
Materials 2015, 8, 1369-1383; doi:10.3390/ma8041369 
 

materials 
ISSN 1996-1944 

www.mdpi.com/journal/materials 

Article 

Preparation and Electrochemical Characterization of 
Mesoporous Polyaniline-Silica Nanocomposites as  
an Electrode Material for Pseudocapacitors 

Lei Zu 1,2, Xiuguo Cui 1,*, Yanhua Jiang 1, Zhongkai Hu 1,2, Huiqin Lian 1, Yang Liu 1,  

Yushun Jin 1, Yan Li 1 and Xiaodong Wang 2,* 

1 Beijing Key Laboratory of Specialty Elastomer Composite Materials,  

College of Materials Science & Engineering, Beijing Institute of Petrochemical Technology, 

Beijing 102617, China; E-Mails: zulei@bipt.edu.cn (L.Z.); jiangyanhua@bipt.edu.cn (Y.J.); 

huzhongkai@bipt.edu.cn (Z.H.); lianhuiqin@bipt.edu.cn (H.L.); yang.liu@bipt.edu.cn (Y.L.); 

jinyushun@bipt.edu.cn (Y.J.); liyan@bipt.edu.cn (Y.L.) 
2 State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 

Beijing 100029, China 

* Authors to whom correspondence should be addressed;  

E-Mails: cuixiuguo@bipt.edu.cn (X.C.); wangxd@mail.buct.edu.cn (X.W.);  

Tel./Fax: +86-10-8129-4007 (X.C.); +86-10-6441-0145 (X.W.). 

Academic Editor: Rafael Luque 

Received: 2 February 2015 / Accepted: 16 March 2015 / Published: 25 March 2015 

 

Abstract: Mesoporous polyaniline-silica nanocomposites with a full interpenetrating 

structure for pseudocapacitors were synthesized via the vapor phase approach. The 

morphology and structure of the nanocomposites were deeply investigated by scanning 

electron microscopy, infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis 

and nitrogen adsorption-desorption tests. The results present that the mesoporous 

nanocomposites possess a uniform particle morphology and full interpenetrating structure, 

leading to a continuous conductive polyaniline network with a large specific surface area. 

The electrochemical performances of the nanocomposites were tested in a mixed solution of 

sulfuric acid and potassium iodide. With the merits of a large specific surface area and 

suitable pore size distribution, the nanocomposite showed a large specific capacitance 

(1702.68 farad (F)/g) due to its higher utilization of the active material. This amazing value 

is almost three-times larger than that of bulk polyaniline when the same mass of active 

material was used. 
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1. Introduction 

As a new kind of electrochemical energy storage device, supercapacitors have attracted great attention, 

both in academic and practical applications, due to their excellent properties, such as sustainable cycling 

life, fast charging-discharging rate, high specific power and excellent cycle stability [1–7]. With these 

merits, supercapacitors would fill the gap between conventional electrochemical capacitors and batteries. 

It is well known that depending on the different charge-storage mechanism, supercapacitors could be 

defined as either electrical double-layer capacitors or pseudocapacitors, in which the pseudocapacitance 

results from the Faradaic reactions occurring at the very nearly electrode interface and utilizing 

electroactive materials to store energy through redox reactions [8,9]. 

The electrode material is an important factor to directly decide the capability, delivery rates and 

efficiency of the pseudocapacitors [10]. Various organic or inorganic materials could act as the 

pseudocapacitor electrode materials, including carbonaceous materials [5,11,12], transition-metal  

oxides [13] and conductive polymers [14–16]. Among the different conductive polymers, polyaniline 

(PANI) is believed to be the ideal candidate for supercapacitors due to its good redox reversibility, 

electrical conductivity, easy synthesis procedure and good environmental stability [17–20]. 

In recent years, some reports have presented that a material in the nano-size form with a large surface area 

and high porosity gives an excellent performance as the electrode material for supercapacitors [12,21–24]. 

According to this, great efforts have been devoted to developing high-performance nanocomposites, which 

were composed of PANI and other organic or inorganic materials [25–39]. These novel nanocomposites 

commonly have a relatively large specific surface area and appropriate pore diameter distribution,  

which could offer the possibility to improve the specific capacitance of supercapacitors due to their 

larger exposure area and more active Faradaic reactions sites. 

