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Keywords:
 Background: Automated anomaly detection is an important tool that has been developed for many real-world applica-
tions, including security systems, industrial inspection, and medical diagnostics. Despite extensive use of machine
learning for anomaly detection in these varied contexts, it is challenging to generalize and apply thesemethods to com-
plex tasks such as toxicologic histopathology (TOXPATH) assessment (i.e.,finding abnormalities in organ tissues). In
this work, we introduce an anomaly detection method using deep learning that greatly improves model generalizabil-
ity to TOXPATH data.
Methods: We evaluated a one-class classification approach that leverages novel regularization and perceptual tech-
niques within generative adversarial network (GAN) and autoencoder architectures to accurately detect anomalous
histopathological findings of varying degrees of complexity.We also utilizedmultiscale contextual data and conducted
a thorough ablation study to demonstrate the efficacy of our method. We trained our models on data from normal
whole slide images (WSIs) of rat liver sections and validated on WSIs from three anomalous classes. Anomaly scores
are collated into heatmaps to localize anomalies within WSIs and provide human-interpretable results.
Results:Ourmethod achieves 0.953 area under the receiver operating characteristic on a real-worldTOXPATH dataset.
The model also shows good performance at detecting a wide variety of anomalies demonstrating our method’s ability
to generalize to TOXPATH data.
Conclusion:Anomalies in both TOXPATH histological and non-histological datasets were accurately identifiedwith our
method, which was only trained with normal data.
Anomaly detection
Digital pathology
Deep learning
Toxicological pathology
Background

The goal of anomaly detection is to identify abnormal data residing out-
side the distribution of normal data.1–4 Anomaly detection is useful inmany
fields. For example, it is critical to identify potential weapons manifesting
as common, hidden, or unfamiliar “abnormalities” in normal X-ray security
passenger screening data.5,6 Similarly, industrial production is rich with
normal data, but detecting random anomalies is crucial for quality
assurance.7,8 Developments of anomaly detection in themedical domain in-
clude studies on chest X-ray,9,10 brain MRI,11–13 and retinal OCT14–16 to
screen for potential signs of disease.

Traditional, supervised methods use labeled normal and abnormal data
to form decision boundaries between normal and abnormal class distribu-
tions. However, supervised methods have several drawbacks that limit
their applicability to anomaly detection. One issue is that the feature
space for abnormal data is infinitely large, and thus it is not possible to pre-
pare labeled data for all possible abnormal scenarios. Another issue is the
frequent imbalance between normal and abnormal data, as the sparsely
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spread abnormal classes may not occur in the quantities required for super-
vised approaches.

Toxicologic histopathology (TOXPATH) exhibits similar issues that ren-
der supervised anomaly detection approaches particularly challenging. The
underlying distribution of abnormal samples is undefinable, as pathologists
may encounter rare or previously unobserved anomalies. Moreover, the
balance of data is extremely skewed in favor of normal data. Even a
whole slide image (WSI) with an “abnormal”/lesion label typically com-
prises a few abnormal regions and abundant normal regions, which contrib-
utes to the data imbalance. Despite the paucity of abnormal samples,
practical application demands selective attention towards anomalies.

To address the issues with supervised learning methods, modern anom-
aly detection utilizes one-class classification algorithms. One-class classifi-
cation models are trained on abundant normal data but are applied to
abnormal data which makes them an attractive solution to the TOXPATH
anomaly detection problem.

Histopathological data poses unique challenges in the application of
one-class classification. A primary challenge is that histopathological data
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Fig. 1. Illustration of one-class classification. Training only uses normal data and
minimizes the loss and the anomaly score metric. Trained models evaluate both
normal and unseen abnormal data.
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is extremely complex. Abnormalities can be subtle, resembling normal tis-
sue, making it difficult for algorithms and non-experts to differentiate the
data. In addition, abnormal data canmanifest in infinite forms.17Moreover,
identifying anomalous regions within WSIs can require assessment at mul-
tiple magnifications because of the importance of context in interpreting
tissue changes in histologic samples.17 Many current anomaly detection ap-
plications focus on problems involving fixed camera perspectives, whereas
TOXPATHdatamust considermultiple scales of information.6,8,18,19 In gen-
eral, existing one-class classification methods require better generalizabil-
ity for application on real-worldTOXPATHdata.

Many generative adversarial network (GAN)16,20–22 and autoencoder23,24

anomaly detection applications have been introduced recently. Although
these methods have shown promise at distinguishing abnormal from normal
data, the algorithms have often been evaluated on datasets that cannot ad-
dress true anomaly detection semantics. For example, many anomaly detec-
tion algorithms are developed for artificial problems such as singling a
CIFAR10 class as abnormal, or detecting anomalies from low variance
distribution.20,21 These methods are often reconstruction-based. In other
words, these methods fundamentally rely on the model failing to reconstruct
input data after mapping it to some sparse latent feature space.

