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Persistence of RNAi-Mediated Knockdown in
Drosophila Complicates Mosaic Analysis Yet Enables

Highly Sensitive Lineage Tracing
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ABSTRACT RNA interference (RNAi) has emerged as a powerful way of reducing gene function in Drosophila melanogaster tissues. By
expressing synthetic short hairpin RNAs (shRNAs) using the Gal4/UAS system, knockdown is efficiently achieved in specific tissues or in
clones of marked cells. Here we show that knockdown by shRNAs is so potent and persistent that even transient exposure of cells to
shRNAs can reduce gene function in their descendants. When using the FLP-out Gal4 method, in some instances we observed
unmarked “shadow RNAi” clones adjacent to Gal4-expressing clones, which may have resulted from brief Gal4 expression following
recombination but prior to cell division. Similarly, Gal4 driver lines with dynamic expression patterns can generate shadow RNAi cells
after their activity has ceased in those cells. Importantly, these effects can lead to erroneous conclusions regarding the cell autonomy of
knockdown phenotypes. We have investigated the basis of this phenomenon and suggested experimental designs for eliminating
ambiguities in interpretation. We have also exploited the persistence of shRNA-mediated knockdown to design a sensitive lineage-
tracing method, i-TRACE, which is capable of detecting even low levels of past reporter expression. Using i-TRACE, we demonstrate
transient infidelities in the expression of some cell-identity markers near compartment boundaries in the wing imaginal disc.
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RNA interference (RNAi) is an endogenous gene-silencing
mechanism in eukaryotic cells that has been harnessed as

a powerful reverse genetics tool (Hannon 2002). RNAi is
initiated by short interfering RNAs (siRNAs) or microRNAs
(miRNAs) that target messenger RNAs for degradation or
translational inhibition in a sequence-specific manner (Wilson
and Doudna 2013). Importantly, RNAi can be artificially in-
duced by gene-specific hairpin RNAs that are processed into
siRNAs (Fire et al. 1998; Paddison et al. 2002). These RNAi
reagents, along with completely sequenced genomes, have
enabled experimenters to perform loss-of-function studies in
diverse organisms (Mohr et al. 2014).

An important consideration for knockdown experiments is
whether RNAi-mediated knockdown is sustained or transient.

In Caenorhabditis elegans (Sijen et al. 2001) and plants (Vaistij
et al. 2002), siRNAs undergo amplification by RNA-dependent
RNA polymerases (RdRPs), leading to a long-lasting RNAi
response. In contrast, Drosophila and vertebrates do not have
RdRP homologs (Zong et al. 2009) and RNAi is normally tran-
sient (Chi et al. 2003; Roignant et al. 2003). The development
of transgenic strategies to express RNA hairpins has overcome
this problem, and RNAi can be induced, sustained, and/or
repressed using different promoter sequences (Perrimon
et al. 2010; Livshits and Lowe 2013). This ability to control
RNAi in a temporal manner in vivo has proven essential for
generating reversible phenotypes (Livshits and Lowe 2013)
and for dissecting the biological functions of pleiotropic genes
(Perrimon et al. 2010).

In Drosophila, accurate control of where and when RNAi
occurs is critical for evaluating the effects of knockdown in
specific cell populations in vivo (Perrimon et al. 2010). Spa-
tiotemporal control of RNAi-mediated knockdown is most of-
ten accomplished using the Gal4/UAS system (Fischer et al.
1988; Brand and Perrimon 1993), where cell/tissue-specific
Gal4 transgenes drive co-expression of hairpin RNAs and cel-
lularmarkers (e.g.,UAS-GFP) underUAS control. These hairpin
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transgenes are available either as long double-stranded RNAs
(dsRNAs) or as short hairpin RNAs (shRNAs) embeddedwithin
a miR-1 microRNA backbone (Perrimon et al. 2010), with the
latter thought to be more effective at gene silencing (Ni et al.
2011). Gal4 transgenes are also used as reporters of endoge-
nous gene expression (Fischer et al. 1988; Brand and Perrimon
1993), and, for many Gal4 lines, expression may dynamically
change on a timescale of hours or days during development
(Yeh et al. 1995; Evans et al. 2009), homeostasis (Micchelli and
Perrimon 2006; Buchon et al. 2009), or environmental changes
(Halfon et al. 1997; Agaisse et al. 2003). Several studies in
mammalian cell culture and in vivo models have shown that
protein levels do not recover immediately after turning off
RNAi, usually requiring .2 days (Gupta et al. 2004; Dickins
et al. 2005; Bartlett andDavis 2006; Zhang et al.2007; Baccarini
et al. 2011). Despite the known potential for RNAi persistence
to occur, no studies to date have documented or addressed
how this can affect Gal4-regulated knockdown experiments
that require precise temporal and spatial resolution in vivo.

Here, we demonstrate in Drosophila tissues that even
transient production of shRNAs leads to persistent gene
knockdown after Gal4 expression has ceased. We show that
this phenomenon can, in the context of common experimen-
tal designs, lead to false interpretations about the identity of
cells undergoing knockdown, and we provide experimental
workarounds to address this issue. Furthermore, we exploit
RNAi persistence to develop a novel lineage-tracing tool
called i-TRACE that we demonstrate can be used to identify
instances where even brief changes in gene expression have
occurred during the generation of specific cell lineages.

Materials and Methods

Drosophila genetics

Crosses were maintained on standard fly food at 25� unless
otherwise noted.

Most transgenic stocks were obtained or derived from
the Bloomington Stock Center and are listed here with
corresponding stock numbers (BL#): ptc-Gal4 (BL2017),
en-Gal4 (BL30564), dpp-Gal4 (BL1553), nub-Gal4 (BL25754),
ap-Gal4 (BL3041),UAS-GFP (BL6874),UAS-RFPnls (BL30556),
UAS-mCD8.ChRFP (BL27391), UAS-GFP-shRNA#1 Chr. II
(BL41557), UAS-GFP-shRNA#1 Chr. III (BL41556), UAS-GFP-
dsRNA (BL9330), UAS-RFP-shRNA (BL35785), UAS-crb-shRNA
(BL40869), UAS-crb-dsRNA (BL27697), hsp70-GFP (BL51354),
ubi-GFPnls (BL5189), ubi-RFPnls (BL34500), UAS-Nslmb-
vhhGFP4 (BL38421), tub-Gal80ts (BL7108), G-TRACE
(BL28281), hsFLP (BL8862), Act5c-FRT-CD2-FRT-Gal4
(BL4780), and Act5c-FRT-y+-FRT-Gal4 (BL3953). Addi-
tional stocks with BL#s are listed in Table S1 and
Table S2.