As a classical inorganic material, mesoporous silica has wide applications due to its high specific 

surface area, large pores, tunable porosity and high chemical stability [40–43]. Therefore, a composite 

electrode formed by mesoporous silica and PANI may possesses a good electrochemical activity and 

relatively large specific surface area to improve the performance of supercapacitors. However, for a 

PANI-silica nanocomposite, if the PANI chains were isolated in the channels or pores of mesoporous 

silica and could not form a conductive network, the electrical performance of the composite would be 

decreased very greatly, due to the free movement of electrons being restricted within the PANI chains [44]. 

Therefore, a nanocomposite of PANI and mesoporous silica preferably has a consecutive organic 

conductive network with a relative large effective specific surface area, if it were used as the 

pseudocapacitor electrode material. 

Apart from the electrode materials, the electrolyte is also particularly important in affecting  

the performance of supercapacitors. Some papers published in recent years have proposed that the  

total capacitance and energy density of supercapacitors would be improved greatly if an 

electrochemically-active material were added into the electrolyte. These electrochemically-active 
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materials include indigo carmine [45], hydroquinone [46], methylene blue [47], etc. The excellent 

electrochemical performance of supercapacitors could be ascribed to an additional pseudocapacitive 

contribution of the electrochemically-active materials. According to these results, an excellent 

electrochemical performance of supercapacitors would be obtained by utilizing a large effective specific 

surface area nanocomposite electrode material that possesses a consecutive conductive network, and a 

new composite electrolyte should also preferably be used. 

Herein, we synthesized a novel mesoporous PANI-silica nanocomposite electrode material through 

the vapor phase approach. The mesoporous nanocomposites possess a full organic-inorganic 

interpenetrating structure, leading to a consecutive PANI conductive network, and the specific surface 

area is 81.08 m2/g, which is much larger than that of the bulk PANI. The largest specific capacitance 

was 1702.68 F/g when potassium iodide was added into the electrolyte. This excellent value was almost 

three-times larger than that of the bulk PANI when the same weight of active material was used. 

2. Results and Discussion 

Figure 1 presents the FTIR spectra of bulk PANI, mesoporous silica and PANI-silica nanocomposite. 

Similar to the mesoporous silica, the PANI-silica shows a typical Si-O-Si antisymmetric and symmetric 

stretching at 1078 cm−1 and 801 cm−1, respectively, indicating the existence of silica. Except for the 

original peaks involved with silica, some new absorption peaks could also be observed in PANI-silica. 

The peak at 1305 cm−1 could be assigned to the C-N stretching vibration of the benzenoid ring, and the 

peak at 1157 cm−1 is attributed to the aromatic C–H in-plane bending. The peaks centered at 1498 cm−1 

and 1589 cm−1 are due to the C = C and C = N stretching of the benzenoid and quinoid rings, respectively. 

These typical absorption peaks confirm the existence of PANI in the nanocomposite. However, when 

comparing the spectra of the bulk PANI and PANI-silica, the typical adsorption peaks of PANI all  

blue-shift to higher wavenumbers, as shown in Figure 1. This phenomena implies that the PANI in 

PANI-silica may be restricted by the silica; in other words, the PANI probably penetrates into the 

mesoporous silica pores and channels [48]. 

 

Figure 1. FTIR spectra of bulk polyaniline (PANI), mesoporous silica and PANI-silica.  
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The SEM images of mesoporous silica, bulk PANI and PANI-silica are presented in Figure 2. As can 

be seen in Figure 2A, the mesoporous silica has a spherical particle morphology, and the surface is 

smooth. However, as shown in Figure 2B, the PANI-silica has a rough irregular surface, indicating that 

polymerization perhaps occurred both in the internal channels and pores and external surface of the 

mesoporous silica. The bulk PANI shows a rough short stick morphology, as presented in Figure 2C. 

   

Figure 2. SEM images of samples: (A) mesoporous silica; (B) PANI-silica; and  

(C) bulk PANI. 

TGA and DTG curves of bulk PANI and PANI-silica nanocomposite are presented in Figure 3.  

