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Not there yet: using data-driven methods
to predict who becomes costly among low-
cost patients with type 2 diabetes
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Abstract

Background: Diabetes is a leading cause of Medicare spending; predicting which individuals are likely to be costly
is essential for targeting interventions. Current approaches generally focus on composite measures, short time-
horizons, or patients who are already high utilizers, whose costs may be harder to modify. Thus, we used data-
driven methods to classify unique clusters in Medicare claims who were initially low utilizers by their diabetes
spending patterns in subsequent years and used machine learning to predict these patterns.

Methods: We identified beneficiaries with type 2 diabetes whose spending was in the bottom 90% of diabetes
care spending in a one-year baseline period in Medicare fee-for-service data.
We used group-based trajectory modeling to classify unique clusters of patients by diabetes-related spending
patterns over a two-year follow-up. Prediction models were estimated with generalized boosted regression, a
machine learning method, using sets of all baseline predictors, diabetes predictors, and predictors that are
potentially-modifiable through interventions. Each model was evaluated through C-statistics and 5-fold cross-
validation.

Results: Among 33,789 beneficiaries (baseline median diabetes spending: $4153), we identified 5 distinct spending
patterns that could largely be predicted; of these, 68.1% of patients had consistent spending, 25.3% had spending
that rose quickly, and 6.6% of patients had spending that rose progressively. The ability to predict these groups was
moderate (validated C-statistics: 0.63 to 0.87). The most influential factors for those with progressively rising
spending were age, generosity of coverage, prior spending, and medication adherence.

Conclusions: Patients with type 2 diabetes who were initially low spenders exhibit distinct subsequent long-term
patterns of diabetes spending; membership in these patterns can be largely predicted with data-driven methods.
These findings as well as applications of the overall approach could potentially inform the design and timing of
diabetes or cost-containment interventions, such as medication adherence or interventions that enhance access to
care, among patients with type 2 diabetes.
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Background
Type 2 diabetes is one of the most prevalent and most
costly conditions for Medicare; in 2017, more than 200
billion US dollars was spent on direct costs related to
diabetes, of which 61% was by older adults ≥65 years of
age [1, 2]. Fortunately, the burden of type 2 diabetes can
be substantially reduced through medication and lifestyle
interventions [3–5]. Despite this, patients living with
type 2 diabetes frequently develop kidney disease, an-
other significant driver of healthcare costs [3]. These
types of diabetes-related complications are some of the
key contributors to rising costs in these patients [3].
There are several possible explanations for the lim-

ited success in mitigating these rising costs. First, in-
terventions for type 2 diabetes often focus on patients
who have already become costly or poorly controlled,
even though these patients may only represent a frac-
tion of those who could benefit from an intervention
[1, 2, 6]. Second, while accurately predicting which
individuals are likely to become high cost is essential
for targeting interventions [7–12], current approaches
to predicting spending generally focus on composite
measures (like mean costs) and short time horizons,
even though patients with the same condition may
have costs and seek care in ways that fluctuate over
time [13, 14]. For example, patients with type 2 dia-
betes who are hospitalized early in a calendar year
may differ meaningfully from those who are hospital-
ized later in the year in terms of how that patient
should be managed, although composite metrics
would classify them similarly [15, 16].
Research in other settings has observed similar health-

care cost dynamics. For instance, Tamang et al. identi-
fied a definable group of low-spending patients whose
costs “bloomed”, or became costly, in the following year
within the general Danish population [17]. Similarly,
Lauffenburger et al. observed seven dynamic patterns of
spending among a large sample of US commercially-
insured beneficiaries, including individuals whose costs
increased rapidly towards the end of the year and an-
other group of relatively high cost individuals for whom
spending fell [18].
These approaches have not yet been applied to spe-

cific spending among patients with a chronic disease,
such as type 2 diabetes. In specific, little is known
about the patterns of spending among patients with
type 2 diabetes who are currently low utilizers and
how many and when these patients may become
costly to Medicare, the US national health insurance
program for many US older adults. The ability to bet-
ter proactively discriminate between patients with dia-
betes who have increasing spending over time could
better target interventions to those at greatest need.
Therefore, we used a dynamic, data-driven approach

to classify individuals with diabetes by their long-term
diabetes-specific spending patterns and assessed the
ability to predict membership in these groups.

