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Abstract: Bubble actuated micro-pumps have great potential to be integrated into microfluidic
systems to allow the independence of peripheral equipment. Previous studies on bubble actuated
valveless micro-pumps have been mainly limited to experimental studies and numerical simulations
due to the complex behavior of bubbles. In this paper, the construction of a mathematical model for
a bubble actuated valveless micro-pump considering fluid dynamics, heat and mass transfer and
bubble dynamics is described. A prototype was fabricated and tested to verify this theoretical model.
The morphological evolution of the driving bubbles during the heating process was observed by a
high-speed charge-coupled device (CCD) camera, the flow rate produced by the micro-pump under
different working conditions was recorded and the test results were explained by the heat dissipation
model. The model in this study was able to precisely predict the flow of micro-pumps in different
drive modes. The principle behind defining the heating frequency and the duty cycle based on the
pump chamber volume was determined. The study shows the mechanism of bubble controlling and
the good prospects of bubble actuated valveless micro-pumps.

Keywords: micro pump; bubble actuated; theoretical model; experimental studies; bubble dynamics

1. Introduction

Micro-pumps are widely used in situations in which small and precise volumes of fluids are driven
and controlled for chemical, biological or medical engineering systems. Though the micro-fluidic chips
can be very small and easy to carry, the existing micro-pumps generally require external devices, which
are costly, limiting the application of the chips. Previously, different reviews have been conducted
that have summarized several works in this area [1–3]. Micro-pumps can be driven by mechanical
components, such as pistons, diaphragms or gears. A pair of nozzle/diffuser elements generally acts as
an incomplete check valve in these micro-pumps [4]. Some non-mechanical principles can also be used
to actuate the pump, such as electro-hydrodynamic [5], light [6], bubble [7–9], or magnetic [10–12].
Among them, bubble actuated micro-pumps have advantages such as low cost and production
simplicity, even on a large scale, since they have no moving parts. In addition, bubble actuated
micro-pumps can be driven with relatively low voltage, while off-the-shelf piezoelectric micro-pumps
require more than 100 volts, which is an important limitation. This study shows that the driving
voltage of bubble actuated micro-pumps can be as low as 6 volts, which means that it can be actuated
by dry batteries, eliminating the need for transformer circuits.

Compared to the commonly-used peristaltic micro-pumps [13,14] and shape-memory alloy (SMA)
actuated micro-pumps [15], thermal bubble actuated micro-pump does not need a high voltage or
temperature to drive the fluid, which makes it cheaper and more compact. However, its flow rate and
controllability are not as good as the other two types of micro-pumps. Although the surface tension
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driven pump allows low voltage operation as well as low power consumption [16], similar to the
current work, it needs a more complex structure for its continuous electrowetting mechanism.

The idea of pumping liquid with a bubble can be traced back to 1995 when Ozaki [17]
asymmetrically heated a single bubble in a pipeline to make the bubble expand in one direction,
driving fluid flow directionally. Reference [7] used multi-bubble methods, in which one bubble acts as
a valve and the other one expands to pump the fluid; with the plurality of air bubbles, coordinated
work is needed and the bubbles are difficult to control. Reference [18] used a platinum micro-heater to
heat the water in a micro-channel and found that the heating signal pulse width and mass flow had
little influence on the boiling inception time. A thermodynamic model of bubble growth and collapse
in micro-channels is described in reference [19]. A more practical bubble actuated micro-pump was
invented by Tsai et al. [20], who developed a bubble-driven valveless micro-pump consisting of a
diffuser, a nozzle, a pumping chamber and a heater. However, this was only the experimental work.
Reference [21] fabricated and tested a similar micro-pump under several conditions. However, it is
interesting that their results were quite different from Tsai’s results, due mainly to the much bigger
chamber volume of their pump. They gave a possible explanation for this difference, suggesting that
the flow is influenced by the volume of the pump chamber and the duty cycle and frequency, but they
did not make a quantitative calculation to show the specific relationship between the flow and the
influencing factors. Deng [22] established a numerical model for bubble-driven valveless micro-pumps.