As shown in Figure 3A, the bulk PANI demonstrates a characteristic three-step weight loss process,  

and about 55% of PANI was left due to the carbonization under nitrogen atmosphere. The initial loss is 

owed to the elimination of absorbed water and the weight loss between 150 °C and 300 °C is attributed 

to the decomposition of dopant molecules. The last weight loss process corresponds to the degradation 

of PANI. Furthermore, it also can be found that the total mass loss of PANI-silica is about 23%, including 

the elimination of water and the decomposition of PANI. Correspondingly, the content of silica is almost 

77% in PANI-SiO2. However, as shown in Figure 3B, the PANI-silica possesses a typical two-step 

decomposition. At a temperature below 100 °C, the elimination of water occurs, and the weight loss is 

about 3%. The following weight loss process is apparently due to the decomposition of PANI, and the 

weight loss is nearly 20%. It is notable that the residues of bulk PANI and mesoporous PANI-SiO2 are 

not stable, even when the temperature was increased to 600 °C, this result could be ascribed to the high 

crystallinity of bulk PANI and the existence of silica [49]. Compared with the bulk PANI, the polymer 

in the PANI-silica possesses worse thermal stability, which may be due to the PANI in the 

nanocomposite being amorphous and the silica having a restriction on the PANI [48]. 

The X-ray scattering patterns of the bulk PANI, mesoporous silica and PANI-silica are exhibited in 

Figure 4. As demonstrated in Figure 4A, the main diffraction peaks of the bulk PANI at 2θ = 14.4°, 

15.27°, 20.1°, 25.2° and 29.8°, respectively. The diffraction peaks at 15.27°, 20.1°, 25.2° correspond to 

the (011), (020) and (200) crystal planes of orthorhombic crystalline PANI in its emeraldine salt form, 

respectively [50]. The peak at 20.1° is related to the repeat units of the polyemeraldine chain and the 

periodicity parallel to the polymer chains of PANI. The peak at 25.2° is owed to the periodicity in the 

direction perpendicular to the polymer chain [51]. These typical diffraction peaks confirm that the PANI 

is highly crystalline. The wide angle X-ray diffraction (WAXD) patterns of mesoporous silica and  

PANI-silica are presented in Figure 4B. It can be seen clearly that the silica possesses a broad diffraction 
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peak at about 21.9°, indicating that the mesoporous silica is amorphous. Similarly, the diffraction peak 

of PANI-silica did not have an apparent shift, but only the diffraction intensity is lower than mesoporous 

silica. This result may be attributed to relatively low scattering contrast between the pores and walls of 

mesoporous silica resulting from the formation of PANI chains in the channels of silica [52]. 

Furthermore, there is no diffraction peak of PANI emerging in the patterns of PANI-silica, confirming 

that the PANI is also amorphous and has been encapsulated in the pores and channels of the silica;  

and the crystallization of PANI is impeded owing to the confinement of silica framework. 

(A) (B) 

Figure 3. (A) TGA curves of bulk PANI and PANI-SiO2. (B) DTG curves of bulk PANI  

and PANI-silica. 

(A) (B) 

Figure 4. (A) X-ray scattering patterns of the bulk PANI. (B) X-ray scattering patterns of 

mesoporous silica and PANI-silica. 

The N2 adsorption/desorption isotherms and pore size distribution curves of mesoporous silica,  

PANI-silica nanocomposite and bulk PANI are shown in Figure 5, and detailed data are listed in  

Table 1. From Figure 5A, it can be seen clearly that the silica has a typical Type IV isotherm and displays 

a distinct hysteresis loop of H2 in the range of 0.4–1.0 P/Po (P is the partial pressure of the adsorbate and 

the Po is adsorbent saturated vapor pressure). The pore size distribution curves are exhibited in  

Figure 5B. As can be seen clearly, the pore diameter distribution curve of the silica calculated from 

adsorption branches shows two sharp peaks at 2.6 nm and 4.0 nm, respectively, suggesting that the silica 



Materials 2015, 8 1374 

 

 

possesses two pore structures. A similar result could also be found in PANI-silica, the peaks centered at 