Methods
Setting and study design
We used data from a 1-million-member sample of Medi-
care Fee-for-Service beneficiaries, including Medicare
Parts A (inpatient services), B (outpatient services) and D
(prescription drugs) patient-level files, from 2011 to 2013;
this original sample included ~ 20,000 beneficiaries in a
nationwide quality improvement program and ~ 980,000
randomly selected patients nationally [19]. We restricted
the cohort to the randomly-selected patients. Medicare
Fee-for-Service plans comprise the vast majority of insur-
ance coverage options for US older adults ≥65 years of
age; Fee-for-service in particular means that services, such
as hospitalizations, medications, and procedures are paid
for individually. Thus, these data contain complete paid
administrative claims for all procedures, physician
encounters, hospitalizations, and outpatient prescription
dispensations, including amounts paid by the insurer and
the patient, linked to eligibility data. Aggregate data on so-
cioeconomic status were obtained by linking each benefi-
ciary’s zip code of residence with 2010 United States
Census data. The Brigham and Women’s Hospital Institu-
tional Review Board approved the study.
To be included in the cohort, patients had to be ≥65

years of age, have a validated diagnosis of type 2 diabetes
(i.e., two outpatient or one inpatient diagnoses) [6, 20] in
the baseline year, and maintain continuous eligibility in
Medicare Parts A, B, and D from January 1, 2011 to De-
cember 31, 2013. The entry date for the cohort was de-
fined as January 1, 2012. The baseline year spanned
January 1, 2011 to December 31, 2011 (Appendix Figure
1). We further restricted the study cohort to those who
previously had lower spending levels (hereafter referred to
as “low-cost”), defined as being in the 90% of spending in
the baseline year (see “Costs” for further details) [17].

Costs
We measured total monthly healthcare spending for
each eligible patient for care related to diabetes by sum-
ming each individual’s allowed costs for inpatient visits,
outpatient medical and physician office visits, and out-
patient medications beginning with the entry date for
the cohort [6]. We focused on diabetes costs in particu-
lar because they may be more modifiable than other
types of spending by patients. To define costs for care
related to diabetes, diabetes costs for inpatient visits
were identified by searching for hospitalizations where
type 2 diabetes was recorded as the primary diagnosis
(i.e., International Classification of Diseases 9th edition
(ICD-9) codes 250.×0 and 250.×2) [6, 19]. As in prior
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validation work, outpatient medical and physician office
visits were identified by searching for medical claims
with any diagnosis of type 2 diabetes.6.19 We also mea-
sured the use and associated costs of all diabetes medi-
cations for which an outpatient claim was generated
(Appendix Table 1). Monthly costs were calculated by
adding up these costs per month, dividing by the num-
ber of days in that month, and multiplying by 30 to gen-
erate standardized values. These costs were then
logarithmically transformed to normalize their distribu-
tion, as is frequently done in healthcare spending [12,
21]. Costs were inflated using the consumer price index
medical care component to 2013 costs, as necessary.
As in prior research, we defined patients as low-cost if

they were in the lower 90% of overall diabetes spending
in the baseline year [17]. The appropriateness of this
threshold in the baseline year was confirmed using per-
centiles within the Medicare data (Appendix Figure 2)
but was explored in sensitivity analyses using a lower
threshold (i.e., 40%).

Baseline predictors
Sociodemographic predictors included age, race/ethni-
city and gender directly from the enrollment files as well
as zip-code level variables, such as median household in-
come and educational attainment.
We specified clinically-relevant characteristics using

data in the baseline year. These variables were based on
characteristics that have been used in cost-modeling in
administrative claims data as well as from the Quality-
Cost theoretical framework [9, 17, 18, 22]. These predic-
tors have also been shown in prior work to be as pre-
dictive as proprietary risk-adjustment methods [18].
Clinical factors were measured using ICD-9 codes and
included comorbidities such as coronary artery disease,
prior myocardial infarction, hypertension, congestive
heart failure, stroke, major depression, liver disease,
chronic kidney disease, atrial fibrillation, Alzheimer’s/de-
mentia, osteoporosis, obesity, and tobacco use.
We measured each beneficiaries’ numbers of unique

