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Abstract: We consider the problem of modeling complex systems where little or nothing is known
about the structure of the connections between the elements. In particular, when such systems are to
be modeled by graphs, it is unclear what vertex degree distributions these graphs should have. We
propose that, instead of attempting to guess the appropriate degree distribution for a poorly under-
stood system, one should model the system via a set of sample graphs whose degree distributions
cover a representative range of possibilities and account for a variety of possible connection structures.
To construct such a representative set of graphs, we propose a new random graph generator, Random
Plots, in which we (1) generate a diversified set of vertex degree distributions and (2) target a graph
generator at each of the constructed distributions, one-by-one, to obtain the ensemble of graphs. To
assess the diversity of the resulting ensembles, we (1) substantialize the vague notion of diversity in a
graph ensemble as the diversity of the numeral characteristics of the graphs within this ensemble
and (2) compare such formalized diversity for the proposed model with that of three other common
models (Erdős–Rényi–Gilbert (ERG), scale-free, and small-world). Computational experiments show
that, in most cases, our approach produces more diverse sets of graphs compared with the three
other models, including the entropy-maximizing ERG. The corresponding Python code is available
at GitHub.

Keywords: random graph; network; omplex system; degree sequence; degree distribution

1. Introduction

The random graph is a useful concept that is frequently applied in complex systems
modeling. The employment of random graph models has grown rapidly with the explosive
development of computer and social networks.

There is no single approach to what random graphs are or how they can be generated.
If there are any characteristic properties that one can expect from the structure of the
studied complex system, it may be possible to either pick a suitable random graph model
(e.g., Erdős–Rényi–Gilbert, small-world, or scale-free, see Section 2.1) or to construct an
bespoke model based on the maximum entropy graph model (see Section 2.2)

However, if the prototype system to be modeled is very complex and/or weakly
studied, the researcher may not know its connection structure. The researcher may not even
wish to spend resources on the clarification of this connection structure, as the purpose of
the study may be nothing but fast prototyping.

There are many important domains where the necessary empirical dataset is too large
to work with or too hard to obtain; some examples are information flows in global computer
networks [1,2], large-scale social networks [3,4], signal flows in the brain [5,6], interactions
of cells within a multicellular organism [7,8], and protein–protein interaction networks [9].

Furthermore, the empirical data that does exist in these domains can be ambiguous,
forcing the community to regularly review the models used for them [10–15]. Finally, there
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are examples of complex systems (albeit rather controversial ones) where the connection
structure is entirely unknown [16,17].

In the present paper, we address the question of how to construct a random graph
model for a complex system, the connection structure of which cannot be (or is not intended
to be) estimated empirically. As the examples in the Appendix show, real-world complex
systems give rise to graphs with a huge variety of possible vertex degree distributions. This
means that if a model is selected based on a guessed degree distribution (on account of a
hypothesis that may turn out to be wrong), substantial errors may result; consider, for ex-
ample, the scale-free graph (the first figure) as a model of either the DBLP citation database
or the cell connections in a stem of Arabidopsis Columbia (see Table A1 in Appendix A).

In situations where information is meager, we propose that, instead of attempting to
guess the true connection structure, one should model the complex system via an ensemble
of graphs whose vertex degree distributions are as diverse as possible. Such an approach
may prevent a narrowing in the variety of behavior that the prototype system is able to
exhibit. For example, it can help to avoid “false calm” conclusions about the possible
outcomes of a dangerous process run in the complex system (see Section 6.8).

As a method of constructing a diverse ensemble of graphs, we present the Random
Plots model. This model produces each sample graph with N vertices by (1) generating a
“random” nondecreasing function from [1, N] to [1, N] as a reference (we call it reference
vertex degree plot or rVDP) or (2) applying any graph generator that implements the soft
configuration model [18] to construct a graph whose array of vertex degrees sorted in
ascending order (we call this the actual vertex degree plot or aVDP, see the first figure) is
close to the constructed rVDP.

In the next section, we consider several common random graph models, placing
emphasis on the models that represent complex systems for which no additional knowledge
is available. Algorithms implementing the Random Plots model are given in Section 3.
In Section 4, we consider the time complexity, space complexity, and scalability of the
proposed algorithms. In Section 5, we study the accuracy of the construction, i.e., how
close the aVDPs of the constructed graphs are to the corresponding rVDPs. In Section 6,
we compare the diversity (in terms of several different scalar properties) of a set of graphs
produced by the Random Plots model to the diversity of sets produced by the Erdős–
Rényi–Gilbert, scale-free, and small-world models. We find that, with respect to six out
of the seven scalar properties studied, as well as with respect to the terminal states of one
dynamic process, our model produces the most diverse set of graphs. Section 7 contains
some concluding remarks.

2. Background

In this section, we briefly outline three of the best-known models for random graph
generation and consider a general approach to the construction of random graphs that meet
given formalized constraints. To the best of our knowledge, the first of these models, Erdős–
Rényi–Gilbert, is the only practical approach employed to represent complex systems
without additional information about the connection structure. In the second part of the
section, we highlight the idea that the considered theoretical approach to the construction
of random graph ensembles—the maximum entropy model—also converges to the Erdős–
Rényi–Gilbert model in cases where there are no constraints imposed on the graphs.

2.1. Three Common Random Graph Models
The Erdős–Rényi–Gilbert model

Historically, the first-developed and most-studied methods of generating random
graphs were the model of Erdős and Rényi [19] and the closely related model of Gilbert [20].
In Gilbert’s approach, which is the more flexible and convenient in practice, each possible
edge belongs to the graph and has a given constant probability. The vertex degrees in the
resulting graph follow a Poisson distribution. Despite its intuitiveness, this model rarely
captures the behavior of real-world complex systems.
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The scale-free model

A much more widespread model of real-world networks is the scale-free model, where
the distribution of vertex degrees follows a power law. Although there are various methods
of constructing scale-free graphs [21–23], that of Barabási and Albert [24] remains one of the
most common. The Barabási–Albert method is based on the preferential attachment scheme:
(a) each new vertex is connected to the growing graph by one edge; (b) the probability of a
new vertex connecting to one of the existing vertices of the graph is directly proportional
to the degree of the latter vertex. Scale-free graphs are used as models of such complex
networks as the Internet [25], the World Wide Web [26], financial networks [27], and protein–
protein interaction networks [28], although there are ongoing debates about the application
of the scale-free model in almost all of these examples.

The small-world model

The third model we consider is the small-world model, which describes graphs typical
of social networks [29,30]. Small-world graphs combine two main properties: (a) given
that two vertices are both adjacent to a third vertex, there is a high probability that they are
adjacent to each other; (b) the average number of edges in the shortest path connecting an
arbitrary pair of vertices is small (but greater than one). The most common way to construct
small-world graphs is via the Watts–Strogatz model [31], which proceeds in two stages:
(1) make a regular ring lattice such that each vertex vi is adjacent to the k vertices vj with
the closest indices (|i− j| mod (n− k/2) ≤ k/2); (2) with some predefined probability,
change one of the vertices of each edge to a random vertex.