2.6 nm and 3.5 nm. These results prove that the silica and PANI-silica are all mesoporous. However, 

compared with the mesoporous silica, the PANI-silica has a small capillary condensation step,  

which appears in the range of 0.8–1.0 P/Po, illustrating that the PANI-silica may possess a hollow core 

or cavity caused by the packing of particles, and this result is also demonstrated by the two different pore 

size distribution peaks in Figure 5B. As listed in Table 1, the mean pore diameter of PANI-silica and 

mesoporous silica is 4.37 nm and 6.68 nm, respectively. The smaller mean pore diameter of PANI-silica 

may be due to the existence of PANI, which exists both in internal pores or channels and the surface of 

the silica. Although the bulk PANI has a similar isotherm with the PANI-silica, the specific surface area 

and mean pore diameter are all much smaller than that of the PANI-silica. 

According to all of the test results obtained above, it is reasonable to presume that the PANI had 

penetrated into the silica pores and channels; in other words, the PANI-silica possesses a full 

interpenetrating structure. 

(A) (B) 

Figure 5. (A) N2 adsorption/desorption isotherms of mesoporous silica, PANI-silica and 

bulk PANI. (B) Pore size distribution curves of mesoporous silica, PANI-silica and bulk PANI. 

Table 1. N2 adsorption/desorption measurement results of bulk PANI, mesoporous  

silica and PANI-silica. 

Electrode SBET (m2/g) D (nm) Vt (cm3/g) 

SiO2 240.33 4.39 0.41 
PANI-SiO2 81.08 5.72 0.20 

PANI 48.11 6.68 0.11 

Cyclic voltammetry (CV) measurements were performed to investigate the electrochemical 

performance of bulk PANI and PANI-silica nanocomposite in the voltage range from −0.3 to 0.7 V  

(vs. the saturated calomel electrode (SCE)), taken at a scan rate of 5 mV/s. As indicated in Figure 6,  

the bulk PANI shows a pair of broad and symmetric redox peaks (centered at −0.15 V and 0.33 V), 

suggesting a typical reversible redox reaction of I−/I3
−, which is given by Equation (1) [53]:  

3I− − 2e− ↔ I3
− (1)
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A similar behavior is also shown in PANI-silica, the redox peaks centered at 0.15 eV and 0.33e V, 

respectively. It is well known that the redox reaction rate in electrochemical systems are negatively 

correlated with the peak-potential separation (Epp), the difference between the anodic peak potential 

(Epa) and the cathodic peak potential (Epc). The Epp of mesoporous silica and PANI-silica are 0.48 eV 

and 0.18 eV, respectively, demonstrating that the PANI-silica has a greater electrochemical activity than 

that of the bulk PANI. This result may be attributed to the PANI-silica possessing a higher doping level 

than that of the bulk PANI [53]. As listed in Table 1, the PANI-silica has a larger specific surface area 

and mean pore diameter than bulk PANI, leading to much more electrochemically-active sites [54]. 

Therefore, the PANI-silica has better electrochemical performance than bulk PANI. 

 

Figure 6. Cyclic voltammetry (CV) measurement results of bulk PANI and PANI-SiO2.  

SCE, saturated calomel electrode. 

Electrochemical impedance spectroscopy (EIS) analysis was performed to evaluate the charge 

transfer character of bulk PANI and PANI-silica nanocomposite. The Nyquist plots and equivalent 

circuit are presented in Figure 7. In the Nyquist plots, the depressed semi-circle in the high frequency is 

owed to the electrode possibly blocking the ionic exchange of the Faradic process, which is generated at 

the electrode/electrolyte interface. The straight line in the low frequency is due to the Warburg diffusion 

impedance. The diameter of the semicircle presents the difficulty of the charge transfer in the 

electrochemical system. As exhibited in Figure 7, the impedance curves of bulk PANI and PANI-silica 

show a single semicircle in the high frequency region and a straight line in the low frequency region. 

Although the bulk PANI and PANI-silica have a similar impedance spectra, the diameter of the two 

semicircles is very different. The semi-circle of the PANI-silica is much larger than that of the bulk 

PANI, suggesting that the PANI-silica has a higher electrochemical charge transfer resistance.  