Due to limitations from the bubble dynamics, impact of the gas–liquid two-phase heat transfer and
coupling effect of pump chamber and inlet/outlet resistance characteristics, previous studies of thermal
vapor bubble driven valve-less micro-pump mechanism have mainly been numerical simulations and
experimental studies. These are time-consuming and laborious. Therefore, to carry out more in-depth
studies with a lower computational cost, a theoretical model based on the lumped parameter approach
of a bubble driven valveless micro-pump is proposed in this paper. This model uniquely considers the
bubble dynamic model, the fluid dynamic model and the gas thermodynamic model. The proposed
model, validated by the experimental study, allows more theoretical understanding of micro-pump
mechanisms and offers the basis for the design of more efficient bubble pumps.

2. Theoretical Modeling

As can be seen in Figure 1, there are two working modes for this pump: pumping mode and
sucking mode. Due to the different resistance of inlet/outlet ports, there is greater flow in the outlet
port than the inlet port for the pumping mode, and on the contrary, there is more flow in the inlet port
than the outlet port for the sucking mode.
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The model of the micro-pump mainly consists of two parts: the fluid dynamic model for the
pump chamber and the bubble dynamic model for the gas bubbles. The fluid dynamic model is the
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same as other types of valveless micro pumps. The major factors we consider are the pressure in the
pump chamber and the flow resistances of the nozzle and the diffuser.

The diffuser and the nozzle operate as incomplete one-way valves—when the vapor bubble
expands, the liquid flows out of the chamber, and the inlet acts as a nozzle with a relatively bigger
resistance, while the outlet acts as a diffuser with a smaller resistance. Therefore, the flow of the outlet
is larger than that of the inlet. However, when the vapor bubble contracts, the liquid flows into the
pump chamber, and this time, the inlet acts as a nozzle and the outlet acts as a diffuser. The flow of the
outlet is smaller than that of the inlet, thus leading to a net flow from the inlet towards the outlet.

The flow rate (Q) depends on the coefficients of pressure loss (ξ) of the nozzle or diffuser and the
pressure difference on the nozzle or diffuser.

In pumping mode, the flow of the inlet and the outlet can be calculated by the equations below:

Q1 = −A

√
2(pc − p)

ρLξn
(1)

Q2 = A

√
2(pc − p)

ρLξd
(2)

where, Q1 is the flow rate of the inlet. Q2 is the flow rate of the outlet. p is the pressure outside the
pump chamber. pc is the pressure in the chamber. ρL is the density of the liquid. ξn is the pressure loss
coefficient of the nozzle. ξd is the pressure loss coefficient of the diffuser. A is the area of the narrowest
section of the nozzle or diffuser.

In sucking mode, the flow of the inlet and the outlet can be calculated by the equations below:

Q1 = A

√
2(p − pc)

ρLξd
(3)

Q2 = −A

√
2(p − pc)

ρLξn
(4)

The model of the bubble takes bubble dynamics and heat and mass transfer into consideration,
as shown in Figure 2.
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Bubble dynamics equation: according to the Rayleigh–Plesset equation, the change of R is in
accordance with Equation (5):
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where, R is the radius of the bubble, pb is the pressure in the bubble, σ is the surface tension, and µ is
viscosity of the liquid.

dpc
dt

=
EL

Vc − Vb

(
Q2 − Q1 +

dVb
dt

− 1
ρL

dm
dt

)
(6)

where, Vc is the volume of the pump chamber, Vb is the volume of the bubble, dm is mass of the liquid
which transfers into gas. EL is the volume modulus of the liquid.

Mass transfer equation: According to the first law of thermodynamics, the energy input is used in
two ways—for the evaporation of the liquid and the expansion of the gas:

dmhlv = P − pbdVb − hS∆T (7)

hlv is the vaporization latent heat of the liquid. P is the heating power, h is the convective heat
dissipation coefficient for which a value of 700 W/m2·K, based on experience, was used for this study.
∆T is the temperature difference across the bubble surface. Assuming the bubble exists at the boiling
point of ethanol while the pump is working at room temperature, then the temperature difference is
assumed to be 40 ◦C.

Only the surface area (S) of the bubble is variable in Equation (8), and this is dependent upon the
bubble radius R.

When the bubble volume is too small, the error will be too large for the numerical model to
calculate, A minimum bubble radius of 1 × 10−20 m is defined. When the bubble radius is less than
the minimum radius and the input power is 0, the volume of the bubble stays constant.