medications (by generic name), emergency room visits,
outpatient physician office visits, hospitalizations, unique
physicians, and unique pharmacies used during the base-
line period. We also measured adherence to common
chronic medication classes, including diabetes medica-
tions [18]. For this calculation, for each therapeutic class
(such as beta-blockers), we created a “supply diary” be-
ginning with the first fill for each medication in the first
6 months of the baseline year and linked all subsequent
observed fills based on dispensing date and days’ supply;
switching was allowed within each therapeutic class.
From this diary, we calculated the proportion of days
covered (PDC) as an average across any class that the
patient filled to generate one mean PDC [23, 24].

We measured diabetes-specific predictors, including
use of insulin, non-insulin injectables (e.g., GLP-1
agents), number of oral glucose-lowering agents, use of
testing supplies (listed in Appendix Table 1). In addition,
we measured adherence to oral glucose-lowering agents
for type 2 diabetes (e.g., by calculated an average PDC
using the same method as above) and persistence to in-
sulin (defined as having < 90 day gap in supplies based
on the supply diaries) [25].
Finally, we classified whether each of these baseline pre-

dictors were potentially-modifiable, defined by whether
they could theoretically be addressed in an intervention
and by categorizations in other research [26, 27]. For ex-
ample, the number of unique physicians that a patient sees
could be potentially-modifiable, while patient’s race/ethni-
city status would not be. On this basis and using classifica-
tions for potentially-modifiable based on prior work, we
classified 10 of the baseline predictors as potentially-
modifiable [25, 26].

Data-driven approach to modeling diabetes costs
We used trajectory modeling to empirically classify
spending patterns during the two-year follow-up
period. This approach considers changes in healthcare
spending over time, rather than aggregating costs over
a set time period [28]. Group-based trajectory models
are an application of finite mixture modeling that iden-
tify clusters of individuals who follow similar patterns
over time [29]. This approach fits a semiparametric
(discrete) mixture model to longitudinal data. Using
this method, we modeled longitudinal cost trajectories
in the two-year follow-up period using calendar month
as the time variable, diabetes-related costs in each of
those 24 months, a censored normal distribution, and a
third-order polynomial [18, 29, 30]. On the basis of
these models, we used the probability of membership in
each group for each individual to assign patients to the
trajectory group with the highest membership probabil-
ity, as in prior approaches [28].
We estimated each of these trajectory models using

a “forward” classifying approach from 2 to 6 groups,
each time investigating model fit using the Bayesian
information criterion (BIC), in which lower BICs indi-
cate better model fit [29]. The number of groups that
we investigated was capped at 6 based on the trajec-
tory groupings observed in prior work [18, 28]. As
recommended in the literature, along with considering
BIC, we selected the best fitting trajectory model
based on the ability to interpret separate groups visu-
ally, minimum membership probabilities in each
group, and having ≥5% of the sample in each group
[30–32]. We used the SAS procedure Proc Traj to
implement our analysis [28–30].
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Statistical analysis
Once we selected the best-fitting trajectory model, we
assessed the ability to predict membership in each two-
year trajectory group using generalized boosted regres-
sion models. The boosted algorithm is a non-parametric
machine learning method and is thought to be one of
the best approaches for prediction [33, 34]. In brief, the
algorithm builds numerous small regression trees that
together provide highly-accurate classification within a
prediction model [35]. The algorithm also automatically
selects variables, protects from model overfitting, and
describes the relative influence of each predictor [36].
We chose to use this approach rather than fitting covari-
ates in the trajectory models themselves as the boosted
algorithm uses these automatic methods to improve
model selection.
We estimated three separate boosted regression

models for predicting each trajectory group compared
with the other trajectory groups. The first model in-
cluded all baseline predictors (Model 1). The second
model included only diabetes-specific predictors (Model
2, predictors shown in Table 1). The third model in-
cluded only the potentially-modifiable predictors (Model
3, predictors shown in Table 1). To generate the boosted
regression models and avoid over-optimism bias, we
used the gbm package in R with 5-fold cross-validation
and applied standard default values for tuning parame-
ters to identify the optimal model [33]. We evaluated
each of these models through discrimination measures,
or the ability of the model to distinguish between pa-
tients who do and do not experience the outcome [37].
In specific, discrimination was measured by the C-
statistic, which ranges from 0.5 (non-informative model)
to 1.0 (perfect prediction) [38, 39]. For clinical context,
we also explored the relative influence of each predictor
from the boosted regression models for Models 2 and 3
to provide insight into baseline factors that may help
distinguish patients who may become costly later, such
as for example, tobacco use.
In sensitivity analyses, we restricted the cohort as well