Figure 1 shows examples of graphs constructed according to the above three models.
Note that the Erdős–Rényi–Gilbert graph, as a result of the “maximally stochastic”
process of its construction, does not show any kind of regularity. The scale-free graph
contains both the so-called hubs (vertices of large degree) and many leaf nodes (vertices
of degree one). The small-world graph shows high connectivity among neighboring
vertices, few isolated vertices, and no hubs.

Erdös-Rényi-Gilbert Scale-free Small-world
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Figure 1. Examples of 100-vertex random graphs (upper row) and the corresponding degree distri-
butions (lower row) constructed using different generation models: left, Erdős–Rényi–Gilbert [19];
center, scale-free [21]; right, small-world [31]. Vertex degree plots (VDPs): OY gives the vertex degree
(here, both incoming and outgoing degrees are shown, but a VDP can also show just one or the other);
OX gives the vertex counting number in the list ordered by ascending Y-value.

The vertex degree distribution (VDD) of each graph in Figure 1 is displayed in a vertex
degree plot (VDP). This is a convenient way to visualize the vertex degree sequence of a
graph, with the vertices listed along the X axis in ascending order of degree and the corre-
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sponding degrees plotted along the Y axis. Since the VDP and the VDD of a graph contain
the same information, we use the two concepts interchangeably throughout this paper.

The three models discussed above do not, of course, exhaust the vast variety of
graph structures that arise in practice. Table A1 gives several real-world examples of
graphs and their VDPs, some fitting within known models and others not. The variety
of connection structures arising in practice, for which appropriate models are needed, is
constantly expanding; for example, the recent paper [10] exhibits real-world graphs having
exponential, log-normal, Weibull, and power-law-with-cutoff VDDs.

2.2. Theoretical Approach: Maximum Entropy Random Graph Model

In practice, when a complex system is to be modeled by a graph and some empirical
information about the system is available, it is often possible to choose (or construct) a
random graph model that produces sample graphs whose connection structure reflects
the available empirical information [32–34]. The Maximum-Entropy Random Graph Model
(MERGM) [35–37] allows the construction of a probability distribution with the maximum
Shannon entropy on graphs that meet certain constraints expressing empirical information
about the system:

− ∑
G∈Gn

P(G) log P(G)→ max, (1)

∑
G∈Gn

P(G) = 1, (2)

∑
G∈Gn

P(G)Ω̃i(G) = ωi ∈ Rk1 , i ∈ 1, L1, (3)

Ωi(G) = ωi ∈ Rk2 , i ∈ 1, L2, (4)

where Gn is the set of graphs with n vertices (can be any type of graph, e.g., simple digraphs);
Ωi are the properties that should be met exactly by each generated graph (e.g., in the case
of a labeled graph, the number of edges equals ω), and Ω̃j represents the properties that
should be met on average (e.g., the average degree of the vertex vi over the graphs of the
resulting ensemble should equal ωi). The MERGM with the latter constraint is sometimes
referred to as the Soft configuration model [18]. A heuristic algorithm addressing this problem
is used as part of the random graph model proposed in this paper.

The global optimization problem (1)–(4) can be solved with standard methods, e.g., La-
grange multipliers [36]. It should be noted that expressing the available information about
the modeled complex system in the form of constraints (3) and (4) and obtaining a proba-
bility distribution as the solution to (1)–(4) does not necessarily mean that a neat algorithm
that produces random graphs in accordance with the obtained distribution can be easily
constructed. Consider, for example, an Ω̃(G) of the form “the process Ξ being run on G
ends in one of its terminal states according to some predefined probability distribution”.
Depending on the complexity of process Ξ, the generating algorithm can be no more elegant
than brute-force Monte-Carlo sampling.

In this work, we are interested in complex systems, the information about which is
meager, so we confine ourselves to only two assumptions: (1) the possible number n of
elements in the system is bounded, nmin ≤ n ≤ nmax and (2) a simple unlabeled digraph
(directed graph with indistinguishable vertices without loops and multiple edges) is a
suitable model for the system. The first assumption automatically limits the number m of
connections in the simple digraphs, 0 ≤ m ≤ n(n− 1). Whereas the first assumption seems
rather natural (one is unlikely to face a discrete complex system for which it is impossible
to set any limits on the number of elements), the second one needs some explanation. When
choosing between labeled vs. unlabeled as well as directed vs. undirected graphs, we opted
for the variants that better suit the declared uncertainty about the modeled complex system.
If we know almost nothing about a complex system, it is safe to assume that we also do
not know its labeling. If we do not know whether the connections between the elements
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are symmetrical or not, we have to assume the latter as a more general case. Finally, we
chose simple graphs over multigraphs because (1) the former are much more widespread
and (2) simple graphs are a more challenging case in the area of graph synthesis (see the
paragraph before Algorithm 2 in Section 3).

Based solely on these two assumptions, a random graph model of the studied com-
plex system can be formulated as follows: (1) take n and m from the discrete uniform
distributions n ∼ U{nmin, nmax} and m ∼ U{0, n(n − 1)}; (2) use MERGM to generate
graphs Gn,m.

When additional information about the prototype complex system is absent, MERGM
(1)–(4) becomes (1), (2) plus either (4) in the form Edges(G) = m or (3) in the form
E[Edges(G)] = m. Using the method of Lagrange multipliers, it is easy to prove (see,
e.g., [36,38]) that the solution to both of these variants is the uniform distribution on Gn,m,
which corresponds to the Erdős–Rényi model G(n, m). For simple labeled digraphs, where
the edges can be uniquely identified, the probability of selection of each digraph in G(n, m)

is 1/(n(n−1)
m ).

A similar but more constructive and practically convenient approach to the construc-
tion of random graph ensembles is the Gilbert model [20] G(n, p) (with n vertices and
with the probability of each edge existing being equal to p). On the labeled digraphs
with m edges, the Gilbert and Erdős–Rényi models work identically: (1) the Gilbert model
produces each particular labeled digraph Gn,m (with n vertices and m edges) with the same
probability pm(1− p)n(n−1)−m; (2) the probability that the Gilbert model results in some
digraph with exactly m edges is (n(n−1)

m )pm(1− p)n(n−1)−m, thus

P{G(n, p) = Gn,m | Edges(G(n, p)) = m} =
pm(1− p)n(n−1)−m

(n(n−1)
m )pm(1− p)n(n−1)−m

=
1

(n(n−1)
m )

.

