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Abstract  
Traumatic brain injury can cause loss of neuronal tissue, remote symptomatic epilepsy, and cognitive deficits. However, the mechanisms 
underlying the effects of traumatic brain injury are not yet clear. Hippocampal excitability is strongly correlated with cognitive dysfunction 
and remote symptomatic epilepsy. In this study, we examined the relationship between traumatic brain injury-induced neuronal loss and 
subsequent hippocampal regional excitability. We used hydraulic percussion to generate a rat model of traumatic brain injury. At 7 days 
after injury, the mean modified neurological severity score was 9.5, suggesting that the neurological function of the rats was remarkably 
impaired. Electrophysiology and immunocytochemical staining revealed increases in the slope of excitatory postsynaptic potentials and 
long-term depression (indicating weakened long-term inhibition), and the numbers of cholecystokinin and parvalbumin immunoreactive 
cells were clearly reduced in the rat hippocampal dentate gyrus. These results indicate that interneuronal loss and changes in excitability 
occurred in the hippocampal dentate gyrus. Thus, traumatic brain injury-induced loss of interneurons appears to be associated with re-
duced long-term depression in the hippocampal dentate gyrus.
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Graphical Abstract   

Decreased number of inhibitory neurons in hippocampal dentate gyrus leads to cognitive impairment 
of rats after traumatic brain injury

Introduction 
Traumatic brain injury (TBI) can damage the hippocam-
pal formation (Grady et al., 2003; Pedachenko et al., 2015; 
Mashhadizadeh et al., 2017) resulting in reduced informa-
tion processing (Mathias et al., 2004; Ashley et al., 2012; 
Dymowski et al., 2015). This can, in turn, cause impaired 
physiological function (Witgen et al., 2005; Hoover et al., 

2014; Vasudevan et al., 2014; Spiegel et al., 2015; Hossei-
ni-Zare et al., 2017) and frequently leads to impaired cog-
nition and motor skills (Smith et al., 1994; Jourdan et al., 
2016; Kamins et al., 2016; Lin et al., 2016; Finch et al., 2017; 
McGarity et al., 2017; Thomsen et al., 2017). Pathological 
examinations of post-traumatic human brains have revealed 
specific damage in the temporal lobe and the limbic hippo-
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campus (Graham et al., 1995; Li et al., 2006). Nonspecific 
loss of hilar neurons, which usually produce an inhibitory 
signal, can lead to increased excitability in the dentate gyrus 
(Santhakumar et al., 2000; Witgen et al., 2005; Aungst et al., 
2013; Alwis et al., 2016; Mashhadizadeh et al., 2017). The 
function of the dentate gyrus is to filter excessive or aberrant 
activity in the brain. Thus, this brain subregion plays a piv-
otal role in the consequences of TBI. Several types of GAB-
Aergic interneurons regulate cerebral electronic discharges 
emitted by dentate granule cells (Halasy et al., 1993; Han et 
al., 1993; Hamidi et al., 2015; Lévesque et al., 2016; Losi et 
al., 2016; Yamada et al., 2016; Neumann et al., 2017). Into-
rhino-hippocampal signaling is controlled by the axo-axonic 
and basket cells in the dentate gyrus (Han et al., 1993). In 
non-overlapping sub-populations of axo-axonic and bas-
ket cells, CCK-immunoreactive and PV-immunoreactive 
interneurons separately mediate the perisomatic inhibitory 
control of dentate granule cells (Freund et al., 1996). How-
ever, the way in which neuronal loss leads to subsequent 
alterations in dentate gyrus excitability is unclear. In this 
study, we sought to define the hippocampal cellular circuit 
implicated in TBI-induced cognitive impairment in rats.
  
Materials and Methods 
Animals
Sixty adult (two-month-old) male Wistar rats weighing 280–
310 g were purchased from the Experimental Animal Labora-
tories of the Academy of Military Medical Sciences of China 
[SCXK(Jun)2012-0004]. The rats were individually housed in 
a temperature-controlled (20 ± 2°C) and humidity-controlled 
(60%) vivarium with a standard 12-hour light/dark cycle (7:00 
a.m. to 7:00 p.m. per cycle) and free access to food and water. 
The Animal Ethics Committee of Tianjin Medical University 
of China approved the study protocol. All experimental pro-
cedures were conducted according to the principles outlined 
in the guidance for the Care and Use of Laboratory Animals 
from the United States National Institute of Health and were 
in accordance with the Chinese Small Animal Protection 
Association. The rats were randomly divided into control 
(n = 30) and TBI (n = 30) groups. Although the rats in both 
groups underwent surgical procedures, we induced a fluid 
percussion injury in the rats in the TBI group only.