as subsequent trajectory and prediction modeling to
those in the bottom 40% of spending in the baseline year
[26]. All analyses except for the boosted regression were
performed using SAS 9.4 (Cary, NC). The boosting algo-
rithm was performed in R, Version 3.4.1. This study fol-
lows the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) reporting guidelines.

Results
Cohort characteristics
After applying eligibility criteria, our study cohort con-
sisted of 33,789 Medicare beneficiaries with type 2 dia-
betes were in the bottom 90% of spending at baseline
(Appendix Table 2). Their mean age was 75.9 years

(Standard Deviation [SD]: 6.7), and 55.8% were female.
Median diabetes spending in the baseline year was
$4153.

Trajectory models of diabetes spending
A 5-group trajectory model best described the two-year
diabetes spending patterns (Fig. 1). This final 5-group
model included a minimal-user group (Group 1: 14.5%), a
low-cost group (Group 2: 25.2%), a rising-cost group
(Group 3: 6.6%) whose costs began to rise progressively in
the first year of follow-up, a moderate-cost group (Group
4: 28.4%), and a high-cost group (Group 5: 25.3%). Trajec-
tory modeling approaches using other numbers of groups
and their corresponding BICs are shown in Appendix Fig-
ure 3; other fit criteria for these trajectories are shown in
Appendix Table 3. Other models did not meet the best-
fitting criteria, including BIC.
Baseline characteristics for each trajectory group are

shown in Table 1 (asterisks are shown for the 10
potentially-modifiable factors). Patients across all 5
groups were similar in age. Their baseline spending pat-
terns (in the prior year) by trajectory group are shown in
Appendix Figure 4; of note, those in the high-cost trajec-
tory group had slightly higher costs than other trajectory
groups, but other groups were largely similar.

Prediction of diabetes spending trajectories
The cross-validated results of the three main prediction
models are shown in Table 2. Most of the two-year dia-
betes spending trajectory groups could be accurately
predicted using all baseline predictors (Model 1), par-
ticularly the minimal-user (C-statistic: 0.874), low-cost
(C-statistic: 0.746), and high-cost groups (C-statistic:
0.872). The ability to predict the rising-cost (C-statistic:
0.650) and moderate-cost groups (C-statistic: 0.685) was
modest. Using diabetes predictors alone (Model 2), over-
all predictive ability remained modest to strong, for ex-
ample, the high-cost group had a C-statistic of 0.855.
Predictive ability was slightly lower but still relatively
similar to the full baseline model (Model 1) using the
potentially-modifiable predictors alone (Model 3).
The relative influences of predictors from the boosted

regression for Model 2 (Diabetes-specific) and Model 3
(Potentially-modifiable predictors) for each of the 5 tra-
jectory groups are shown in Fig. 2 (collapsed across pre-
dictors with relative influence < 5) and Appendix Figure
5 (uncollapsed). In brief, the most influential predictors
depended on the model and group being predicted. For
example, the most influential factor for Groups 1–3 in
Model 3 were baseline diabetes spending, while for
Group 4, the most influential factor was average adher-
ence to oral diabetes medications and for Group 5, it
was number of unique diabetes medications. When
examining the group with progressively rising spending
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Table 1 Patient characteristics by diabetes spending trajectory

BASELINE YEAR COVARIATES Group 1: Minimal user
(N = 4907)

Group 2: Low cost
(N = 8.525)

Group 3: Rising cost
(N = 2215)

Group 4: Moderate cost
(N = 9594)

Group 5: High cost
(N = 8548)

Demographics

Age, mean (SD) 76.3 (7.0) 75.6 (6.6) 75.9 (6.5) 75.9 (6.6) 75.9 (6.7)