The remaining stocks used originated from the publications
noted: ci-Gal4 (Croker et al. 2006), hh-Gal4 (Tanimoto et al.
2000), esg-Gal4 (Micchelli and Perrimon 2006), FRT40A
MARCM(Lee andLuo1999), and FRT40A (Xu andRubin 1993).

For experiments involving FLP-out Gal4 induction of
shRNAs in clones (Figure 1; Supplemental Material, Figure
S1), different combinations of transgenes produce shadow
RNAi clones (genotypes written as Chr. X; Chr. II; Chr. III):
GFP RNAi (Figure 1B; Figure S1, B and C); hsFLP/+; ubi-GFP/+;
Act5c-FRT-CD2-FRT-Gal4, UAS-RFP/UAS-GFP-shRNA; RFP RNAi
(Figure S1, A, D, and F); hsFLP/+; Act5c-FRT-y+-FRT-Gal4, UAS-
GFP/ubi-RFP; UAS-RFP-shRNA/+; crb RNAi (Figure 1, C and D);
and hsFLP/+; +/+; Act5c-FRT-CD2-FRT-Gal4, UAS-GFP/
UAS-crb-shRNA.

For experiments involving knockdown of different genes
using the ptc-Gal4 RNAi persistence tester (Figure S3, Table
S2), the following crossing scheme was used: yv; UAS-gene-
shRNA (Chr. III) X w; ptc-Gal4, UAS-GFP, ubi-RFP; UAS-RFP-
shRNA.

For i-TRACE analysis of enhancer-Gal4 lines, the following
crossing schemes were used: enhancer-Gal4 X w; UAS-RFP,
ubi-GFP; UAS-GFP-shRNA; and enhancer-Gal4 X w; UAS-GFP,
ubi-RFP; UAS-RFP-shRNA. iTRACE tester stocks will be made
available through the Bloomington Stock Center.

Dissections, antibody staining, and microscopy

Unless otherwisenoted, all tissuesweredissectedwith forceps
in glass well dishes with 13 PBS. Tissues were fixed in 4%
paraformaldehyde in 13 PBS for 20min. After washing in 13
PBS, tissues were stained with DAPI (1 ng/ml) in 13 PBS for
1 hr, washed with 13 PBS, and mounted onto slides with
Vectashield mounting media (Vector Labs) or SlowFade Gold
mounting medium (Life Technologies). Mounted samples
were imaged on a Zeiss 700 or 780 confocal microscope.
Confocal slices were processed with ImageJ software (NIH).

For wing imaginal discs, wandering third instar larvae
were bisected and inverted to expose the imaginal discs to
fixative. For immunostaining of wing discs, fixed carcasses
with attached wing discs were permeabilized with PBS+0.1%
Triton-X100 for 20 min, blocked with PBS+0.1% Triton-
X100+5% normal goat serum for 1 hr, and incubated with
primary antibodies diluted in blocking solution overnight at
4�. Samples were washed three times in PBS+0.1% Triton-
X100 for 15 min each. Subsequent steps involving staining
using secondary antibodies were the same as primary anti-
bodies. Antibodies used were the following: mouse anti-Arm
(1:100, N2 7A1; Developmental Studies Hybridoma Bank)
and rat anti-Crb (1:500) (Richard et al. 2006).

For adult midguts, females �1 week post eclosion
were starved for 4 hr to purge any gut contents that are
autofluorescent. This was performed by placing adults into
empty vials containing filter paper soaked with 4% sucrose.
Adult midguts were dissected from decapitated animals by
gently pulling out the gut and placing it into fixative.

For experiments requiring heat-shock induction of the
hs-FLP transgene in wing imaginal discs,�72 hr after egg depo-
sition larvae were placed in a 37� water bath for 15–30 min
(for FLP-out Gal4 experiments) or 1–2 hr (for MARCM ex-
periments) and returned to 25�. Larvae were dissected as
wandering third instar larvae.
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For experiments requiring heat-shock induction of the
hsp70-GFP transgene, crosses were incubated at 37� for
30 min, returned to 25�, and dissected 2 hr later. Non-heat-
shocked controls were kept at 25� until dissection.

For heat-shift experiments involving tub-Gal80ts, eggs
from crosses were initially incubated at 18� (permissive
temperature, Gal4 off). Vials were incubated at 29� (non-
permissive temperature, Gal4 on) for 16 hr until dissected
as wandering third instar larvae. Controls were kept at the
same temperature throughout development (18� or 29�).

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

Results

Transient expression of shRNAs causes persistent
knockdown in unmarked “shadow RNAi” cells

The FLP-out Gal4 system (Pignoni and Zipursky 1997) can be
used to induce RNAi in a clonal lineage of cells that stably
express Gal4. Clones are generated using a heat-shock-
inducible FLP transgene, which catalyzes the removal of a
transcriptional stop upstream of the Gal4-coding sequence

(Figure 1A). While using this system, we unexpectedly found
that clonal expression of shRNAs causes knockdown in cells
that do not express Gal4. For example, in larvae that ubiqui-
tously express GFP (ubi-GFP), we generated Gal4 clones that
express shRNA targeting GFP (UAS-GFP-shRNA) and red fluo-
rescent protein (UAS-RFP) and dissected wing discs 48 hr
after clone induction (ACI). As expected, RFP-expressing
clones knock down GFP (Figure 1B). However, we also ob-
served patches of cells that knock down GFP but do not ex-
press RFP. We refer to this unexpected cell type as “shadow
RNAi” cells since these cells exhibit knockdown of their target
gene but do not express Gal4 as assessed by the absence of
RFP expression.