Establishment of the fluid percussion injury model 
After acclimating in the vivarium for 7 days, the rats were 
anesthetized via an intraperitoneal administration of chloride 
hydrate (3 mL/kg; Department of General Medical Reagent, 
Tianjin Medical University, China). The rats were placed in a 
stereotaxic frame, and their scalp and temporal muscles were 
reflected to expose the cranium. A craniotomy (3.5 mm × 3.5 
mm) was performed over the right parietal bone, 2 mm lateral 
to the sagittal suture and 3 mm caudal to the coronal suture. 
Twenty-four hours after surgery, the rats were subjected to an 
experimental fluid percussion injury at 1.8–2.0 atmosphere 
(atm), as previously described (Van et al., 2016). Briefly, a 
male Luer-Lok™ fitting was cemented to the craniotomy site, 
enabling attachment of the animal to a fluid percussion injury 

device (model 01-B; New Sun Health Products, Cedar Bluff, 
VA, USA). A saline bolus from a cylindrical plexiglass res-
ervoir was rapidly introduced into the closed cranial cavity, 
causing mechanical deformation of the brain. Each group of 
rats was further subdivided for histological and electrophysi-
ological quantification of hippocampal interneurons. 

Modified neurological severity score (MNSS)
We evaluated the neurological function of each experimen-
tal rat via the MNSS, which includes tests of sensory, mo-
tor, balance, and reflex function (Chen et al., 2001). Lower 
scores reflect higher function. The test was administrated 24 
hours after the fluid percussion injury by an observer who 
was blinded to the experimental and treatment conditions. 
Test scores ranged from 3 to 18. 

Measurement of long-term depression 
On day 7 post-injury, 15 rats from each group were anes-
thetized with 30% urethane (1.2 g/kg; intraperitoneally) and 
placed in a stereotaxic instrument (Narishige, Japan). After 
exposing the surface of the skull, we used a dental drill to 
create two holes (2 mm × 2 mm) above the left side of the 
brain, and incised the dura matter. Stimulating electrodes 
(Advent Co., UK) were then lowered into the perforant path 
(anteroposterior −8.0 mm, lateral 4.0 mm, dorsoventral 2.8 
mm). A recording electrode (Advent Co.) was positioned in 
the granule cell layer of the dentate gyrus (anteroposterior 
−4.0 mm, lateral 2.5 mm, dorsoventral 3.0 mm). The stimu-
lating electrodes were adjusted such that stimulation of the 
perforant path afferents would trigger an optimal excitatory 
postsynaptic potential in the granule cells. After the re-
sponses were stabilized, we recorded 20 minutes of baseline 
activity under low-frequency stimulation (0.1 Hz), followed 
by tetanic stimulation (900 pulses, 1 Hz, 4 ms, repeated 5 
times) (Su et al., 2009) to induce long-term depression. The 
excitatory postsynaptic potentials were augmented via a 
conventional amplifier (AD Instruments Pty Ltd., Austra-
lia), and recorded three times per minute after the tetaniza-
tion. All potentials were monitored on an oscilloscope (AD 
Instruments Pty Ltd.) and digitized at a sampling interval 
of 20 µs. We measured the slope for the maximal change in 
initial excitatory postsynaptic potential and expressed the 
result as a percentage of the averaged response at baseline: 
(Slope after tetanus / Slope mean of baseline) × 100%. 

Extracellular input/output curves  
We measured long-term depression immediately after as-
sessing the input/output curves. To evaluate synaptic poten-
tial, we triggered input/output curves via systematic varia-
tion of the stimulus current (0.1–1.0 mA). Stimulant pulses 
were delivered at 0.1 Hz, and a total of six responses were 
collected and averaged for  each current level. The excitatory 
postsynaptic potential slopes were augmented via a conven-
tional amplifier (AD Instruments Pty Ltd.).

Immunohistochemical staining
On day 7 post-injury, 15 rats from each group were anes-
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Figure 1 Effects of TBI on long-term depression and input/output curves in the hippocampal dentate gyrus at 7 days post-injury. 
(A) Input/output curves were generated by systematic variation of the stimulus current (0.1–1.0 mA) to evaluate synaptic potency. The input/out-
put curves were significantly different between the control and TBI groups (P < 0.05). (B) The EPSP slope after application of tetanic stimulation 
(arrow) also differed between the two groups. Data are expressed as the mean ± SD (n = 15; repeated measures analysis of variance). *P < 0.05, vs. 
control group. TBI: Traumatic brain injury; EPSP: excitatory postsynaptic potential. 