Female sex, % 52.7 51.5 51.4 57.4 61.4

Race/ethnicity, %

Non-Hispanic White 85.6 85.4 83.8 82.4 78.3

Black 8.3 8.4 10.0 11.4 14.0

Other 2.8 3.3 2.6 2.4 2.5

Asian/Pacific Islander 1.7 1.4 1.5 1.7 2.0

Hispanic 1.7 1.5 2.2 2.2 3.2

Zip code median income,
mean (SD)

$52,822 (22,467) $52,258 (20,643) $52,568 (19,731) $51,361 (20,502) $49,546 (20,657)

Zip code % high school grad,
mean (SD)

82.9 (17.3) 83.4 (16.6) 83.8 (14.8) 82.6 (16.4) 81.0 (16.8)

Healthcare utilization

Part D low income subsidy, % 15.1 12.0 13.0 22.7 43.8

No. of office visits, mean (SD) a 8.5 (7.3) 8.9 (6.8) 10.0 (7.5) 10.7 (7.9) 12.1 (9.5)

No. of physicians, mean (SD) a 2.1 (1.2) 1.9 (1.0) 2.0 (1.1) 2.0 (1.1) 2.3 (1.2)

No. of pharmacies used, mean
(SD) a

0.8 (1.2) 0.7 (1.1) 0.7 (1.1) 1.2 (1.3) 1.5 (1.2)

No. of hospitalizations, mean (SD) a 0.7 (1.0) 0.4 (0.7) 0.4 (0.7) 0.4 (0.7) 0.5 (0.8)

No. of ER visits, mean (SD) a 0.8 (1.5) 0.6 (1.0) 0.7 (1.1) 0.7 (1.5) 1.0 (1.5)

No. of unique drugs, mean (SD) a 4.4 (6.5) 4.0 (6.0) 4.1 (6.4) 7.5 (7.1) 12.9 (8.1)

Prescription generosity, mean (SD) 0.1 (0.2) 0.1 (0.2) 0.1 (0.2) 0.2 (0.2) 0.2 (0.2)

Medical benefits’ generosity, mean
(SD)

0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1)

Total baseline year costs,
mean (SD)

$20,835 (28.893) $14,191 (17,350) $16,085 (17,205) $17,353 (17,885) $24,557 (21,441)

Chronic medication use, % 38.9 37.1 35.2 62.8 83.3

Average adherence, mean (SD) a 0.8 (0.2) 0.8 (0.2) 0.8 (0.2) 0.8 (0.2) 0.8 (0.2)

Diabetes-specific

No. of oral diabetes drugs,
mean (SD)

0.1 (0.4) 0.3 (0.6) 0.4 (0.8) 1.0 (1.0) 1.2 (1.1)

Diabetes average adherence,
mean (SD)

0.6 (0.3) 0.8 (0.2) 0.8 (0.2) 0.9 (0.2) 0.9 (0.2)

Insulin use, % 0.8 2.2 4.9 11.6 40.4

Insulin persistence, % 36.8 61.1 62.4 77.5 87.1

Hypoglycemia, % 1.4 1.8 1.9 2.9 5.5

Ketoacidosis, % 0.6 0.6 0.9 1.2 2.0

Retinopathy, % 2.8 7.5 11.3 12.7 20.2

Nephropathy, % 0.6 1.2 1.3 2.2 3.6

Neuropathy, % 6.1 13.8 18.2 25.4 36.1

No. of testing supply fills,
mean (SD)

0.1 (0.2) 0.1 (0.4) 0.1 (0.7) 0.2 (0.9) 0.7 (2.2)

Baseline year diabetes costs,
mean (SD)

$5868 (7476) $5644 (7313) $6535 (7386) $7147 (7437) $9321 (8902)

Comorbidities

Comorbidity score, mean (SD) 2.1 (3.0) 1.7 (2.5) 2.1 (2.6) 2.3 (2.7) 2.4 (2.7)
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(Group 3) in particular, in Model 2, the most influential
diabetes-specific factors were their baseline diabetes
spending (relative influence: 63.9), average adherence to
oral diabetes medications (25.6), and number of unique
diabetes medications (4.5). In Model 3, the most

influential potentially-modifiable factors for that same
group were their average adherence to medications (rela-
tive influence: 39.9), number of office visits (20.1), aver-
age adherence to oral diabetes medications (15.3), and
number of Emergency Room (ER) visits (6.1).