In other words, the charge transfer in the PANI-silica/electrolyte is much slower than that of the bulk 

PANI. This result could be ascribed to the amorphous structure of PANI and the existence of silica in 

the nanocomposite. It is well known that silica is an inorganic semiconductor, which has a bulking 

property of ionic and electron transfer. Consequently, the silica may hinder the ionic transportation at 

the surface of the PANI-silica/electrolyte. Furthermore, the amorphous PANI has poor conductivity 

compared to the crystallized bulk PANI, leading to a larger internal resistance than that of the bulk  

PANI [55]. As a consequence of these disadvantages, the PANI-silica has a larger charge transfer 

resistance than that of bulk PANI.  



Materials 2015, 8 1376 

 

 

The equivalent circuit of the impedance spectra is shown in Figure 7. As can be seen obviously,  

the equivalent circuit consists of an ohmic serial resistance (Rs) in series with a parallel combination of 

charge transfer resistance (Rct) and a constant phase element (CPE1), in addition to a series with another 

constant phase element (CPE2).  

The shape of the Nyquist plots can be considered as an indication of the porous structure behavior,  

in good agreement with the SEM characterization [56]. 

 

Figure 7. Nyquist plots and equivalent circuit of bulk PANI and PANI-SiO2.  

Rs, serial resistance; CPE, constant phase element. 

Galvanostatic charge/discharge tests were performed to assess the electrochemical capacitance of 

bulk PANI and PANI-silica. The specific capacitance (Cs) can be calculated according the following 

Equation (2) [40]: 

Cs = (IΔt)/(ΔVm) (2)

where Cs is the specific capacitance (F/g), I is the current loaded (A), Δt is the discharge time (s), ΔV is 

the potential window during the discharge process and m is the mass of active material in a single 

electrode (g).  

As described clearly in Figure 8, the PANI-silica has a longer discharge time than that of the bulk 

PANI. The discharge time of PANI-silica and bulk PANI is 1,362.2 s and 894.6 s, respectively. 

According to Equation (2), a Cs value of 1,702.75 F/g is obtained for PANI-silica and 1,118.25 F/g for 

bulk PANI. Furthermore, with the consideration of only the PANI contributing the electrochemical 

activity in PANI-silica, the Cs value of PANI-silica is almost three-times larger than that of bulk PANI 

if the same mass of electroactive material were used. This excellent Cs value of PANI-silica could be 

owed to the high specific surface and suitable pore diameter of PANI-silica, which led to the higher 

utilization of the active material. 



Materials 2015, 8 1377 

 

 

 

Figure 8. Galvanostatic charge/discharge test results of bulk PANI and PANI-SiO2. 

3. Experimental Section  

3.1. Chemicals 

Oleic acid (OA), 3-aminopropyl-triethoxysilane (APTES), tetraethyl orthosilicate (TEOS), aniline, 

ammonium persulfate (APS), hydrochloric acid (HCl), acetylene black, polytetrafluoroethylene (PTFE), 

N-methyl-2-pyrrolidone (NMP) and potassium iodide (KI) were purchased from Aladdin. All of the 

reagents were used as received, except aniline. The aniline was purified by reduced pressure distillation 

before it was used. 

3.2. Sample Preparation 

3.2.1. Preparation of PANI 

The bulk PANI was prepared by the aqueous polymerization method. In a typical procedure, 0.5 g 

APS was dissolved in 100 mL of 0.2 M HCl solution and stirred at 0 °C for 30 min. Then, 0.2 g aniline 

were added to the above solution and stirred for another 2 h, followed by placing at 0 °C for 24 h.  

The precipitate was filtered and washed with ethanol and water until the filtrate was neutral. Then,  

the precipitate was dried at 60 °C under vacuum for 24 h.  

3.2.2. Preparation of Mesoporous Silica 

The mesoporous silica was synthesized according to [57]. In a typical procedure, 0.564 g OA,  

57.65 g deionized water and 4.6 g ethanol were mixed together at room temperature under vigorous 

stirring. After stirring for 30 min, 2.8 g TEOS and 0.442 g APTES were added to the solution and stirred 

for another 20 min. Then, the reaction solution was stirred at room temperature for 2 h followed by aging 

at 80 °C for 24 h. The mesoporous silica was obtained by filtering and washed with ethanol several times 

in order to remove the OA from the precipitate. Then, the precipitate was dried at 80 °C for 12 h and 

calcined at 550 °C for 6 h. 
  