Figure 2 Traumatic brain injury induced PV-IR cell loss in the dentate gyrus. 
Rat PV-IR interneurons are shown 7 days after FPI. The rectangle shows the enlarged region in each subsequent step. A–D represent increasingly 
magnified views at 40×, 100×, 200×, and 400×, respectively. Scale bars: 2.0 mm, 500 μm, 200 μm, and 200 μm, respectively from left to right. PV-
IR: Parvalbumin-immunoreactive; FPI: fluid percussion injury. 

Figure 3 Traumatic brain injury induced CCK-IR cell loss in the dentate gyrus. 
Rat CCK-IR interneurons are shown 7 days after FPI. The rectangle shows the enlarged region in each subsequent step. A–D represent increasingly 
magnified views at 40×, 100×, 200×, and 400×, respectively. Scale bars: 2.0 mm, 500 μm, 200 μm, and 200 μm, respectively from left to right. CCK-
IR: Cholecystokinin-immunoreactive; FPI: fluid percussion injury. 
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thetized with chloride hydrate (30 mL/kg, intraperitoneally) 
and then sacrificed. The rats were perfused transcardially with 
a fixative containing either 4% paraformaldehyde (Zsbio, 
Beijing, China) and 15% picric acid (Zsbio) [for parvalbumin 
(PV)] or 5% acrolein (Zsbio) [for cholecystokinin (CCK)] 
(Smith et al., 1994). The brain was removed and hemisected. 
The ipsilateral hippocampus was dissected and immersed in 
fixative for an additional 2 days. The hippocampus was then 
placed on a gelatin-based support block and cut into 50 µm-
thick transverse sections on a vibratome. We collected every 
tenth and eleventh section (i.e., at every 500 µm and 550 µm) 
in the wells of a tissue culture plate for immunocytochemis-
try. Sections from the injured rats and control rats were si-
multaneously processed in the same wells. Sections from each 
group were labeled accordingly (control and TBI) to prevent 
confusion. The first and last two sections (i.e., −1.3 mm from 
the ventral and dorsal tips) were not assessed for immunos-
tained dentate neurons because the granule cell layer and the 
hilus in these sections were difficult to precisely delineate. The 
sections were washed in 0.1 M phosphate buffered saline (PBS) 
with a pH of 7.4. They were incubated with 3% normal goat 
serum (60 minutes) and then primary antisera against either 
PV (1:1000; Abcam, Cambridge, MA, USA) or CCK (1:500; 
Abcam) for 1 or 2 days, respectively. Afterwards, the samples 
were incubated with a goat-anti-rabbit IgG (for PV, 1:100; for 
CCK, 1:300; ICN Biochemicals, Costa Mesa, CA, USA) for 6 
hours, and then with a peroxidase- antiperoxidase complex 
(1:100; Dakopatts, Copenhagen, Denmark) overnight. The 
sections were washed thrice with 0.1 M PBS with a pH of 7.4 
and 1% normal goat serum + 0.5% Triton X-100. After im-
munocytochemical labelling, the sections were removed from 
the wells and separated into two groups. The sections were 
mounted on gelatin-coated slides, dried, dehydrated, and 
covered with a neutral medium and a coverslip. Cell counting 
was conducted on an IX71 microscope (Olympus, Tokyo, Ja-
pan) with the aid of DpController 2.1.1.183 software. 

Statistical analysis
Data, expressed as the mean ± SD, were analyzed using SPSS 
13.0 software (SPSS, Chicago, IL, USA). Interneuron cell 
counts were compared using an independent samples t-test. 
Data from the long-term depression recordings and input/
output curves in the two groups were compared using a re-
peated measures analysis of variance. P values < 0.05 were 
considered statistically significant. 

Results
Performance of rat models 
A mean MNSS score of 9.5 and mortality rate of 25% was 
obtained after a controlled impact of 1.8–2.0 atm to the rat 
brains, indicating significantly impaired brain function.

Changes in input/output curves and long-term depression 
in TBI rats
The amplitudes of the input/output curves and the long-term 
depression of the rodent brains are displayed in Figure 1. The 
input/output curve was higher in the TBI group compared 
with the control group (Figure 1A). Long-term depression was 
also higher in the TBI group compared with the control group 
(Figure 1B; P < 0.05). These data indicate that TBI induced a 
significant increase in excitability in the dentate gyrus. 