Table 1 Patient characteristics by diabetes spending trajectory (Continued)

BASELINE YEAR COVARIATES Group 1: Minimal user
(N = 4907)

Group 2: Low cost
(N = 8.525)

Group 3: Rising cost
(N = 2215)

Group 4: Moderate cost
(N = 9594)

Group 5: High cost
(N = 8548)

Coronary artery disease, % 18.5 12.4 15.3 14.6 19.0

Prior MI, % 2.5 1.3 1.0 1.2 1.4

Asthma or COPD, % 28.8 23.7 25.3 26.3 33.7

Hypertension, % 91.2 92.6 93.1 94.5 96.4

Renal failure or ESRD, % 9.4 5.9 7.7 7.8 12.9

Dementia, % 5.5 2.9 4.1 3.7 7.0

Depression, %a 14.5 11.1 13.8 13.3 19.6

Stroke, % 3.1 1.8 2.0 2.1 2.5

Liver disease, % 1.0 0.7 0.8 0.8 1.0

Congestive heart failure, % 8.8 5.3 5.5 6.7 11.2

Hyperlipidemia, % 81.4 87.0 86.7 88.7 87.6

Atrial fibrillation, % 9.8 5.5 6.0 6.5 7.5

Osteoporosis, % 20.6 17.8 18.4 20.4 22.2

Obesity, %a 12.8 13.9 16.8 16.0 22.0

Acute stress, % a 6.5 3.7 4.3 4.3 6.6

Tobacco use, % a 18.5 14.5 15.4 15.0 15.4

Abbreviations: SD Standard Deviation, COPD Chronic Obstructive Pulmonary Disease, ER Emergency Room, MI Myocardial infarction
aPotentially-modifiable predictors

Fig. 1 Two-year diabetes spending patterns using trajectory modeling
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Sensitivity analyses: 40% threshold to define low-cost
spending in the baseline year
We repeated the trajectory modeling and prediction
modeling using a 40% threshold, which resulted in 15,
017 patients (median baseline diabetes spending: $1255).
The best-fitting trajectory model (Appendix Figure 6) in-
dicated similar groupings and spending patterns across 5

groups as in the 90% threshold cohort, such as a
minimal-user group (15.2%), a low-cost group (30.2%), a
rising-cost group (5.7%), a moderate-cost group (28.4%),
and a high-cost group (21.3%). Corresponding C-
statistics for these groups are shown in Appendix
Table 4. The results were largely similar as with the 90%
threshold, although predictive ability was slightly lower
owing largely to the smaller sample size.

Discussion
Using data-driven approaches, we identified distinct
diabetes spending patterns among a nationally-
representative cohort of Medicare patients with type 2
diabetes who were initially low utilizers, including a de-
finable group of patients whose costs began to rise pro-
gressively late in the first year of follow-up. These
patterns could be predicted using baseline characteris-
tics, including diabetes-specific factors and factors that
may be potentially modifiable.
Current efforts to predict healthcare spending largely

focus on predicting a composite value, such as total
yearly diabetes spending, or a threshold-based measure,
like being in the top 5% of spending, both of which col-
lapse spending into a single static value [6, 9, 12, 40, 41].

Table 2 Model discriminative ability to predict two-year
diabetes spending trajectory groups

Validated C-statistics

Group (Ref:
other
groups)

Model 1: All
baseline
predictors

Model 2:
Diabetes
predictors

Model 3: Potentially-
modifiable predictors

Group 1:
Minimal user

0.874 0.847 0.820

Group 2:
Low cost

0.746 0.731 0.712

Group 3:
Rising cost

0.650 0.632 0.625

Group 4:
Moderate
cost

0.685 0.675 0.646

Group 5:
High cost

0.872 0.855 0.835

Fig. 2 Relative influence of variables for predicting group membership for models including diabetes-specific and potentially-modifiable predictors
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Two recently-published approaches offer other cluster-
based solutions to elucidate patterns of spending [40,
42]. For instance, researchers recently identified patients
with initially low spending levels whose costs bloomed
in the subsequent year using a threshold-based approach
[17]. To our knowledge, neither of these approaches
have been applied to patients with specific chronic con-
ditions, such as type 2 diabetes.
Our findings support the conclusion that patients may