Thus, as pn2 → ∞, by the law of large numbers, the Gilbert model converges to produce
graphs with the number of edges being close to m = n(n− 1)p, approaching the entropy-
maximizing Erdős–Rényi model.

For unlabeled graphs (those with indistinguishable vertices), two different edge selec-
tions could correspond to the same graph (up to isomorphism), which can potentially skew
the uniform distributions resulting from the Erdős–Rényi and Gilbert models. Fortunately,
unlabeled digraphs with non-trivial automorphisms are rare. To show this, first, let us note
that undirected unlabeled graphs are known to be rare, even for n ≥ 40 [39,40]. Returning
to unlabeled digraphs, note that (1) if

−→
G 1 and

−→
G 2 are isomorphic, then the corresponding

unlabeled graphs G1 and G2 (where the undirected edge {a, b} exists in Gi iff either (a, b)
or (b, a) exists in

−→
G i) are also isomorphic; (2) the graphs Gi constructed in this way are

equivalence classes with respect to the digraphs
−→
G j. From these two notions, it follows

that the share of directed graphs with non-trivial automorphisms does not exceed that for
undirected graphs.

The arguments given in this section suggest that the Gilbert model is a theoretically
reasonable and practically feasible approach to the generation of random digraph ensembles
with the maximum possible entropy, given that no additional constraints on the resulting
digraphs are imposed. However, how “stochastic” are these ensembles? Consider the
VDP-“portrait” of an ensemble of 100 graphs shown in Figure 2: the same shape of all VDPs
in the ensemble hardly fits the intuitive understanding of stochasticity. From a practical
point of view, such distribution uniformity may limit the variety of graph properties in the
resulting ensembles.
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Figure 2. VDPs of 100 Gilbert random graphs G(n, p), where n = 100, p ∼ U (0, 1). OY gives the
vertex degree; OX gives the vertex counting number in the list ordered by ascending Y-values.

3. Algorithms

Before proceeding to the algorithms, let us briefly recall some terms and notations
that are used below. Digraph means directed graph; the indegree of a vertex in a digraph
is the number of edges incoming to this vertex; and the outdegree is the the number
of edges outgoing from this vertex. The notation M, N for any natural M, N : M ≤ N
means M, M + 1, M + 2, . . . , N. The vertex degree plot (VDP) of a graph is the array of
vertex degrees sorted in ascending order. A digraph has two VDPs: for the indegrees and
outdegrees. The notation ξ ∼ U (a, b) means that the random variable ξ has a uniform
distribution within the interval [a, b]. The notation ξ ∼ U{a, b} means discrete uniform
distribution within a, b

In the Random Plots model, the construction of each sample graph involves the
consecutive execution of two algorithms: (1) an algorithm that produces a “random” (in
some sense) pair of vertex in- and outdegree plots, termed reference VDPs (rVDPs); (2) an
algorithm that generates a simple digraph whose actual VDPs (or aVDPs) are close to the
reference ones.

Algorithm 1 produces a pair of functions (arrays) D−, D+ : 1, N → 1, N − 1 whose
values are the target vertex in- and outdegrees of the simple digraph with N vertices,
which is to be generated by Algorithm 2. Each array is sorted in ascending order, so that
index i in D−(i) usually does not refer to the same vertex as in D+(i) (see examples in the
ninth figure).

Note that the construction of a “feasible” pair of in- and outdegree sequences, i.e., one
that can, in fact, be realized by a simple digraph, is a rather difficult problem (see, for exam-
ple, [41] and the comments preceding Algorithm 2 below). However, in Algorithm 1, we do
not care about this kind of feasibility; the only restriction we impose on the two sequences
comes from the natural equality between the sums of the outgoing and incoming degrees
in a graph (see Step 8).
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Algorithm 1: Construction of reference vertex in- and outdegree plots (rVDPs).
1. Let N be the number of elements within the complex system under study.
2. Let A = (0, 0), B = (0, N), C = (N, N), F = (N, 0) (see Figure 3a); uniformly choose an angle

α1 ∼ U (0, π/2).
3. Choose equiprobably one of the two directions of shift: from A to B or from A to F. Without loss of generality,
let it be the first direction (see Figure 3b).

4. Uniformly choose the shift δ ∼ U (0, |AB|); the equation of the line going through Q at an angle α1 to the
horizontal is y1(x) = x tan α1 + β1, where β1 = δ (had the shift been done towards F, the constant term β1
would have been equal to −δ tan α1). Given that α1 ∈ [0, π/2], R belongs to [BC] ∪ [CQ′], so its coordinates can
be easily derived (see Figure 3b). Knowing the coordinates of R, one can compute the area S1 of the polygon
AQRCF (see Figure 3c); this area will be approximately equal to the total number of incoming edges in the
graph under construction. The other possible forms of the incoming VDP are shown in Figure 3d.

5. Uniformly choose an angle α2 ∼ U (0, π/2).
6. Choose β2 ∈ R so that the resulting area S2 is equal to S1 (this corresponds to the condition of equality
between the sums of the incoming and outgoing degrees). The unknown β2 can be expressed analytically, but
because there are many possible configurations for the intersections of the lines y1(x) = α1x + β1 and
y2(x) = α2x + β2 with the edges of the square ABCF (4 variants for each line, resulting in 42 variants for the
pair (y1, y2)), it may be more convenient to use the bisection method starting from the interval
β ∈ [−N tan α2, N] (see Figure 4).

7. Generate a random binary number b. If b = 0, construct the arrays D−, D+ based on the functions y1, y2 and
the bounding edges of ABCF so that for every i ∈ 1, N,

D−(i) = Integer(max{min{y1(i) + 0.5, N − 1}, 1}),
D+(i) = Integer(max{min{y2(i) + 0.5, N − 1}, 1}),

(5)

(Here, we require D−(i) ≥ 1, D+(i) ≥ 1, but this is an arbitrary condition that can be relaxed to
D−(i) ≥ 0, D+(i) ≥ 0 without a loss of generality.) If b = 1, use y1 in the construction of D+ and y2 in the
construction of D− instead.

8. If
N

∑
i=1

D−(i) =
N

∑
i=1

D+(i), (6)

return the constructed rVDPs D−, D+.
9. In case the sums are not equal, say

N

∑
i=1

D−(i) >
N

∑
i=1

D+(i),

iteratively apply one of the following procedures (selected equiprobably) until (6) is true: for a random
k ∼ U{1, N}, either (a) add 1 to D+(k), given that D+(k) + 1 ≤ N − 1, or (b) subtract 1 from D−(k), given that
D−(k)− 1 ≥ 1.