Importantly, we find that shadow RNAi cells are produced
when shRNAs target two other genes, ubi-RFP (Figure S1A)
and the endogenous gene crumbs (crb) (Figure 1, C and D).
Furthermore, crb shadow RNAi cells exhibited a known crb
mutant phenotype characterized by altered localization of
Crb where they contact wild-type cells (Figure 1D) (Pellikka
et al. 2002; Chen et al. 2010; Hafezi et al. 2012). In addition,
shadow RNAi cells were readily observed in other larval
tissues (Figure S1, B–D) and using independently derived
transgenes (see Materials and Methods). These results sug-
gest that production of shadow RNAi cells may be an inher-
ent phenomenon when using the FLP-out Gal4 system, as

Figure 1 Gene knockdown in
shadow RNAi clones when using
the FLP-out Gal4 system. (A) Ge-
netic diagram of the FLP-out Gal4
system. The Actin5c promoter
drives constitutive expression of
Gal4 after FLP/FRT recombination.
(B–D) FLP-out Gal4 clones in
the wing imaginal disc. (B) Gal4
clones express RFP (red) and
GFP-shRNA and knockdown
GFP (green). Shadow RNAi
clones knock down GFP but do
not express RFP (arrows). Aster-
isk in B9 indicates shadow RNAi
clone with intermediate levels of
knockdown. Cell nuclei labeled
with DAPI (blue). Bar, 20 mm.
(C) Gal4 clones express GFP
(green) and crb-shRNA and
knockdown Crb protein (red).
Shadow RNAi clones knock
down Crb protein (arrows).
Arm staining (blue) shows cell
membrane. Bar, 20 mm. (D)
Magnification of region in C.
Arrowheads indicate that Crb
protein is missing on the mem-
brane of wild-type cells (dots)
that contact Gal4 and shadow
RNAi cells. Bar, 2 mm. (E) Model

for generation of shadow RNAi clones. Prior to cell division, recombination during G2 causes expression of Gal4 (red) and knockdown of target gene
expression (green). Following cell division, target gene knockdown persists in non-Gal4-expressing cells (shadow RNAi clone). (F) MARCM Gal4 clones in
the wing disc (arrowheads). Gal4 clones express GFP (green) and crb-shRNA and knock down Crb protein (red). Bar, 20 mm. All panels with (’) or (’’)
designation show isolated greyscale channels of the merged image in their respective parental panel.
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opposed to sporadic effects such as chromosomal instability
or epigenetic silencing of transgenes.

We note that tests of three other endogenous genes (fat,
gigas, and dachshund) did not obviously generate shadow
RNAi cells (Table S1; not shown). In addition, when we re-
peated FLP-out Gal4 experiments using dsRNAs targeting
GFP (UAS-GFP-dsRNA), we found that shadow RNAi cells
were not clearly visible and may have exhibited only weak
knockdown (Figure S1E). Therefore, shadow RNAi cells may
manifest only when targeting particular genes or when using
certain RNAi reagents (see Discussion).

Several observations of shadow RNAi cells hint at a mech-
anism bywhich they are generated. ShadowRNAi cells nearly
always appear as cohesive groups in contact with Gal4 clones
(Figure 1, B and C, Figure S1), which is a well-documented
behavior of sister clones in the imaginal disc (Xu and Rubin
1993). Furthermore, in cases where shadow RNAi cells ex-
hibit partial knockdown of the target gene (Figure 1B), each
cell within a cohesive group shows the same level of knock-
down, suggesting a synchronized reversal of RNAi over time.
Indeed, we find that knockdown in shadow RNAi cells is
barely visible at 72 hr ACI (Figure S1F), suggesting that
knockdown is not sustained as in Gal4-expressing clones.
These observations suggest that shadow RNAi cells produced
using the FLP-out Gal4 system are a sister lineage to Gal4
clones and that knockdown persists for up to 3 days after
being transiently induced.

To explain our observations with the FLP-out Gal4 system,
we propose that shRNAs are transiently expressed in an
ancestral mother cell that gave rise to Gal4-expressing clones
and sister shadowRNAi clones. This event couldoccurduring
G2when cells haveduplicated their genome if one of twoAct-
FRT-stop-FRT-Gal4 transgenes undergoes recombination and

briefly expresses Gal4 before cell division (Figure 1E). In
contrast, recombination during G1, or recombination of
both Act-FRT-stop-FRT-Gal4 transgenes, would not be
expected to generate shadowRNAi clones. To test this model,
we performed clonal RNAi experiments using the MARCM
(Mosaic Analysis with a Repressible Cell Marker) system,
which restricts Gal4 activity until after two daughter cells
are produced and the levels of the Gal80 repressor in the
cytoplasm decay (Lee and Luo 1999). Consistent with this
hypothesis, when using MARCM to express shRNAs that tar-
get crb, we find that Crb protein is knocked down only in the
Gal4 clone (Figure 1F). In addition, this result rules out the
possibility that shRNAs or Gal4 are transferred from the Gal4
clone into shadow RNAi clones.

Since our model predicts that transient expression of
shRNAs causes persistence of RNAi-mediated knockdown,
we wanted to verify this using an independent method.
patched-Gal4 (ptc-Gal4) is a commonly used enhancer trap
line that expresses Gal4 in the ptc expression pattern (Hinz
et al. 1994). In early wing disc development, ptc-Gal4 is
expressed in all cells of the anterior compartment and later
becomes restricted to a thin stripe of anterior cells that bor-
der the posterior compartment (Phillips et al. 1990; Evans
et al. 2009). When we used ptc-Gal4 to express shRNAs
targeting GFP (Figure 2A) or crb (Figure 2B), we observed
knockdown of the target gene within cells of the stripe cur-
rently expressing Gal4, as well as cells far anterior to the
stripe that no longer express Gal4 (assessed by a fluorescent
protein expressed under UAS control). In contrast, dsRNAs
targeting GFP transcript or a nanobody fusion that de-
grades GFP protein (Caussinus et al. 2012) cause knockdown
of GFP fluorescence mainly within the ptc-expressing stripe,
although some cells immediately anterior to the stripe have