have dynamic patterns of spending over longer periods
of time that can be potentially meaningful, with implica-
tions on whom to outreach for intervention as well as
when to do so [13, 14]. The ability to potentially dis-
criminate between patients with differing diabetes
spending patterns using variables measured at baseline
could better target interventions to those who are at
greatest need [41]. Many healthcare organizations, in-
surers, researchers, and policymakers make predictions
and identify patients for cost-containment interventions
using these types of administrative data [40, 41]. If suc-
cessful, using these longer time horizons could allow for
more time to implement potential cost-containment in-
terventions for type 2 diabetes [41]. The ability to better
leverage these routinely-collected data for predictions
with more dynamic cost-modeling methods by chronic
condition holds wide potential for possible interventions.
The findings of the most influential predictors also

offer several noteworthy suggestions for potential
diabetes-specific interventions in patients who previously
had low spending levels. First, as observed in prior work,
adherence to medication, both all medications and
diabetes-specific medications, appears to be an import-
ant differentiator of patients in different groups, espe-
cially those with progressively rising costs; mean
adherence is presented in this manuscript but adherence
has been known to have meaningful underlying varia-
tions even if means are similar [43–46]. Adherence to
medication has been shown in a number of contexts to
contribute to the avoidance of poor health outcomes
[44, 45, 47, 48]. Of note, while mean adherence appeared
similar at baseline, it is known that there are important
variations in adherence that composite metrics such as
average adherence do not always represent, which could
have explained why it was an important predictor, espe-
cially in interactions with other variables [28, 49]. Num-
ber of physician office visits and unique physicians may
also be indicators of whether patients are getting suffi-
cient care to prevent future escalation of diabetes prob-
lems [26]. Notably, non-modifiable diabetes factors, such
as indicators of clinical progression like presence of
neuropathy, nephropathy, or retinopathy, were not par-
ticularly influential in the boosted prediction models. Of
course, one of the most influential predictors was base-
line diabetes spending for several trajectory groups; thus,

even though the groups had fairly similar spending in
the baseline year (Appendix Figure 4), baseline spending
is an important consideration when building prediction
models and potentially targeting interventions. Insulin
costs in particular could also be a key contributor to
healthcare costs in these patients [1]. Together, these
findings suggest that there are possible opportunities for
the provision of interventions, such as adherence inter-
ventions or interventions that increase access to care, to
prevent escalating complications and costs in diabetes.
Future work should also explore how to apply these re-
sults in interventions and how these results replicate in
other population, including electronic tools to build
these prediction models.
There are several limitations. First, we examined tra-

jectories from January to December; patients with in-
complete enrollment or other policy start and end dates
may have different spending patterns. The variables in-
cluded in the prediction models may also not be ex-
haustive, and although we used validated algorithms for
these variables where possible, they may not be suffi-
ciently sensitive. While we used the 90% threshold from
prior work to identify low spenders at baseline, the bene-
ficiaries who were classified in the “high-cost” trajectory
may also have had elevated spending to start. Trajectory
modeling also provides predicted group membership
within a cluster; while beneficiaries were assigned to
their closest cluster, there could be some within-group
heterogeneity. Given the nature of the data, we also do
not have information about patients’ glycemic control at
baseline, although this would apply to others using these
data as well. These results may also not generalize to
non-Medicare Fee-For-Service beneficiaries or younger
adults, and the data are from several years ago (owing,
in part, to an administrative lag in Medicare data). How-
ever, given that costs for diabetes are only continuing to
increase and rates of type 2 diabetes are growing pro-
gressively in younger populations, we expect that these
findings will continue to remain relevant [1]. Finally,
some misclassification of the cohort is possible due to
the nature of claims data; however, we used validated al-
gorithms to define diabetes and other comorbidities to
the extent possible.

Conclusion
Many healthcare organizations use claims data to iden-
tify and predict patients for cost-containment interven-
tions for people living with diabetes. The approach we
describe could help inform the design and timing of
cost-containment interventions, such as medication ad-
herence or interventions that enhance access to care,
and target them to those at greatest need in patients
with type 2 diabetes.
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