10. Return the constructed rVDPs D−, D+.
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Figure 3. Construction of the first of two reference vertex degree plots (rVDPs) (this may be for either
incoming or outgoing degrees, depending on a random choice). (a) Choose an angle. (b) Choose
a shift (direction and size). (c) The area S1 under the rVDP polygonal line QRC approximately
shows the total number of incoming (as well as outgoing) vertex degrees in the prospective graph.
(d) Possible forms of the rVDP depending on the particular intersection of the segment QR with the
edges of ABCF, where A = (0, 0), B = (0, N), C = (N, N), F = (N, 0).
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Figure 4. Bisection method for finding the shift β2 that adjusts the area S under the as yet unknown
outdegree reference vertex degree plots (rVDP, vertical waves) to equal the area under the already-
constructed indegree rVDP (horizontal waves). (a) The first bisection of the initial interval with the
lower bound of β2 = −N tan α2, corresponding to the minimum S = 0, and the upper bound of
β2 = N, corresponding to the maximum S = N2. (b) The second bisection. (c) The final step, where
S(AQRCF) ≈ S(AEHCF).

Let us proceed to the second algorithm, which constructs a simple digraph whose
aVDPs are close to D−, D+. As we mentioned above, far from every sequence of the form

(a1, . . . , aN), (b1, . . . , bN) such that
N

∑
i=1

ai =
N

∑
i=1

bi, (7)

allows the construction of a corresponding simple digraph, where the in- and outdegrees
of the ith vertex are ai and bi, respectively (see example in Figure 5a).

Fortunately, for our purposes, there is no need to tie the values of the outdegrees to
the values of the indegrees: it is sufficient to match the degrees to the sequences D− and
D+ separately. Formally, the relaxed problem may be written as follows: given a sequence
of the form (7), construct a simple digraph with N vertices for which

∃γ : 1, N ↔ 1, N : ∀i ∈ 1, N,

deg−(vi) = ai, deg+(vi) = bγ(i),
(8)

where deg−(vi) and deg+(vi) are the in- and outdegrees of the vertex vi respectively.
While the decoupling of the indegrees from the outdegrees enlarges the set of se-

quences for which a digraph can be constructed (Figure 5b), it cannot guarantee the
existence of a digraph for every possible pair of sequences (see example in Figure 6). It
would be interesting to mathematically characterize the “weakly graphical sequences”:
those for which there is at least one solution to (8).
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(a) (b)

A B

C

A B

C

((2, 2)A, (2, 2)B, (1, 1)C) ((1, 2)A, (2, 2)B, (2, 1)C)

Figure 5. Example showing that the uncoupling of the sequence of incoming degrees from the
sequence of outgoing degrees (shuffling) can result in a pair of sequences for which there exists a
corresponding graph. (a) Given that the incident edges for A and C are already constructed so as to
preserve the simplicity of the digraph, the incident edges for B would have to include either a loop or
a multiple edge to A. (b) Changing the order of the second components makes it possible to construct
a simple digraph.

(a) (b)

1

2 1

2

Figure 6. Example showing that not every pair of in- and outdegree sequences satisfying (8) can be
realized by a graph, even if we pick the indegree and outdegree independently for each vertex (i.e.,
even if we are free to apply any permutation γ in (8)). Let the graph contain five vertices, and let the
indegree and outdegree sequences both equal (1, 1, 1, 4, 4). If a vertex has outdegree 4 and indegree 1
(arrow (1) in part (a)), then (i) the only possible destinations for the outgoing edges from this vertex
(preserving graph simplicity) are shown by the dashed lines; (ii) the outgoing edges of the second
vertex of outdegree 4 (gray column) do not have enough available destinations, whether this second
vertex has indegree 1, as shown by arrow (2) (the available destinations are crosshatched), or indegree
4 (this case is not shown). If the first vertex of outdegree 4 has indegree 4 (part (b)), the situation
is similar.

In our case, the theoretical difficulties considered above are of no particular importance,
as we are satisfied with constructing graphs whose aVDPs match only approximately the
rVDPs generated by Algorithm 1. There are many works devoted to practical methods for
constructing simple digraphs that match given degree sequences (at least approximately).
The approach we use originated from the “sequential algorithm” of [42]; it was also
influenced by earlier methods [43–47].
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Algorithm 2: Construction of a digraph whose aVDPs are close to given rVDPs.

1. Let the algorithm’s input consist of two functions D−, D+ : 1, N → 1, N − 1 which are the results of
Algorithm 1. (Recall that, by construction, D−(i) ≤ D−(i + 1) and D+(i) ≤ D+(i + 1) for every i ∈ 1, N − 1.)
Let

D ,
N

∑
i=1

D−(i)

(
=

N

∑
i=1

D+(i) by construction

)
.

2. Choose an arbitrary permutation σ : 1, N ↔ 1, N; we are going to construct a simple digraph
G = (V , {v1, . . . , vN}, E) where deg−(vi) ≈ D−(i) and deg+(vi) ≈ D+(σ(i)). (The permutation σ is used to
destroy the positive correlation between D−(i) and D+(i) caused by the fact that D− and D+ are
monotonically increasing.)

3. Initially, let deg−(v) = deg+(v) = 0 for all v ∈ V (i.e., E = ∅).
4. While |E| < D, repeat

(a) Choose one of the two symbols + and − equiprobably; without loss of generality, let it be −,
which leads to the processing of the outdegrees first and indegrees second. ( If + is chosen, then the
processing order reverses with the corresponding changes in the next steps.)

(b) Let V′− be the set of vertices from which it is possible to start a new non-multiple edge:
V′− = {v′ ∈ V : ∃v′′ ∈ V \ {v′} : (v′, v′′) /∈ E} (V′− 6= ∅, because if there is no pair (v′, v′′) ∈ V2

such that v′′ 6= v′ and (v′, v′′) /∈ E, then G = (V, E) is already complete and the condition |E| < D
could not have been true).

(c) Choose a head vertex v′ ∈ V′− with a probability of p{v′ = vi} = D−(i)/ ∑vj∈V′−
D−(j).

(d) By construction V′′ , {v ∈ V : v 6= v′ & (v′, v) /∈ E} is not empty, choose a tail vertex v′′ ∈ V′′ with a
probability of p{v′′ = vi} = D+(σ(i))/ ∑vj∈V′′ D+(σ(j)).

(e) Add (v′, v′′) to E.

5. Return the digraph (V, E).

Given that an rVDP is a piecewise linear approximation of the subsequent aVDP, it
becomes clear why the order of degree introduced on the vertices in rVDP is important: it
makes it possible to construct an approximation of reasonable accuracy using only a few
line segments.