Figure 2 Gene knockdown in shadow
RNAi cells caused by dynamic expression
of ptc-Gal4. (A–E) Wing imaginal discs
with RNAi under control of ptc-Gal4.
(A) ptc-Gal4 expression of RFP (red)
and GFP-shRNA cause knockdown of
GFP (green). Cell nuclei labeled with
DAPI (blue). (B) ptc-Gal4 expression of
GFP (green) and crb-shRNA cause
knockdown of Crb protein (red). Arm
staining (blue) shows cell membrane.
(C–E) Temperature control of ptc-Gal4
expression with tub-Gal80ts. ptc-Gal4
expression of RFP (red) and GFP-shRNA
cause knockdown of GFP (green). Cell
nuclei labeled with DAPI (blue). (C) Lar-
vae always kept at 18�. (D) Larvae
shifted from 18� to 29� 16 hr before
dissection. (E) Larvae always kept at
29�. Double arrow in A9, B9, and E9 in-
dicates RNAi persistence in cells anterior
to the ptc stripe. Bars, 50 mm. All panels
with (’) or (’’) designation show isolated
greyscale channels of the merged image
in their respective parental panel.
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reduced GFP levels (Figure S2, B and C). Similarly, dsRNAs
that target crb cause knockdown only within the ptc-express-
ing stripe (Figure S2D). To directly test if past expression of
ptc-Gal4 in more anterior regions of the wing disc is required
to generate shadow RNAi cells, we used a temperature-
sensitive Gal80 transgene (McGuire et al. 2003) to restrict
expression of Gal4 to a 16-hr window immediately preceding
dissection (Figure 2D). Under these conditions, shadowRNAi
cells are not observed, suggesting that the shadow RNAi cells
were generated by prior expression of the shRNA in those
cells.

Investigation of mechanisms contributing to the
persistence of RNAi-mediated knockdown

Our observation that it takes�3 days to reverse the effects of
GFP knockdown is consistent with reports in mammalian
cell culture and in vivo mouse models (Gupta et al. 2004;
Dickins et al. 2005; Bartlett and Davis 2006; Zhang et al.
2007; Baccarini et al. 2011), although our experiments were
performed at a comparably lower temperature (25�). In
these mammalian systems, it is generally thought that rever-
sal from RNAi occurs by siRNA degradation and/or dilution
with cell divisions (Dickins et al. 2005; Baccarini et al. 2011).
Yet, considering this explanation, we were surprised by the
high degree of persistent GFP knockdown following a short
pulse of shRNA expression (Figure 1, B–D). Therefore, we
considered the possibility that RNAi was being actively main-
tained in some manner.

Active maintenance of RNAi has been demonstrated in
different species, such as RNAi amplification in C. elegans
(Sijen et al. 2001; Alder et al. 2003) or RNAi-induced tran-
scriptional silencing (RITS) (Verdel et al. 2004) in S. pombe.
In addition, Piwi-interacting RNAs (piRNAs) target transcripts
via an amplifying “ping-pong” cycle (Brennecke et al. 2007).
Initiation of each of thesemechanisms requires the presence of
target transcripts. Therefore, we tested whether RNAi persis-
tence in Drosophila tissues occurs when the target gene is not
expressed until immediately before dissection. This was ac-
complished using a heat-shock-inducible GFP transgene
(hs-GFP) that is highly expressed when animals are incubated
at 37� (Figure 3). Using ptc-Gal4 to express GFP-shRNA in a
hs-GFP background, and inducing GFP expression 2 hr before
dissection, wefind that GFP knockdown occurs in the ptc stripe
(RFP+) aswell as in cells far anterior (RFP2) (Figure 3C).We
do not detect GFP fluorescence without heat shock and ob-
serve tissue autofluorescence only at higher exposure settings
(Figure 3B9). These results suggest that previous expression of
transcripts is not required for RNAi persistence in shadow
RNAi cells.

We also systematically tested the requirement of genes
that might promote RNAi persistence based on mecha-
nisms that operate in other systems. This was accomplished
by knocking down each gene while monitoring transient
knockdown of a ubiquitously expressed RFP (ubi-RFP) using
the ptc-Gal4 expression system. Our goal was to identify
genes that are selectively required for RNAi persistence in

cells anterior to the ptc stripe. We tested Drosophila ortho-
logs of genes involved in RITS, chromatin-remodeling
genes, and machinery involved in miRNA, siRNA, and
piRNA processing. With one exception, none of the genes
when knocked down abolished persistent RNAi of the ubi-
RFP reporter gene (Figure S3; Table S2). The exception
was Ago2 RNAi, which nearly abolishes RFP knockdown in
all cells expressing ptc-Gal4 (Figure S3C). This result is
consistent with the known role of Ago2 to bind siRNAs and
coordinate RNAi-induced silencing complex (RISC) degrada-
tion of target transcripts (Ni et al. 2011). In summary, our
results favor a model where the persistence of RNAi is simply
the result of a slow rate of degradation of shRNAs and/or
their siRNA derivatives.

i-TRACE: a novel lineage analysis tool based on RNAi

Since even transient expression of an shRNA could generate
persistent knockdown (Figure 1, B andC), we explored its use
as a lineage-tracing tool. To facilitate RNAi-based lineage
tracing with Gal4 lines, we constructed a fly strain containing
three transgenes: (1) a reporter of Gal4 activity (e.g., UAS-RFP),
(2) a ubiquitously expressed target gene (e.g., ubi-GFP), and
(3) a Gal4-controlled shRNA (e.g., UAS-GFP-shRNA) (Figure
4A). Therefore, when this triple-transgenic line is crossed