Materials 2015, 8 1378 

 

 

3.2.3. Preparation of Mesoporous PANI-Silica Nanocomposites 

The mesoporous PANI-silica nanocomposite was prepared through the vapor phase method. In a 

typical procedure, the mesoporous silica (outgassed at 100 °C for 24 h in advance) was contacted with 

aniline gas at 40 °C for 48 h and then immersed in the solution of 150 mL HCl (0.2 mol/L) and 1.22 g 

APS. The reaction solution was vigorously stirred at 0 °C for 2 h and then placed for another 24 h.  

The obtained nanocomposite was filtered and washed with ethanol and aqueous HCl several times and 

then dried at 60 °C under vacuum for 24 h. 

3.3. Characterization 

3.3.1. Instruments 

Scanning electron microscopy (SEM) observations were performed on a COXEM EM-20 microscope 

operating at 20 kV. Infrared spectrometry (IR) analyses were performed on a Thermal Nicolet  

infrared spectrometer. Thermogravimetric analyses (TGA) were carried out using a TA instruments 

TGA2050 from room temperature to 600 °C, with a heating rate of 10 °C/min under nitrogen. Nitrogen 

adsorption-desorption isotherms were measured at 77 K using a JW-BK static physisorption analyzer 

after the samples were outgassed for 24 h at 110 °C. The BET surface area was calculated from the 

desorption branches in the relative pressure range of 0.05–0.35, and the total pore volume and average 

pore diameter were evaluated at a relative pressure of about 0.99. Wide angle X-ray diffraction (WAXD) 

patterns were obtained with a Bruker D8 diffractometer in reflection mode using Cu Kα = 0.154 nm with 

a voltage of 40 kV. The electrochemical performance was investigated by a CHI 660D electrochemical 

work station. 

3.3.2. Electrochemical Test Method 

The electrochemical performance of mesoporous PANI-silica nanocomposite and bulk PANI was 

studied in a three-electrode test cell. Briefly, the as-prepared material, acetylene black and PTFE were 

mixed in a mass ratio of 80:10:10 and dispersed in NMP to produce a homogeneous paste. Then, the 

resulting mixture was coated onto the stainless steel grid (about 1 cm2) to fabricate the working electrode. 

Platinum foil (1 cm × 1 cm) was used as the counter electrode, and a saturated calomel electrode (SCE) 

was utilized as the reference electrode. The electrochemical measurements were performed in 250 mL 

mixed electrolyte, which was composed of 1 M H2SO4 and 0.05 M KI at room temperature. The cyclic 

voltammetry (CV) tests were carried out between −0.3 and 0.7 V (vs. SCE) at scan rates of 5 mV/s. 

Alternating-current impedance (EIS) tests were performed at the open circuit potential between the 

frequency ranges from 0.01 Hz to 100 kHz with an AC voltage amplitude of 5 mV. The galvanostatic 

charge/discharge curves were obtained in the potential range of 0–0.4 V (vs. SCE) at 0.5 ampere/g (A/g). 

4. Conclusions 

In summary, a novel mesoporous PANI-silica nanocomposite electrode material was synthesized 

through the vapor phase approach. The PANI-silica nanocomposite possesses a full interpenetrating 

structure, leading to a continuous PANI conductive network. The nanocomposite shows a uniform 
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particle morphology, and the mean particle size is 200 nm, approximately. The XRD results confirm that 

the PANI in the nanocomposite is amorphous, while the bulk PANI possesses a good crystalline 

structure. The specific surface area and mean pore diameter of PANI-silica are 81.1 m2/g and 5.7 nm, 

respectively, which are much larger than that of the bulk PANI. The specific capacitance of PANI-silica 

is 1702.75 F/g at a discharge rate of 0.5 A/g in a KI electrolyte solution within the potential range from 

0 to 0.4 V (vs. SCE). This high specific capacitance is owed to its higher utilization of the active 

materials, due to a large specific surface area and suitable pore size distribution. 
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