For vapor, according to the ideal gas state equation, there is

pV = mRgT (8)

Derivate the total differential of both sides; note that phase changing is an isothermal process,
so dT = 0, and there is

dpb =
1

Vb(RgTdm − pbdVb)
(9)

Thus, given the heating power and the temperature of the environment, the pressure of the bubble
can be calculated with the bubble dynamics model. Then, the flow of the pump can be determined
with the fluid dynamics model.

3. Experimental Study

To verify the validity of the model, a prototype was manufactured, and the flow produced by it
was measured with the testing system described below.

3.1. Description of Testing System

The experimental setup included a signal generator, a power amplifier to heat the bubble by the
connected resistance wire above the pump chamber, the test bubble pump, the flexible tubes, the speed
camera to record the bubble operation and a ruler to measure the movement of the air slug, as shown
in Figure 3. To actuate the pump, a fluctuating current was generated to heat the chamber to generate
the bubble. When the pump started to work, the air slug was expected to move from outlet towards
the inlet.

Alcohol was chosen as the working fluid due to its appropriate boiling point, extensive application,
good availability and safety.

A square wave signal with a frequency range of 10 Hz to 200 Hz was generated by a signal
generator and then amplified by a DC amplifier (FPA0510S, Feeltech Co. Ltd., Zhengzhou, China).
The voltage of the input signal was set as 14 V, but according to the measurement with the real-time
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data acquisition card, we found that the maximum instantaneous voltage actually applied on the
micro-pump was only 6 V. This is mainly due to the larger internal resistance of the signal source.Micromachines 2018, 9, x  5 of 11 
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Figure 3. Schematic of experimental apparatus.

A Photron Fastcam SA3 Speed Camera (Photron, Tokyo, Japan) was used to obtain the image of
the bubble’s morphological changes.

The fabrication process of the micro-pump is shown in Figure 4. The pump chamber was
generated by a deep reactive ion etching (DRIE) process on a silicon wafer. The etching depth (h) was
200 nm. The heater was manufactured by a metal film sputtering process on a glass wafer. The silicon
wafer was bonded together with the glass wafer. The heater was manufactured by an aluminum film
sputtering process, and there were two very thin wires extracted by the imbedded electrode in the
silicon layer. The resistance of the heater was 30 Ω, and with a voltage of 6 V, the instantaneous power
of the heater was 1.2 W. The average power of the pump depended on the duty cycle in each cycle.
For example, if the duty cycle was 40%, the average power of the micro-pump was 0.48 W.
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Figure 4. Fabrication process of the micro heater. (D and h are the diameter and the depth, respectively,
of the pump chamber; L indicates the length of inlet/outlet ports; d is the diameter of the small end
and α is the convergence angle of the inlet/outlet ports).
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The diameter of the pump chamber (D) was 1 mm, the narrowest width of the nozzle and the
diffuser (d) was 30 µm, the diverging angle of the nozzle and the diffuser was 14◦, and the length (L) is
1 mm. The size of the micro-pump is compared with a coin in Figure 5.
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Figure 5. Micro-pump compared with a coin.

Because the pump and channels were too small, an indirect method was adopted to measure the
flow rate. As can be seen in Figure 6, there were two flexible tubes connected to the inlet and outlet
ports of the pump, and a thin tube between them with an air slug. The air slug was used to mark the
flow in the channels. The diameter of the section of the transparent conduit was 0.8 mm. By recording
the time during which the air slug moved from one end of the section conduit to the other end, the flow
rate was calculated.
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Figure 6. Measurement of the flow rate.

3.2. Work Process Description

Figure 7 clearly shows that the volume of the bubble gradually increased and then gradually
decreased during one operating cycle. Due to the obstruction of the heater, it cannot be observed
when the bubble volume is too small. The response of the bubbles was very fast, the speeds of
bubble expansion and contraction were different, and the growth and reduction of the bubbles were
asymmetric, which could be caused by the liquid flow. For more details, one can also see Video S1.
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4. Results

Figure 8 shows that the flow varied along with the duty cycle when the heating frequency was
50 Hz. Under this condition, the actual flow of the micro-pump was very close to the simulation result.
The maximum flow was 15 µL/min, which occurred when the duty cycle was 40%, validating the
mathematical model. In the simulation model and in the experiment, the flow increased as the duty
cycle increased, until it reached a maximum, and then the flow decreased.
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The reason for this trend will be discussed below.
Figure 9 shows the simulation results of the change in bubble radius in a heating cycle. When the

heating and cooling times are adequate, the process of the bubble volume change can be divided into
four typical stages:
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1. Expansion stage: At the beginning of heating, the bubble volume expands rapidly. At this time,
the surface area is small; therefore, the heat dissipation effect is obscure.