Figure 3 RNAi persistence does not require past expression of target
transcripts. (A–C) Wing imaginal discs with ptc-Gal4 expression of RFP
(red). All discs contain the hs-GFP transgene. GFP (green) expression is
induced with a heat shock (hs) 2 hr before dissection. Cell nuclei labeled
with DAPI (blue). (A) Heat-shock induction of GFP (green) with no GFP-
shRNA. (B) Expression of GFP-shRNA with no heat shock. (B9) Inset shows
maximum exposure. (C) Expression of GFP-shRNA with heat shock. Double
arrow in C9 indicates RNAi persistence in cells anterior to the ptc stripe.
Bars, 50 mm. All panels with (’) or (’’) designation show isolated greyscale
channels of the merged image in their respective parental panel.
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with a Gal4 line, F1 progeny will contain cells and tissues that
report real-time Gal4 expression (RFP+, GFP2) and recent
Gal4 expression (RFP2, GFP2) (Figure 4B). Since exoge-
nous fluorescent transgenes are used, the tissues being ana-
lyzed are wild type and antibody staining is not necessary.We
refer to this system as i-TRACE (RNAi-Technique for Real-
time And Clonal Expression), which shares a similar naming
convention with G-TRACE, a recombination-based lineage-
tracing technique (Evans et al. 2009). We compared i-TRACE
with G-TRACE using several well-characterized Gal4 lines.

dpp-Gal4 expresses in the anterior wing disc at early de-
velopmental stages and becomes restricted to a thin stripe
of cells at the border between anterior and posterior com-
partments (Masucci et al. 1990; Evans et al. 2009). Using
i-TRACE, we observed large regions of the anterior wing
disc that previously expressed dpp-Gal4 (Figure 4C). Using G-
TRACE (Figure 4D), we find that the region of lineage-traced
cells is patchier and restricted to a smaller domain. Results
with ptc-Gal4 are comparable to dpp-Gal4 as they express in
similar domains (Figure S4). nubbin-Gal4 (nub-Gal4) ex-
presses in the wing disc pouch, and the outer edge of this
domain is thought to shift throughout larval development
(Zirin and Mann 2007). Using i-TRACE, we confirmed this
phenomenon by finding a thin ring of cells outside of the
nub-Gal4 domain that previously expressed Gal4 (Figure
3E). In contrast, when using G-TRACE, this ring of past
expression is not visible (Figure 3F). Thus, in at least these
two cases, i-TRACE appears more sensitive than G-TRACE.

escargot-Gal4 (esg-Gal4) expresses in two cell types of the
adult midgut: intestinal stem cells and their immediate de-
scendants called enteroblasts (EBs) (Micchelli and Perrimon
2006). EBs give rise to two differentiated cell types that no
longer express esg-Gal4: enterocytes and enteroendocrine
cells. Together, these four cell types compose the entiremidgut

epithelium. Using i-TRACE with esg-Gal4, we observed that
all cells of the midgut are GFP2 (Figure 3G). These cells
include enterocytes, which are discernible by their large
nuclear size (Micchelli and Perrimon 2006). In contrast, mus-
cle cells that surround the midgut epithelium express GFP,
confirming that animals contain the ubi-GFP transgene. This
result supports the model that differentiated cell types in
the midgut epithelium are descendants of a lineage that
expressed esg-Gal4. Using G-TRACE with esg-Gal4 demon-
strates similar results to i-TRACE (Figure 3H).

In summary, our analysis of several Gal4 lines using the
i-TRACE system suggests that it is a useful tool for simulta-
neously visualizing past and present gene expression.

Reversible changes in compartment identity markers are
revealed using i-TRACE

During animal development, boundaries between gene ex-
pression domains are important to physically separate cells of
different function (Dahmann et al. 2011). In the Drosophila
wing disc, four compartments are separated by two bound-
aries, the anterior/posterior (A/P) boundary, and the dorsal/
ventral (D/V) boundary (Figure 5A). The A/P boundary is
specified during embryogenesis and the D/V boundary at the
end of the first larval instar. Lineage-tracing techniques have
demonstrated that cells initially specified in one compart-
ment do not normally switch identities (Garcia-Bellido et al.
1973). We set out to test this model by analyzing the expres-
sion patterns of several compartment-specific Gal4 lines with
i-TRACE.

The A/P boundary is specified by the selector gene
engrailed (en) (Kornberg et al. 1985), which expresses in all
cells of the posterior compartment and activates transcrip-
tion of hedgehog (hh) (Tabata et al. 1992). Using i-TRACE
to analyze hh-Gal4, we observed present expression in the

Figure 4 The i-TRACE system.
(A) Diagram of the genetic com-
ponents that form the i-TRACE
system. Enhancer-driven expres-
sion of Gal4 induces RFP and
GFP-shRNA in cells. GFP-shRNA
targets ubiquitously expressed
GFP transcripts from ubi-GFP.
(B) A comparison of cell color
representations between the
i-TRACE and G-TRACE systems.
(C–H) Analysis of enhancer-Gal4
expression with i-TRACE and
G-TRACE. Cell nuclei labeled
with DAPI (blue). Bars, 50 mm.
(C and D) dpp-Gal4 expression
in the wing imaginal disc. Dou-
ble arrows indicate RNAi persis-
tence in C, or recombined
lineage in D, in cells anterior to
the ptc stripe. (E and F) nb-Gal4

expression in the wing imaginal disc. (E) Arrows indicate region of past expression at outer edge of pouch. (F) Arrowhead indicates outer boundary of
nb-Gal4 expression. (G and H) esg-Gal4 expression in the adult midgut. Arrows indicate RFP+ nuclei; arrowheads indicate enterocyte nuclei. Asterisks in
G indicate overlying muscle nuclei with GFP expression.
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posterior compartment of the third instar wing disc (Figure
5B), consistent with previous studies (Tanimoto et al. 2000).
Surprisingly, in all discs imaged (.20), we also observed
patches of shadow RNAi cells in the anterior compart-
ment (Figure 5B), indicating that hh-Gal4 was previously
expressed in these cells. These shadow RNAi patches were
always adjacent to the A/P boundary and expressed anterior
identity genes (Figure S5). Furthermore, we occasionally
found that a subset of anterior shadow RNAi cells actively
expressed hh-Gal4 (Figure S5, A and B; Figure S6, A and B).
To verify our results via a different method, we used G-
TRACE to analyze past hh-Gal4 expression in the wing disc.
Again, we find patches of cells that previously expressed hh-
Gal4 in the anterior compartment (Figure S6, C and D),
although at a much lower frequency (1 disc of 10). This is
consistent with the reduced sensitivity of G-TRACE in
detecting past expression. These results suggest that at
least some anterior cells in the wing disc express hh-Gal4
at some point in development.