4. Complexity And Scalability
Algorithm 1: time O(N), space O(N)

Steps 1–6 of Algorithm 1 have constant time complexity O(1), Steps 7, 8 have time
complexity O(N). In Step 9, we iteratively adjust possibly different D− and D+. Let us
estimate the number of iterations needed. Figure 7 illustrates that∣∣∣∣∣∣

N−1

∑
i=1

(D−(i) · 1)−
N∫

1

y1(x)dx

∣∣∣∣∣∣ ≤ N and

∣∣∣∣∣∣
N−1

∑
i=1

(D+(i) · 1)−
N∫

1

y2(x)dx

∣∣∣∣∣∣ ≤ N.

Given that, by construction,
N∫

1

y1(x)dx =

N∫
1

y2(x)dx,
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we have∣∣∣∣∣ N

∑
i=1

D−(i)−
N

∑
i=1

D+(i)

∣∣∣∣∣ =
∣∣∣∣∣
(

N−1

∑
i=1

D−(i)−
N−1

∑
i=1

D+(i)

)
+ (D−(N)− D+(N))

∣∣∣∣∣
≤

∣∣∣∣∣∣
N−1

∑
i=1

D−(i)−
N∫

1

y1(x)dx

−
N−1

∑
i=1

D+(i)−
N∫

1

y2(x)dx

∣∣∣∣∣∣
+
∣∣(D−(N)− D+(N))

∣∣ ≤ 2N + N,

which proves that both Step 9 and, therefore, the whole Algorithm 1 have time complexity
O(N).

The space complexity of Algorithm 1 is also O(N), as the largest data we need to store
during the runtime consist of the N values of D− and N values of D+.

Algorithm 2: time O(N4), space O(N2)

The time complexity is O(N) for both the summation at Step 1 and permutation at
Step 2. The time complexity of Step 3 is O(N). Step 4 is repeated D times at the most,
where D ≤ N(N− 1) (at each iteration we add one new edge). Step 4a is O(1), Steps 4b,c,d
each have time complexity of O(N) (given that we store the lists of in- and out-neighbors
for each vertex). Step 4e is O(1). Thus, the resulting time complexity of both Step 4 and
Algorithm 2 as a whole is O(N3).

The space complexity of Algorithm 2 is O(N2), since we need to store the constructed
graph and some auxiliary 1-dimensional lists, the lengths of which do not exceed N for each.

The actual scalability of the combination of Algorithms 1 and 2 is shown in Figure 8.
The computational experiments presented here and below were conducted using a PC
with an Intel Core i7-7500U processor and 8 GB RAM. Although the time complexity
of Algorithm 2 (in the worst case) is rather high–O(N4), the experiments show that the
Random Plots approach may be applied for the construction of ensembles of small- and
medium-size random digraphs. To be applicable for generating ensembles of large graphs,
the proposed method needs refinement.

(a) (b)

Figure 7. (a) Reference function y1 (or y2); (b) the corresponding rVDP D− (or D+). The areas
covered by waves show two examples of unit round-off deviations of the rVDP from its reference
line at two vertices. All squares are units, so at each vertex, the deviation (waved area) cannot exceed
1; thus, the summary deviation does not exceed N.
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Figure 8. Dependence of the Random Plots graph construction time on the graph’s size and density.

5. Accuracy

In this section, we present and discuss the results of computational experiments aimed
at estimating the accuracy of the aVDPs of the digraphs produced by Algorithm 2 with
respect to the input rVDPs D−, D+.

To evaluate how close the aVDPs of the digraphs produced by Algorithm 2 are to the
corresponding rVDPs from Algorithm 1, we use the L1 norms

L− = 1
N(N−1)

N

∑
i=1
|deg−(vi)− D−(i)|,

L+ = 1
N(N−1)

N

∑
i=1
|deg+(vi)− D+(σ(i))|,

(9)

where N is the number of vertices, D− and D+ are the rVDPs produced by Algorithm 1,
deg−(vi) and deg+(vi) are the in- and outdegrees of vertex vi in the digraph produced by
Algorithm 2, and σ : 1, N ↔ 1, N is the shuffling permutation from Step 2 of Algorithm 2.

Recall that the form of the rVDPs is defined by the parameters α1, β1, α2, β2, where α1,
β1, and α2 are random (see Steps 2–5 of Algorithm 1) and β2 is computed uniquely (see
Step 6 of Algorithm 1) to satisfy the equality (6).

Figure 9 illustrates the differences between the rVDPs D−, D+ and the corresponding
aVDPs for several distinct choices of α1, α2 (β1 is taken to be 0). Separate plots are shown
depending on whether α1 and α2 are greater or less than π/4. One can see that the error
grows as the plot approaches the upper bound. This is due to the following “smoothing
effect”: (1) during the graph construction process, it becomes more and more difficult to
find new neighbors for a high-degree vertex, as the number of vertices already connected
to it increases; (2) for such vertices, Step 4b in Algorithm 2 and the subsequent resampling
at Step 4a occur more and more often, pushing the new edges to less filled vertices; (3) as
a result, the vertices with lower degrees in the rVDPs have greater degrees in the aVDPs,
and vice versa. The smoothing effect is most pronounced at the steepest segments of the
rVDP, where the plot approaches the ceiling of N − 1 neighbors.
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Figure 9. Examples of rVDPs D−, D+ resulting from Algorithm 1 (dashed lines) and the correspond-
ing aVDPs resulting from Algorithm 2 (solid lines) for graphs with 1000 vertices, for different values
of α1 and α2, under the condition δ = 0 (β1 = 0) (see Step 4 of Algorithm 1). Black and gray corre-
spond to vertex in- and outdegrees, respectively. The X-value is the vertex counting number, where
the vertices are listed in increasing order of degree. (In- and outdegree lists are ordered separately, so
that, as a rule, each vertex corresponds to different X-values in the black and gray plots.) The Y-value
is the indegree (black) or outdegree (gray).

Let us study the relationship between the coefficients α1, α2, β1 and the accuracy of the
approximation in more detail. Figure 10 shows the dependence between the “steepness
coefficients” α1 and α2 and the accuracy. The low-density graphs may be clearly divided
into three types: low-steepness with higher accuracy (black circles), intermediate-steepness
with average accuracy (gray squares and crosses), and high-steepness with lower accuracy
(black triangles). The high-density graphs follow a similar, but messier, pattern. The peak
error occurs at the intermediate values of graph density, which is unsurprising, since the
structural variety of graphs with intermediate density is the highest, and the more variety
there is, the more chances there are for the aVDPs to deviate from the rVDPs.

horizontal δ-shift (β1 < 0) vertical δ-shift (β1 ≥ 0)
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Figure 10. Dependence of graph construction accuracy on the graph density for different construction
parameter values. Each plot contains 1000 marks. Each mark corresponds to a graph constructed by
Algorithms 1 and 2, where α1, α2, and β1 are selected uniformly, and β2 is deterministic (see Steps
2–6 of Algorithm 1). The X-value is the graph density D/(N(N − 1)) (see Step 1 of Algorithm 2); the
Y-value is the averaged relative error (L+ + L−)/2 (see (9)).