2. Balance stage: when the bubble volume reaches a certain amount, the surface area increases,
the heat dissipation rate gradually increases, and the heating power and cooling power are in
balance so that the bubble volume remains constant.

3. Collapse stage: When heating stops, the bubble volume gradually decreases as the heat dissipates.
4. Intermittent stage: At this stage, the bubble has disappeared and the next heating stage has yet

to begin.
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Due to differences of the heating frequency and proportion (percentage of the heating time in one
pump cycle) in the actual work process, one or two of the four states of the process may not appear.

As shown in Figure 10, when the duty cycle is too small (for example, 20%) and the frequency is
too low (for example, 25 Hz), the intermittent period during which the micro-pump is not working
is too long. The pump is making no contribution to the flow, so the flow decreases as the effective
working time decreases.
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As shown in Figure 11, when the duty cycle is too large (for example, 60%) and the frequency
is too high (for example, 100 Hz), the time is too short for the bubble to cool down completely and
collapse. In this case, the volume of the pump chamber is not utilized effectively. The volume change
decreases and the effective working volume decreases, resulting in decreased flow, compared with the
case in which the bubble contracts sufficiently.
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In addition, when the heating power is relatively high, the volume of the pump chamber
determines the maximum volume of the bubble. In the case of low heating power, heating power and
heat dissipation determine the size of the bubble.

Based on the rules above, we can see that for a defined pump chamber volume and heating
frequency there will be a suitable duty cycle to achieve maximum flow. With high frequency, a lower
duty cycle is needed to achieve a greater working flow due to the short intermittent heating period
and subsequent short heat dissipation time.

We also calculated and verified the working results of micro-pump at different frequencies,
as shown in Figure 12. The results show that the model can predict the working effect of micro-pump
at most frequencies, especially with high duty cycles, such as 50–70%.
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However, when the duty cycle is small, the model does not appear to be very accurate.
The inaccuracy is mainly the result of not considering the nucleation process in this model. Former
studies have shown that the liquid should be heated over the boiling point to generate a bubble.
When the temperature of the liquid has already reached the vaporization temperature, the surface
tension has a very large pressure on the gas when the bubble radius is very small, and tiny bubbles
soon disappear. A very short heating time is insufficient to produce bubbles, and it is even insufficient
to keep the temperature in the pump chamber at the boiling point. However, in this model, it is
assumed that the temperature is kept at the boiling point.

There are observed phenomena that may have contributed to the error.
If the micro-pump starts to work in a cold environment, or the cooling conditions deteriorate,

the ambient temperature will rise, resulting in the maximum volume of bubbles in each cycle gradually
becoming larger and larger, and the bubble volume change will be similar to Figure 11. The model
does not take into account changes in ambient temperature, and we assume that the temperature
difference between bubbles and the outside world is a constant value, which is obviously not realistic.
In fact, during the stage in which the micro-pump has just begun to work, the ambient temperature
must rise. However, the final ambient temperature will eventually become stable at a specific value.
This model can be used when the ambient temperature is stable.

5. Conclusions

A lumped parameter model was constructed for the thermal bubble actuated valveless
micro-pump, and a prototype was fabricated. Experimentation demonstrated that this model is
able to predict the flow rate of the micro-pump under different working conditions. The changes of
the hot bubbles throughout entire heating cycle were observed, and the changes of the bubbles under
different heating conditions and the influence on the flow rate were analyzed. It was determined that
the heating frequency and the duty cycle should be defined based on the size of the pump chamber.

This study shows that the thermal bubble-driven valveless micro-pump is a controllable
device that requires very low drive voltage and power and has good development prospects. It is
possible to apply this model in microfluidic chips to replace the external pumps and to improve the
system integration.

In the future, a more precise model considering the nucleation process and the change in ambient
temperature will be developed and the applicability of that model with a variety of pump chamber
volumes will be tested. In addition, the method to stabilize the flow rate of pump will be studied.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/9/5/225/s1,
Supplemental Video S1: Bubble operation.
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