During late third instar wing development, en expression
expands into a small region of the anterior compartment
that borders the posterior compartment (Blair 1992). We
wondered whether this anterior en expression could be re-
sponsible for activating hh-Gal4 in anterior cells as seen
with i-TRACE. To test this possibility, we examined a devel-
opmental time series to determine when anterior shadow
RNAi cells form in hh-Gal4 i-TRACE wing discs. We find that
anterior hh-Gal4 shadow RNAi cells are first visible in the
second instar and early third instar (Figure S7, A–D). We also
find similar results with en-Gal4 i-TRACE (Figure S7, G–J),
where the appearance of anterior shadow RNAi cells pre-
cedes the late third instar expression of en-Gal4 in anterior

cells (Figure S7, K and L). Furthermore, the anterior en ex-
pression domain, which extends mostly along the dorsal/
ventral boundary, does not obviously overlap with the loca-
tion and shape of hh-Gal4 shadow RNAi patches (Figure S8).
These results suggest that en-Gal4 and hh-Gal4 are expressed
in anterior cells at a time point much earlier than previously
described.

To determine if other markers of compartment identity
transiently express outside of their canonical compartment,
we analyzed the expression patterns of additional Gal4
lines with i-TRACE in the third instar wing disc. cubitus
interruptus (ci), an essential component of the hh pathway,
is repressed in the posterior compartment by en and thus
is expressed only in the anterior compartment (Eaton and
Kornberg 1990). Using i-TRACE to analyze ci-Gal4, we find
the expected current expression in the anterior compartment,
but also evidence of past expression in cells of the posterior
compartment (Figure 5C). In addition, a subset of posterior
shadow RNAi cells actively express ci-Gal4 (Figure 5C9).
apterous (ap) is a selector gene expressed in the dorsal com-
partment of the wing disc (Blair et al. 1994). Using i-TRACE
to analyze ap-Gal4, we observe cells in the ventral compart-
ment that previously expressed Gal4 (Figure 5D). In sum-
mary, our results with i-TRACE suggest that the expression
of each of four different compartment-specific Gal4 lines (hh-
Gal4, en-Gal4, ci-Gal4, and ap-Gal4) is not completely re-
stricted to its specific compartment.

Several similarities in the characteristics of shadow RNAi
patches produced from different compartment Gal4 lines
suggest that they are clones that originate close to the com-
partment boundary. First, these cells appear as cohesive
groupswith similar levels of knockdown, suggesting that they

Figure 5 Reversible cell-fate switching
at compartment boundaries in the wing
disc. (A) Wandering third instar wing
disc expressing ubi-GFP. Boxed area in-
dicates magnified pouch region with
overlay of compartment boundaries,
ventral–dorsal (horizontal yellow line)
and anterior–posterior (vertical blue line).
(B–D) i-TRACE analysis of compartment-
specific Gal4 lines in the wing disc. (B)
hh-Gal4 (posterior expression). (C) ci-
Gal4 (anterior expression). (D) ap-
Gal4 (dorsal expression). Cell nuclei
labeled with DAPI (blue). Arrows indi-
cate shadow RNAi cells in the oppo-
site compartment to enhancer-Gal4
expression. Boxes indicate magnifica-
tions in B9, C9, and D9. Arrowhead in
C9 indicates a posterior RFP+ cell.
Bars, 50 mm in B, C, D; 25 mm in B9,
C9, and D9.
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belong to a shared clonal lineage that underwent several cell
divisions after expression of Gal4 (Xu and Rubin 1993). Sec-
ond, these patches are frequently elongated in the proximo/
distal direction, an indicator that there is significant prolifer-
ation after the labeling event (Baena-Lopez et al. 2005).
Third, these patches lie in proximity to the compartment
boundary defined by the particular Gal4 line. These results
suggest that cells located at wing-disc compartment bound-
aries can transiently express at least some markers of the
opposite compartment (Figure 5E).

Discussion

In this study, we show that transient expression of shRNAs in
Drosophila tissues can cause persistent knockdown in cells
that outlasts co-expressed marker transgenes. We term this
effect “shadow RNAi,” since cells with persistent knockdown
are not discernible without visualizing target gene expres-
sion. Although this effect was obvious when targeting three
different genes, GFP, RFP, and crb, it is possible that other
genes may behave differently. Indeed, we were unsuccessful
in observing shadow RNAi cells for three other genes (fat,
gigas, and dachshund) in the wing disc using FLP-out Gal4
(Table S1; not shown). While these could represent technical
failures, it is also possible that gene-specific factors influence
the susceptibility to shadow RNAi, such as transcript/protein
expression levels or stability. Similarly, different RNAi re-
agents may or may not cause shadow RNAi. For both GFP
and crb, we found that an shRNA transgene was much more
effective than a long dsRNA transgene in generating shadow
RNAi (see Table S1). This difference may simply be
explained by better knockdown efficiency using shRNAs com-
pared to dsRNAs, as has been observed previously (Ni et al.
2011). Alternatively, shRNAs, which are embedded in amiR-
1microRNA backbone (Ni et al. 2011), might be more stable
in cells than long dsRNAs or produce greater numbers of
siRNAs. Importantly, it is possible that other hairpin trans-
genes, derived from different sources or that target different
regions of a transcript, may behave differently.

Since shadow RNAi cells can have mutant phenotypes, as
we showed with crb (Figure 1D), it is important that re-
searchers take this phenomenon into consideration, espe-
cially when drawing conclusions about the cell autonomy
of mutant phenotypes caused by RNAi-induced knockdown.
For some experiments, simply identifying where shadow
RNAi cells are located may allow a proper interpretation of
results. To test if an shRNA generates shadow RNAi cells
in vivo, it is critical to visualize target gene expression while
conducting knockdown. Although we used antibodies to de-
tect protein levels, in situ hybridization to detect transcript
levels may also be effective. Complementary to testing an
shRNA, a Gal4 line can be assayed with i-TRACE to determine
if it causes persistent RNAi of a fluorescent reporter transgene.