TBI-induced hippocampal interneuron loss 
Selective vulnerability of particular hippocampal neurons 
may underlie the cognitive deficits associated with TBI 
(Mathias et al., 2004). In our intervention, we induced inter-
neuronal loss in the dentate gyrus sub-region of the hippo-
campus (Figures 2, 3). As per Miki et al. (2000), we defined 
the different hippocampal sub-regions via immunohisto-
chemical staining. Non-overlapping parvalbumin and cho-
lecystokinin-immunoreactive interneuron (PV-IR or CCK-
IR) populations have been found to provide perisomatic 
inhibitory control of dentate granule cells (Freund et al., 
1966). Immunocytochemical analyses (Figure 4) revealed 
that, compared with the control group, the number of CCK-
IR cells in the ipsilateral dentate gyrus was 37.2 ± 4.8% lower 
than that the TBI group 7 days after fluid percussion injury 
(Figure 4A). Similarly, the parvalbumin-immunoreactive 
interneuron population was reduced by 45.6 ± 4.3% in the 
dentate gyrus (Figure 4B). 

Discussion
In this study, we found that rats in the TBI group had con-
spicuously fewer PV and CCK-immunoreactive cells in the 
dentate gyrus of the hippocampus, indicating that regional 
interneurons may have varying degrees of vulnerability ac-
cording to their location. Non-stereological techniques for 
inducing TBI have reportedly led to greater neuronal loss 
(Bussière et al., 2002). Baldwin et al. (1997) used stereolog-
ical techniques and did not observe a progression of neuro-

Figure 4 Number of interneurons 
in the rat dentate gyrus 7 days 
after traumatic brain injury 
(immunocytochemistry).
(A, B) Quantitation of CCK-IR and 
PV-IR interneurons in the ipsilat-
eral hippocampus of rat brains after 
fluid percussion injury at 1.8–2.0 
atm compared with controls. Data 
are expressed as the mean ± SD (n 
= 15; independent samples t-test). 
*P < 0.05, vs. control group. atm: 
Atmosphere; CCK-IR: cholecys-
tokinin-immunoreactive; PV-IR: 
parvalbumin-immunoreactive.
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nal loss over time. However, Rink and Guo (2004) reported 
that a significant but small number of injured neurons in the 
hippocampus and cortex of injured rats underwent apopto-
sis hours to days following TBI. Several recent studies (An-
drews et al., 2017; Andrews and Reisner, 2017; Casaletto et 
al., 2017; Sood et al., 2017; Spencer et al., 2017) have shown 
loss of memory and cognitive function, especially audito-
ry memory function associated with the temporal lobe, as 
well as depression-like disorders and posttraumatic stress 
disorders (among other features), which are associated with 
hippocampal cell loss. Van Zomeran et al. (1998) found that 
the features of electrical and lightning injuries are similar to 
those seen in TBI. Therefore, cell apoptosis after TBI may 
play an important role in decreasing interneuron numbers 
in the hippocampus. 

To investigate electrophysiological changes induced by 
TBI, we employed experimentally controlled fluid percus-
sion injury in rats. We observed a TBI-induced shift in 
input/output curves, indicating increased excitability in the 
dentate gyrus after TBI. These alterations were correlated 
with changes detected in hippocampal dentate gyrus in-
terneurons, including interneuronal loss in the ipsilateral 
hippocampus dentate gyrus that may contribute to altered 
dentate gyrus excitability. GABA-mediated inhibition is im-
portant in synchronizing, terminating, and initiating both 
pathological and normal activities in the neuronal network 
(Yang et al., 2007; Palmer et al., 2014; Faingold et al., 2015; 
Rombo et al., 2016). Therefore, the observed changes in ex-
citability may be attributable to alterations in neuronal inhib-
itory circuits. A subtle balance between neuronal inhibition 
and excitation is required to maintain normal brain function, 
including hippocampal function. A loss of interneurons in 
the hippocampal dentate gyrus could disturb this balance. 
The dentate gyrus may filter excessive or aberrant input to the 
CA3 area by preventing signal amplification by the CA1 and 
transduction of the processed information to the rat cortex. 
Thus, we evaluated excitability at the input (dentate gyrus) re-
gion of the hippocampal circuit. Our data revealed increased 
regional synaptic excitability in the hippocampal dentate 
gyrus in the TBI rats. Such increased excitability in the hippo-
campal dentate gyrus may reduce thresholds for developing 
self-sustained seizure activity (Coulter et al., 1996; Alwis et 
al., 2016; Hendricks et al., 2016; Magagna-Poveda et al., 2016; 
Liu et al., 2017; You et al., 2017). TBI-induced disruption of 
synaptic efficacy in hippocampal circuit conduction may be 
responsible for the observed cognitive deficits. The complex-
ity of the inhibitory changes observed after TBI indicate that 
TBI damages synaptic plasticity in the hippocampus. Further 
studies should be directed towards the mechanism of putative 
regional excitatory activity alterations in the hippocampus. 
Additionally, other neurons and glial cells may contribute to 
the electrophysiological changes observed after TBI. There-
fore, examinations of post-TBI changes in multiple cell types 
may be beneficial.
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