

We set out to estimate the strength of background selection by measuring variation in local 

effective population size along the genome23. We used ASMC to estimate the posterior 

mean TMRCA at all sites and for all pairs of haploid individuals in the GoNL data set. We 

averaged these estimates at each site to obtain an annotation of background selection, which 
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we refer to as ASMCavg. We similarly computed other annotations, conditioning on whether 

either or both individuals at a site carried a mutated allele. The ASMChet annotation 

(Supplementary Figure 9), was obtained by averaging at each site the posterior mean 

TMRCA estimates for all pairs of individuals that were found to be heterozygous at each 

site. Other annotations were similarly computed using only pairs carrying e.g. minor/major 

alleles at each site (see Supplementary Figure 10). We verified that the ASMChet 

annotation captures the effects of natural selection using forward simulation. Details for 

these simulations can be found in the Supplementary Note.

Stratified LD Score (S-LDSC) analysis

We investigated whether large values of our annotations related to background selection 

corresponded to an enrichment in heritability for 20 complex traits and diseases listed in 

Supplementary Table 8. The S-LDSC analysis was run on data sets containing European 

individuals using standard guidelines24. The sets of LD-score, regression, and heritability 

SNPs were defined as follows. LD score SNPs were set to be 9,997,231 biallelic SNPs with 

at least 5 minor alleles observed in 489 European samples from the 1000 Genomes Phase 3 

data set25 (see URLs); regression SNPs were set as 1,217,312 HapMap Project Phase 3 

SNPs; and Heritability SNPs, used to compute trait heritability, were chosen as the 

5,961,159 reference SNPs with MAF ≥ 0.05. The MHC region (2Mb 25-34 on Chromosome 

6) and SNPs with χ2>80 or 0.0001N were excluded from the analysis. Annotations 

contained in the baselineLD model, which we included in our joint analyses, can be found in 

Supplementary Table S9 of ref. 26. To avoid minor allele frequency (MAF)-mediated 

effects, all ASMC-related annotations used in the S-LDSC analysis were quantile-

normalized with respect to MAF of regression SNPs. Specifically, we used 10 MAF ranges 

specified in the baselineLD model, corresponding to 10 frequency quantiles for the 

regression SNPs. For each range, we ranked values of an annotation for the corresponding 

SNPs, and mapped them to quantiles of a Standard Normal distribution. Annotation effects, 

τ*, were obtained from the output of S-LDSC, as described in ref. 26. Independent traits 

were selected on the basis of low genetic correlation, as previously described24. Meta-

analysis of τ* values across independent traits was performed computing a weighted average 

of individual estimates of τ*, weighted using 1/(hi
2εi

2), where hi
2 represents heritability for 

the i-th trait, and εi represents the standard error of the trait’s τ* estimate.

Data and code availability

The ASMC program and source code, as well as genomic annotations of positive and 

background selection can be downloaded at http://www.palamaralab.org/software/ and 

https://github.com/pierpal/ASMC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. ASMC accuracy in coalescent simulations.
(a) Sample posterior decoding of TMRCA along a 3 Mb segment for a pair of simulated 

individuals with ASMC run on WGS data (top) and on SNP array data (bottom). Red lines 

represent the true TMRCA, while the heat map represents the inferred posterior distribution. 

Posterior density tends to concentrate more tightly around the true TMRCA when WGS data 

are analyzed, due to the higher density of polymorphic variants. Posterior estimates using 

SNP array data are more dispersed for distant TMRCA, but remain highly concentrated for 

recent TMRCA. (b) Accuracy (r2 between true and inferred average TMRCA) as a function 

of marker density. TMRCA are inferred using the posterior mean obtained by ASMC at each 

site. ASMC-seq represents the accuracy obtained using ASMC on WGS data. The red 

vertical line indicates marker density in the UK Biobank data set. Errors bars represent 

standard errors. Dots and error bars represent the average and its SE from 10 independent 

simulations. Numerical results are reported in Supplementary Table 11.
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Figure 2. Running time of ASMC.
We report the running time required to analyze a pair of simulated haploid genomes 

(extrapolated from running times in 5Mb regions) as a function of the number of discrete 

TMRCA intervals. Both SMC++ and ASMC-seq were run on WGS data. Numerical results 

are reported in Supplementary Table 12.
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Figure 3. Genome-wide scan for recent positive selection in the UK Biobank data set.
(a) Manhattan plot with candidate gene labels for 12 loci detected at genome-wide 

significance (adjusting for multiple testing, p < 0.05 / 63,103 = 7.9 × 10−7; dashed red line). 

The DRC150 statistic of recent positive selection was computed using all individuals of 

British ancestry from the UK Biobank (n=113,851, divided in batches of ~10,000 samples; 

see Online Methods for details on how p-values were computed). Numerical results for top 

loci are reported in Table 1; additional suggestive loci are reported in Supplementary Table 
6. (b) Enrichment for recent coalescence events at the LCT locus (Chromosome 2). (c) 
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Enrichment for recent coalescence events at the TLR locus (Chromosome 4). y-axis labels 

assume a 30-year generation time. Analogous plots for other top loci are provided in 

Supplementary Figure 7.
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Figure 4. S-LDSC analysis of ASMCavg background selection annotation and disease 
heritability.
(a) τ* value of the ASMCavg annotation for 20 independent diseases and complex traits 

(sample sizes in Supplementary Table 8). Error bars represent SE of the τ* estimate. (b) 

Absolute values of τ* estimates (meta-analyzed across 20 independent diseases and complex 

traits, sample sizes in Supplementary Table 8) in joint analysis conditioned on baselineLD 

annotations. Error bars represent SE of the meta-analyzed τ* estimate. Dashed bars reflect 

values for six baselineLD annotations linked to background selection before the introduction 

of the ASMCavg annotation. (c) Proportion of heritability explained by SNPs within different 

quintiles of ASMCavg annotation (in joint analysis conditioned on baselineLD annotations). 
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Error bars represent SE of the estimated proportions. Numerical results are reported in 

Supplementary Table 13.
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Table 1.
Genome-wide significant signals of recent positive selection.

We report genomic locations, minimum p-value across 0.05cM windows (not adjusted for multiple testing and 

capped at 10−16), SNP corresponding to signal peak, and candidate gene for the 12 genome-wide significant 

signals of recent positive selection (adjusting for multiple testing, p < 0.05 / 63,103 = 7.9 × 10−7). Novel loci 

are denoted in bold font. The The DRC150 statistic of recent positive selection was computed using all 

individuals of British ancestry from the UK Biobank (n=113,851, divided in batches of ~10,000 samples; see 

Online Methods for details on how p-values were computed).

Chromosome From (Mb) To (Mb) Min. p-value SNP Candidate gene(s)

2 134.44 139.01 <10−16 rs10206673 LCT38

2 191.73 192.07 1.81×10−7 rs7556924 STAT4

4 38.44 38.97 <10−16 rs7660745 TLR gene gamily40

4 79.11 79.51 5.90×10−7 rs2867461 ANXA3

6 25.18 33.82 <10−16 rs2104362 HLA39

11 1.08 1.23 4.21×10−9 rs11019228 GRM541

11 88.21 90.55 1.20×10−10 rs72636988 MUC gene family

14 106.35 107.12 9.49×10−9 rs10142951 IGHG41

16 70.89 71.80 7.73×10−8 rs141399030 PKD1L3

16 89.12 90.14 3.78×10−7 rs62052682 MC1R41

17 42.64 45.18 2.87×10−7 rs75229873 MYL4

22 48.98 49.08 4.94×10−7 rs78014641 FAM19A5
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