We also suggest methods to prevent the generation of
shadow RNAi cells. For example, including a temperature-
sensitive Gal80 transgene can allow more refined temporal

control over whenGal4 is turned on (e.g., Figure 2, C–E), thus
giving shadow RNAi cells less time to form. Alternatively,
based on our experiments with GFP and crb knockdown,
using long dsRNAs instead of shRNAs seems to prevent for-
mation of shadow RNAi cells. If performing clonal RNAi ex-
periments, we recommend using the MARCM system since
this prevents the phenomenon of shadow RNAi clones. Fur-
thermore, shadowRNAi cells are not predicted to occur when
using FLP-out Gal4 in nonproliferative tissues since we sug-
gest that transient expression of Gal4 before cell division is
required for their generation (Figure 1E).

As an outcome of our work describing RNAi persistence
in vivo, we developed the i-TRACE system as a novel method
tomonitor dynamic gene expression fromGal4 reporter lines.
The i-TRACE system fills an important gap in existing genetic
methods. For example, real-time detection of Gal4 expression
is accomplished with a reporter under UAS control (Fischer
et al. 1988; Brand and Perrimon 1993) but cannot be used to
report past expression of Gal4. Conversely, recombination-
based methods are used to stably mark cell lineages that pre-
viously expressed Gal4 (Evans et al. 2009), but can overlook
short-term changes in gene expression that occur after stable
recombination. The i-TRACE system can be used as a lineage-
tracing tool for visualizing recent gene expression, since re-
porter knockdown in marked cells reverses after �72 hr. In
addition, in at least some situations, the i-TRACE system ap-
pears to be a more sensitive reporter of past Gal4 expression
than G-TRACE.

Only rarely has a switch in compartment identity been
observed near lineage-restricted boundaries, such as in the
Drosophila embryo (Gettings et al. 2010) and in the wing
discs during regeneration (Herrera and Morata 2014). Our
data demonstrate that cells located at lineage-restricted
boundaries of the wing disc can transiently express Gal4 re-
porters of the opposite compartment identity (Figure 5E),
raising the possibility that boundary cells may be less com-
mitted to their respective compartmental identities than pre-
viously thought, although they ultimately seem to maintain
their originally fated compartmental identities. An important
caveat is that Gal4 reporter transgenes might not accurately
reflect transcription of the endogenous gene. Therefore, it
remains unknown whether boundary cells express endog-
enous identity genes of the opposite compartment and
whether this results in transient cell-fate changes. Careful
imaging of endogenous compartment identity gene ex-
pression in developing wing discs may help resolve this
issue. Furthermore, other possibilities such as direct trans-
fer of Gal4 or shRNAs between cells at the boundary also
merit consideration.
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Figure S1. Additional data relevant to Figure 1 (A) Wing imaginal disc with FLP-out clones expressing GFP 
(green) and RFP-shRNA, with knockdown of ubi-RFP (red). Arrows indicate shadow RNAi clones. (B-D) 
Larval tissues with shadow RNAi clones, indicated by arrows, (B) eye imaginal disc, (C) lymph gland, (D) 
prothoracic gland. (E) Wing imaginal disc with FLP-out clones expressing RFP (red) and GFP-dsRNA, with 
knockdown of ubi-GFP (green). Arrowhead indicates possible shadow RNAi cells. (F) Clones induced 72hrs 
before dissection. Arrow indicates shadow clone. Cell nuclei labeled with DAPI (blue). Scale bars are 50µm. 
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Figure S2. Additional data relevant to Figure 2 (A-D) Wing imaginal discs expressing ptc-Gal4. (A-C) 
Expression of RFP (red) in an ubi-GFP background. Cell nuclei labeled with DAPI (blue). (A) Control disc that 
does not express GFP-shRNA. (B) Expression of GFP-dsRNA. (C) Expression of Nslmb-vhhGFP4 (deGradFP). 
vhhGFP4 is a nanobody that binds to GFP protein, and Nslmb is a truncated form of the E3 ubiquitin ligase 
slmb that contains the F-box domain (Caussinus et al., 2012). Therefore, expression of Nslmb-vhhGFP4 causes 
ubiquitination of GFP and degradation via the proteasome. (D) Expression of GFP (green) and crb-dsRNA, and 
antibody staining for Crb (red). Cell membranes labeled with Arm staining (blue). Scale bars are 50µm. 
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Figure S3. Additional data relevant to Figure 3 (A-D) Wing imaginal disc with ptc-Gal4 expression of GFP 
(green) and RFP-shRNA, in an ubi-RFP background. Cell nuclei labeled with DAPI (blue). (A) Control disc. 
Expression of (B) ago1-shRNA, (C) ago2-shRNA, or (D) ago3-shRNA. Scale bars are 50µm. 
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Figure S4. Additional data relevant to Figure 4. G-TRACE analysis of ptc-Gal4 in the wing imaginal disc. 
Current expression indicated by RFP (red), recombined lineage expression indicated by GFP (green). Cell 
nuclei labeled with DAPI (blue). Scale bar is 50µm. 
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Figure S5. Additional data relevant to Figure 5. Anterior shadow RNAi cells produced from hh-Gal4 express 
anterior cell identity markers in the wing imaginal disc. (A-D) i-TRACE analysis with hh-Gal4. Arrows 
indicate shadow RNAi cells in anterior compartment. (A-B) hh-Gal4 drives expression of GFP and RFP-shRNA 
in an ubi-RFP background. Anti-Ci staining (blue) in the anterior compartment). Arrowheads indicate current 
expression of hh-Gal4 in anterior cells. (B) Enlargement of box in A. (C-D) hh-Gal4 drives expression of RFP 
and GFP-shRNA in an ubi-GFP background. Anti-Ptc staining (blue) in anterior cells that border the posterior 
compartment. (D) Enlargement of box in C. Scale bars are 50µm in A and C, and 25µm in B and D. 
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Figure S6. Additional data relevant to Figure 5. (A-B) hh-Gal4 analyzed with i-TRACE. A subset of cells 
within anterior shadow RNAi patches exhibit low level current expression of hh-Gal4. hh-Gal4 drives 
expression of GFP (green) and RFP-shRNA in a ubi-RFP background. Arrows indicate anterior shadow RNAi 
cells. Arrowheads indicate anterior cells that currently express hh-Gal4. (B) Enlargement of box in A. The 
white dotted line in B’’ and B’’’ outlines anterior shadow RNAi cells (C-D) hh-Gal4 analyzed with G-TRACE. 
RFP marks currently expressing cells, GFP marks past expressing cells. Arrows indicate anterior cells that are 
GFP+ but RFP-. (D) Enlargement of box in C. Cell nuclei labeled with DAPI (blue). Scale bars are 50µm in A 
and C, and 25µm in B and D.  
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Figure S7. Additional data relevant to Figure 5. Developmental time-series of wing imaginal discs from 
stages L2 to L3. Arrows indicate shadow RNAi cells. (A-F) i-TRACE analysis of hh-Gal4. (G-L) i-TRACE 
analysis of en-Gal4. (A-B, G-H) stage L2 wing discs. (C-D, I-J) early stage L3 wing discs. (E-F, K-L) late 
stage L3 wing discs. Cell nuclei labeled with DAPI (blue). All scale bars are 50µm. 
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Figure S8. Additional data relevant to Figure 5. Anterior shadow RNAi cells produced from hh-Gal4 are 
distinguishable from anterior expression of En in the late 3rd instar wing disc. (A-B) i-TRACE analysis with hh-
Gal4. Arrows indicate shadow RNAi cells in anterior compartment. Arrowheads indicate anterior En expression. 
(B) Enlargement of box in A. Cell nuclei labeled with DAPI (blue). Scale bars are 50µm in A, and 25µm in B.
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Target 
Knockdown 
type Genotype BL # 