We conclude our analysis of the accuracy of Algorithm 2 with Figure 11, which shows
the distribution of the averaged relative errors (9) for the 2000 graph generation experiments
considered in Figure 10.
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Figure 11. Distribution of the construction errors for the 2000 graphs used in Figure 10. The X-value
is the averaged error (L− + L+)/2 (see (9)); the Y-value is the probability of getting this error when
applying Algorithm 2.

6. Coverage

As discussed in the introduction, the main motivation for this paper is to maximize
the diversity of the random graphs produced. The diversity of a set of graphs is a rather
abstract notion. Our approach is to associate it with the diversity of the rVDPs and to
construct the latter randomly in a certain sense. However, how effective is this approach?

First, let us see how expressive the method proposed in Algorithm 1 is, i.e., how closely
the rVDPs produced by Algorithm 1 can simulate some real VDPs. The last column in
Table A1 shows that the most problematic VDPs have hinge points with average y-values
(see Figure 12). Probably the strongest effect this issue has on the rVDPs corresponding to
SF graphs: Algorithm 1 is able to produce steeply concave rVDPs (if point Q shifts towards
F (see Figure 3), then according to (5), the vertex degrees on the segment [A, Q] all are set
to 1), but this is the only type of concave rVDP that Algorithm 1 can produce. Note that for
VDPs with a hinge point whose y-value is close to either 1 or N, Algorithm 1 is able to pick
similar rVDPs (see, e.g., the fifth row in Table A1).

(a) (b)

A Number of vertex in the list 
sorted by degree

average
values

V
er

te
x 

d
eg

re
e

areas
hard to
simulate
by rVDPs

B

C

D

Som
e E

RG-g
rap

h

Marginal weakly connected vertices

Hubs

Figure 12. (a) An example of vertex degree plot that cannot be accurately simulated with the rVDPs
produced by Algorithm 1; the hinge points B and C have average y-values; even the presence of one
pattern of the two—either AB or CD—poses a problem for Algorithm 1 when aiming to produce
a similar rVDP; (b) a possible graph structure that has an VDP of the form from (a): the marginal
vertices correspond to AB, the ERG-graph–to BC, the hubs–to CD.

The weakness outlined above can be overcome through the use of more sophisticated
forms of rVDPs generated in Algorithm 1. For example, linear y1, y2 in Algorithm 1 can be
replaced by piecewise linear functions with one or more breakpoints. Now, let us proceed
to the practical assessment of the Random Plots method.

One natural way to measure its effectiveness is to proceed from the abstract notion
of the diversity of a set of graphs to the tangible notion of the diversity of the specific
scalar properties of the graphs. That is, if a set of graphs claims to be “diverse”, the graphs
belonging to it should at least have diverse scalar properties.
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In this section, we compare graph sets generated by our Random Plots (RP) model
with sets generated by the three models described in the introduction—the Erdős–Rényi–
Gilbert (ERG), scale-free (SF), and small-world (SW) models—in terms of seven well-known
scalar properties of digraphs. The selection of these properties is contingent on two factors:
(1) each property should be, to the greatest extent possible, typical of directed graphs; (2)
each property should be applicable to the graphs produced by all four models consid-
ered (for example, we exclude properties defined only for weakly/strongly connected or
acyclic digraphs).

In our experiments, we use each of the four models to generate 1000 digraphs on a set
of 100 vertices. In each experiment, we work with a 2D parameter space where the first
coordinate is the digraph density (|E|/(|V|(|V| − 1))) and the second is the scalar property
under consideration; each constructed graph defines a point in this parameter space. Since
the proposed RP model is intended to produce maximally diverse random graphs, the
cloud of 1000 points it generates in each of the 2D parameter spaces is expected to not only
embrace the corresponding 1000-point clouds of the three reference models but also to
cover some new areas of the parameter space.

The ERG and SF graphs are constructed using the corresponding Python 3 NetworkX
2.4 functions [48,49], while the SW graphs are constructed by [50], which allows edge
directions. The ERG graph generator takes the probability pe for an edge to exist as a
parameter (this value is the same for all the edges); in our experiments, we draw the
value of pe for each graph from the uniform distribution U (0, 1). The SW graph generator
takes the probability of rewiring, β, as a parameter, which, again, is chosen uniformly:
β ∼ U (0, 1). The SF graph generator takes three basic parameters:

α—the probability of adding a new node connected by an outgoing edge to
an existing node chosen randomly according to the indegree distribution; β—
probability of adding an edge between two existing nodes, where one existing
node is chosen randomly according [to] the indegree distribution, and the other is
chosen randomly according to the outdegree distribution; and γ—the probability
of adding a new node connected by an incoming edge to an existing node chosen
randomly according to the outdegree distribution. [49]

The SF graph generator requires α+ β+γ = 1, so we take α′, β′, γ′ ∼ U (0, 1) and normalize:
α = α′/(α′ + β′ + γ′), β = β′/(α′ + β′ + γ′), γ = γ′/(α′ + β′ + γ′).

To compute the seven scalar graph properties, we applied ready-made Python 3
NetworkX 2.4 functions wherever possible. If there were no appropriate ones, we wrote
our own code. The whole project for the computational experiments is written in Python 3
and is available at [51].

Sections 6.1–6.7 below describe the seven scalar properties studied and summarize the
results of each experiment.

6.1. Average Reachability Coefficient

One of the basic characteristics of graphs as models of complex distributed systems is
how tightly their elements are connected to each other. There are many ways to measure
this; let us start with a rather simple and straightforward one, the average reachability
coefficient. This is computed as follows: (1) for each vertex v ∈ V, find the proportion of the
vertices that are reachable from v via a (directed) path in the graph G = (V, E); (2) average
this proportion over all the vertices v ∈ V.

Figure 13 shows the clouds generated by the RP, ERG, SF, and SW models in the
parameter space Density × Average reachability coefficient.
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Figure 13. Clouds of digraphs in the plane Density × Average reachability coefficient. Each cloud
consists of 1000 points. Each point corresponds to a 100-vertex graph produced by one of the four
models being compared (note that the SF model does not allow the construction of dense graphs).

6.2. Size of the Largest Strongly Connected Component

Within a complex system, communities in which every member can reach all the other
members are of particular practical interest. In digraph terms, such communities form
strongly connected components. In Figure 14, we compare the graph sets generated by the
RP, ERG, SF, and SW models in terms of the diversity of the size of the largest strongly
connected component (computed with the NetworkX function [52]).
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Figure 14. Clouds of digraphs in the plane Density × Size of the largest strongly connected component.
Each cloud consists of 1000 points. Each point corresponds to a 100-vertex graph produced by
one of the four models being compared (note that the SF model does not allow the construction of
dense graphs).

6.3. Spectral Bipartivity

A structure that is, in some sense, the opposite of a strongly connected component is a
part of a bipartite graph: a part is a subset of vertices among which there are no connections.
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Bipartite graphs are ubiquitous in graph theory; they are especially relevant to appli-
cations concerned with the modeling of interactions between two types of objects. In more
or less homogeneous networks, bipartivity is often an unwanted property, indicating an
absence of connections between the elements within some large groups and suggesting
network misdesign [53].

It is known that a graph is bipartite if and only if it contains no odd cycles. This
criterion suggests a refinement of the yes/no notion of bipartivity to a kind of bipartivity
measure, given by the ratio of the number of even-length closed walks to the total number
of closed walks in the network [53].

Figure 15 shows the RP, ERG, SF, and SW clouds corresponding to bipartivity (com-
puted with the NetworkX function [54]).
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Figure 15. Clouds of digraphs in the plane Density × Spectral bipartivity. Each cloud consists of
1000 points. Each point corresponds to a 100-vertex graph produced by one of the four models being
compared (note that the SF model does not allow the construction of dense graphs).

6.4. Reciprocity

Now, we proceed from the properties characterizing global structures in graphs to the
properties of local vertex neighborhoods. One of the basic local connectivity properties
is reciprocity (also known as symmetry, in the context of binary relations in mathematics).
The reciprocity of a digraph (V, E) is the proportion of edges for which there exists a
reverse edge:

|{(u, v) ∈ E : (v, u) ∈ E}|/|E|. (10)

Reciprocity is the only test that our RP model fails to pass. As can be seen in Figure 16,
the SW model shows a much greater diversity in reciprocity values, for the following simple
reason. By construction (see [55]), the SW model initially generates a regular graph with
all edges being reciprocal. If the rewiring probability β is equal to 0, then all of the edges
remain reciprocal and the reciprocity of the graph is equal to one, independently of the
density. If β = 1, the graph turns into an ERG-type graph with the corresponding typical
reciprocity values (see the upper right plot in Figure 16). Since β is sampled uniformly
from (0, 1), the SW model produces all possible intermediate values of reciprocity for any
graph density.
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Figure 16. Clouds of digraphs in the plane Density × Reciprocity. Each cloud consists of 1000 points.
Each point corresponds to a 100-vertex graph produced by one of the four models being compared
(note that the SF model does not allow the construction of dense graphs).

6.5. Transitivity

Another basic local connectivity property (as well as another property relevant to
binary relations in mathematics) is transitivity. By the degree of transitivity of a labeled
digraph (V, E) we can understand the proportion of the vertex triples for which the graph
edges define a transitive relation:

V4 , {(u, v, w) ∈ V3 : (u 6= v 6= w 6= u)

& (u, v) ∈ E & (v, w) ∈ E & (u, w) ∈ E},
V∠ , {(u, v, w) ∈ V3 : (u 6= v 6= w 6= u)

(u, v) ∈ E & (v, w) ∈ E},

Tr = |V4|/|V∠|. (11)

Figure 17 shows the range of transitivity values at different values of graph density
for the RP, ERG, SF, and SW models. The results here differ considerably from those for
reciprocity: the RP cloud not only embraces the other three clouds, but also covers a new
region in the area corresponding to high-density graphs.
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Figure 17. Clouds of digraphs in the plane Density × Transitivity. Each cloud consists of 1000 points.
Each point corresponds to a 100-vertex graph produced by one of the four models being compared
(note that the SF model does not allow the construction of dense graphs).

6.6. Average Clustering Coefficient

The last local property studied is the local clustering coefficient, which shows the extent
to which the vertices of a graph form tightly connected local communities. This measure
is of particular importance in the study of social networks. The clustering coefficient of
a vertex is equal to the proportion of existing edges between its neighbors, out of all the
possible edges between these neighbors (see [31] for the formal definition and an algorithm).

Figure 18 shows the distribution of the vertex-averaged local clustering coefficients
for the RP, ERG, SF, and SW models (computed with the NetworkX function [56]).
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Figure 18. Clouds of digraphs in the plane Density × Average clustering coefficient. Each cloud consists
of 1000 points. Each point corresponds to a 100-vertex graph produced by one of the four models
being compared (note that the SF model does not allow the construction of dense graphs).

6.7. Average Eigenvector Centrality

The final scalar property considered is eigenvector centrality, which measures the
“importance” of each vertex in the network. Here, importance is calculated in terms of how
many neighbors point to this vertex and how important these neighbors are by themselves
(see [33] for the details). One of the best-known applications of eigenvector centrality is
web page scoring, which is widely used by search engines.

Figure 19 shows the distribution of vertex-averaged eigenvector centrality values for
the graphs generated by the RP, ERG, SF, and SW models (computed with the NetworkX
function [57]).
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Figure 19. Clouds of digraphs in the plane Density× Average eigenvector centrality. Each cloud consists
of 1000 points. Each point corresponds to a 100-vertex graph produced by one of the four models
being compared (note that the SF model does not allow the construction of dense graphs).

6.8. Rumor Epidemic

The analysis of the diversity of static graph properties is not the only way to character-
ize the diversity of the graphs generated by a random graph model. Another indicator of
the diversifying power of the model is the variety of states that a certain dynamic process
takes in the graphs generated by the model. Choosing an overly restrictive model for a
random graph may lead to a wrong conclusion of the form “the process always ends with
YYY” or at least “the final state ZZZ never occurs”. Such narrowing conclusions may form
a dangerous “false calm” opinion in many sensitive applications, one of which is epidemic
modeling. Here, we consider an epidemic of rumors, where, in contrast to an epidemic of
disease, each node can be both “spoiled” (with a rumor) and “cured” (with a contradiction)
by each of its neighbors. We expect such a two-way process to be more sensitive to the
structure of underlying graphs compared to the one-way dissemination of infection.

In our experiments, we generated 100 random graphs with 300 nodes for each of
the 4 random graph models (RP, ERG, SF, SW) and each of the 5 graph density bins:
DB1 = [0, 0.2), DB2 = [0.2, 0.4), DB3 = [0.4, 0.6), DB4 = [0.6, 0.8), DB5 = [0.8, 1]. For each
of the 100 · 4 · 5 generated graphs, we repeated the following 10 times:

(1) Infect N0% of nodes with a rumor.
(2) Repeat the rumor-spreading process for 100 iterations. At each iteration, each

spoiled node can infect each of its healthy neighbors with a probability of p1, and each
healthy node can cure each of its spoiled neighbors with a probability of p2. The time
is discrete, so the nodes do not change their state until the end of the iteration, e.g., if a
healthy node is infected in the current iteration, it continues to act as a healthy node until
the next iteration.