FLP-out Gal4 
phenotype Figure ptc-Gal4 phenotype Figure 

ubi-GFP dsRNA 
w[1118]; P{w[+mC]=UAS-
GFP.dsRNA.R}142 9330 

rare and faint shadow 
RNAi cells Fig. S1 

faint shadow RNAi cells 
anterior to ptc stripe Fig. S2 

ubi-GFP shRNA 
y[1] sc[*] v[1]; P{y[+t7.7] 
v[+t1.8]=VALIUM20-EGFP.shRNA.1}attP2 41556 

obvious shadow RNAi 
clones Fig. 1 

obvious shadow RNAi 
cells anterior to ptc stripe Fig. 2 

hs-GFP shRNA 
y[1] sc[*] v[1]; P{y[+t7.7] 
v[+t1.8]=VALIUM20-EGFP.shRNA.1}attP40 41555 - - 

obvious shadow RNAi 
cells anterior to ptc stripe Fig. 3 

ubi-GFP deGradFP w[*]; P{w[+mC]=UAS-Nslmb-vhhGFP4}3 38421 - - 
faint shadow knockdown 
cells anterior to ptc stripe Fig. S2 

ubi-RFP shRNA 
y[1] sc[*] v[1]; P{y[+t7.7] 
v[+t1.8]=VALIUM20-mCherry}attP2 35785 

obvious shadow RNAi 
clones Fig. S1 

obvious shadow RNAi 
cells anterior to ptc stripe Fig. S3 

crb dsRNA 
y[1] v[1]; P{y[+t7.7] 
v[+t1.8]=TRiP.JF02777}attP2 27697 - - 

no shadow RNAi cells 
anterior to ptc stripe Fig. S2 

crb shRNA 
y[1] sc[*] v[1]; P{y[+t7.7] 
v[+t1.8]=TRiP.HMS02036}attP2 40869 

obvious shadow RNAi 
clones Fig. 1 

obvious shadow RNAi 
cells anterior to ptc stripe Fig. 2 

gigas shRNA 
y[1] sc[*] v[1]; P{y[+t7.7] 
v[+t1.8]=TRiP.HMS01217}attP2/TM3, Sb[1] 34737 

no shadow clones 
observed, not in 
figures 

data not 
shown - - 

ft shRNA 
y[1] sc[*] v[1]; P{y[+t7.7] 
v[+t1.8]=TRiP.HMS00932}attP2 34970 

no shadow clones 
observed, not in 
figures 

data not 
shown - - 

dac shRNA 
y[1] sc[*] v[1]; P{y[+t7.7] 
v[+t1.8]=TRiP.HMS01435}attP2 35022 

no shadow clones 
observed, not in 
figures 

data not 
shown - - 

Table S1. Summary of genes targeted by RNAi and knockdown transgenes used. 



Gene Function RNAi Phenotype Bloomington # TRiP # shRNA version 

ago1 miRNA associated, 
RISC component none 33727 HMS00610 VALIUM20 

ago2 siRNA associated, 
RISC component 

Abolishes RNAi 
of RFP reporter 34799 HMS00108 VALIUM20 

ago3 piRNA pathway none 34815 HMS00125 VALIUM20 

eIF-2gamma S. pombe RITS
homologue none 33401, 32914 HMS00279, 

HMS00704 VALIUM20 

Su(var)3-9 S. pombe RITS
homologue none 33401, 32914 HMS00279 VALIUM20 

HP1c S. pombe RITS
homologue none 33962 HMS00919 VALIUM20 

G9a S. pombe RITS
homologue none 34817 HMS00127 VALIUM20 

Trf4-1 S. pombe RITS
homologue none 41966 HMS02363 VALIUM20 

pic S. pombe RITS
homologue none 33888 HMS00826 VALIUM20 

Su(var)205 (HP1) Heterochromatin none 33400 HMS00278 VALIUM20 

Pc Polycomb-group 
protein none 33622 HMS00016 VALIUM20 

Psc Polycomb-group 
protein none 38261 HMS01706 VALIUM20 

pho Polycomb-group 
protein none 42926 HMS02619 VALIUM20 

Table S2. Additional data relevant to Figure 3 and Supplemental Figure 3 Genes targeted by RNAi to test 
their requirement for RNAi persistence. Each RNAi line was crossed with a tester line that contains the 
following transgenes: ptc-Gal4, UAS-GFP, UAS-GFP-shRNA, ubi-RFP. Wing discs were imaged to determine 
if the pattern of RFP RNAi is altered. Ago2 RNAi abolishes RFP RNAi in all cells, but other RNAi lines tested 
do not alter the pattern of RFP RNAi in the wing disc (see Figure S3). 
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