(3) At the end of the 100th iteration, capture one of the three possible states: all 300
nodes are spoiled; all are healthy; mixed—some spoiled, some healthy.

Thus, for each combination of values of the 5 input parameters (graph model, density
quintile, N0, p1, p2) we collected 1000 terminal states (100 graphs× 10 repetitions). In the com-
putational experiments, we explored N0 ∈ {1%, 5%, 10%} and p1, p2 ∈ {0.2, 0.4, 0.6, 0.8, 1}.
The experiments showed that:

(1) The terminal state “all spoiled” was never observed.
(2) In DB1, all four random graph models showed some “all healed” and some “mixed”

terminal states among the 1000 repetitions for all combinations of the other input parameters.
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(3) For the graph models ERG, SF, and SW, the terminal state “mixed” was never
observed in DB2–DB5.

(4) For the RP graph model in DB2, both “all healthy” and “mixed” terminal states
were observed for all combinations of N0, p1, and p2, except for the single combination
N0 = 1%, p1 = 0.8, p2 = 0.4, where all 1000 experiments ended in the “all healthy” state.

(5) For the RP graph model in DB3, in 42 experiments out of 75, both “all healthy” and
“mixed” terminal states were observed, and the remaining 33 experiments ended in the “all
healthy” state.

(6) In DB4, DB5 all experiments with the RP graph model ended in the “all healthy” state.
By relying on the graph models ER, SF, or SW, the obtained results could suggest that

the rumor epidemic ceases by the 100th iteration in all graphs, except for rather sparse
ones; however, the RP model revealed many graphs with an average density, for which the
epidemic was not over by the 100th iteration (see Table 1).

Table 1. The percentages of “mixed” terminal states (some vertices are infected, some are healthy) of
the rumor epidemic process shown by different random graph models for different graph densities.

Density Bin Random Plots Scale-Word Scale-Free Erdős–Rényi–Gilbert

1–[0, 0.2) 4.33 7.03 88.87 6.33
2–[0.2, 0.4) 1.06 0 0 0
3–[0.4, 0.6) 0.13 0 0 0
4–[0.6, 0.8) 0 0 0 0

5–[0.8, 1] 0 0 0 0

7. Conclusions

In this paper, we proposed a method, which we call the Random Plots method, for con-
structing diverse sets of digraphs. These sets may be of practical use for modeling complex
systems in which the structure of the connections between elements is not understood
(either because this information is too difficult or expensive to obtain, or because it is not
available in principle). In this situation, instead of trying to guess the unknown connection
structure or averaging it by the maximum-entropy graph generation model, one can study
a set of graphs covering “all sensible connection structures”.

The Random Plots method starts with the construction of a diverse set of pairs of
piecewise linear nondecreasing plots, which is used as a reference vertex for in- and
outdegree plots. At the second step, a digraph whose actual vertex in- and outdegree plots
are similar to the reference plot is constructed.

To test the effectiveness of our approach, we compared the diversity of the graph
sets produced by our model to that of the sets produced by some well-known graph
generation models (the Erdős–Rényi–Gilbert, scale-free, and small-world models). To make
the notion of “diversity” concrete, we studied each set with respect to several different
scalar properties of graphs. Each graph gave rise to a point in a 2D space of the form
Density × Scalar property, so we were able to understand the diversity of each graph set in
terms of the given scalar property via the corresponding scatter of points in the plane. Our
experiments showed that for 6 out of the 7 scalar properties considered, the Random Plots
approach produced quite diverse clouds that not only embraced the clouds corresponding
to the Erdős-Rényi-Gilbert, scale-free, and small-world models, but also covered some new
areas in the 2D parameter spaces.

Another characteristic used to assess the diversity of graph ensembles was the variety
of terminal states of a dynamic process—the rumor epidemic. Our experiments showed
that for the graphs generated by the Erdős–Rényi–Gilbert, scale-free, and small-world
models, the epidemic stopped by the end of the observation period in all cases, except for in
sparse graphs. The proposed Random Plots model additionally revealed graphs of medium
density for which the epidemic did not stop during the observation period. These results
suggest that the Random Plots model may help, for example, to avoid dangerous “false
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calm” errors in the modeling of an epidemic in societies where the connection structure has
been weakly studied.

The proposed approach could be improved in two ways: (1) by increasing the expres-
sive power of Algorithm 1 (aimed, for example, at enhancing its ability to generate various
SF-type graphs) and (2) reducing the time complexity of Algorithm 2. The first problem
could be addressed by introducing more sophisticated rVDPs, for example, piecewise linear
functions. To reduce the time complexity of graph construction, we propose that either the
method of graph synthesis could be simplified (with a corresponding loss in accuracy) or
we could proceed from simple graphs to multigraphs (which are considerably easier to
generate). Further research could also be devoted to introducing a proper probability space
for sample spaces consisting of random plots.
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Appendix A

Table A1. Examples of VDPs for real-world graphs (OY—vertex degree; OX—vertex counting number in ascending order of degrees). Data were taken from the
Index of Complex Networks (ICON) [58]. Blue and red correspond to in- and outdegrees in directed graphs, green corresponds to degrees in undirected graphs.

Description |V | |E| Vertex Degree Plots Possible rVDPs

[31]

Nematode Caenorhabditis elegans neural network graph.
The neurons are the vertices and the synaptic

connections are the edges (the authors suggest that
this is a small-world graph).

297 2359 0 200
100

101

102

[59]
DBLP citation database. The vertices are the articles

and the edges are the citations (no information about
the type of vertex degree distribution).

12590 49,759 0 5000 10000
100

101

102
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Table A1. Cont.

Description |V | |E| Vertex Degree Plots Possible rVDPs

[60]
World Wide Web “darknet” segment. The vertices are

the domains and the edges are the hyperlinks
(the authors suggest that this is a scale-free graph).

7178 25,104 0 5000

101

103

[61]

Marvel Universe graph. The vertices are the characters
and an edge exists if two characters appear in a story
together (surprisingly this graph does not resemble

a real-world social network).

19428 96,662
10000 20000

00000000000

10000 20000

00000000000

[62]

Graph showing the influence of programming languages
on each other (the authors note that this graph

has a power-law indegree distribution and
an exponential outdegree distribution).

352 741 0 200
100

101
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Table A1. Cont.

Description |V | |E| Vertex Degree Plots Possible rVDPs

[63]
Graph showing the physical connections of the cells

in a stem of Arabidopsis Columbia (no information about
the type of vertex degree distribution).

2210 12,188 0 1000 2000
100

101

[64]
Rome road network (1999). The vertices are the

crossroads (no information about the type
of vertex degree distribution).

3353 8859 0 20000

5

10
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