GANs learn a loss function on reconstructed images by generating plau-
sible fake images and comparing them to real, in-distribution images.18

AnoGANwas thefirst to introduce the use of Bidirectional GANs to leverage
latent space encodings for anomaly scoring.22 Drawbacks of these ap-
proaches include computational complexity, the unaddressed objective of
inverse mapping learning, and uninterpretable scores. EGBAD addresses
the inefficiencies of AnoGAN, but still faces performance issues regarding
anomaly scoring.25 GANomaly and Skip-GANomaly reduce the architecture
to standard GAN components to improve the speed of the learning process,
and also develop a normalized score that denotes interpretable local
anomalies.20,21

Autoencoders attempt to learn the identity function via an encoding
function from the input image to a compressed latent space and a decoding
function which maps from latent space back to an image.26 Autoencoders
have proven useful for anomaly detection. Since the latent space represents
the input data, poor reconstructions indicate inputs that deviate from the
distribution of normal samples. Skip-GANomaly builds on traditional
autoencoders by adding UNet style skip-connections.21 By transmitting
data across these skip connections, the model is able to create higher qual-
ity reconstructed images.

We hypothesized that UNet style methods such as Skip-GANomaly lack
perceptual context due to their reliance on the use of traditional per-pixel
loss and convolutional neural networks. Thus, we adopted existing GAN ar-
chitectures and introduced novel perceptual components.We alsomodified
architectural components such as skip-connections to better facilitate
anomaly detection. When evaluating model performance, we also utilized
complex data to gauge realistic performance.

In this manuscript, we describe several techniques to improve
UNet style anomaly detection algorithms. First, we introduced opera-
tional skip-connections to enhance model interpretability of normal
data. Second, we added a Markovian discriminator (PatchGAN) to im-
prove perceptual detectionof localized anomalies.18 Next, we incorpo-
rated perceptual loss to account for local inter-dependencies in
complex images. We adopted multi-scale information from the WSI
to enhance regional interpretation of anomalies for TOXPATH data.
Our proposed method demonstrated promising utility to detect anom-
alies in TOXPATHdata.

Methods

Our model concurrently trains a generator and discriminator as per the
traditional GAN framework.27 In addition to the adversarial training objec-
tive, two loss functions are designed to motivate anomaly detection: (1)
perceptual reconstruction loss and (2) latent loss. An anomaly score is de-
rived from these loss components using the outputs of both the generator
and discriminator. As the model trains on normal data, the objectives
2

drive the anomaly score for normal samples to a minimum. The model
learns to isolate the feature space of normal data such that the generator un-
derstands the reconstruction parameters and the discriminator understands
differentiating parameters. Consequently, exposing the model to unseen,
abnormal data should result in the simultaneous failure to reconstruct
and discriminate, yielding a higher loss and therefore higher anomaly
score. Fig. 1 summarizes the anomaly detection process. The ability of the
model to separate the normal and abnormal anomaly score distributions
measures its success.
Generator

The generator G is based on the encoder–decoder architecture of UNet
(See Fig. 2).28 The layers of the generator network consist of symmetrical
downsampling and upsampling convolutions. This architecture enables
the model to learn the encoding of an input image into the latent feature
space, as well as the decoding of latent vectors into the spatial dimension.
The adversarial objective trains the model to output G(x) Є Rw×h×c given
the input x Є Rw×h×c, such that the discriminator fails to distinguish x
and G(x). The anomaly detection objective reduces the spatial difference
between x and G(x). The goal is to enhance the generator’s ability to recon-
struct normaldata.

Significant architectural components of the generator are the skip-
connections between the downsampling and upsampling layers. Tradition-
ally, UNet employs skip-connections to assist with the reconstruction of
high-frequency features.28 Leveraging skip-connections has proven to be a
powerful technique that improves generator performance.21 Since skip-
connections supply high-level information during image reconstruction,
as well as providing alternative pathways during back-propagation, they
support the generator’s success achieving the adversarial objective. How-
ever, the generator’s ability to accurately reconstruct images is detrimental
to the anomaly detection objectives if it is able to generalize to abnormal in-
puts. To address this issue, we introduce skip-connection processing, de-
noted as Fs, to enable the skip-connections to functionally support the
anomaly detection objective.

A useful operation is applying dropout29 to regularize the skip-
connections and prevent the generator from overly depending on the
connections during reconstruction. Other possibilities include using
autoencoders within the skip-connections to transform the connection
from a direct concatenation of feature maps to a more contextual source
of information. Preliminary exploration of this idea with details and results
are provided in the supplementary materials (Supplementary Figures1, 2
and Supplementary Table1). In general, employing functional skip-
connections can greatly enable the generator towards the anomaly detec-
tion objective.



Fig. 2. Model architecture. The model architecture comprises a UNet generator G with operable skip-connections Fs, and a discriminator D with its corresponding feature
extractor f. This general architecture is used for all models, with notable variations in Fs, D, Lrec, and dimension of input x. See text for further details.
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Discriminator

The discriminator D is a convolutional neural network with the adver-
sarial objective of distinguishing between real or generated images (see
Fig. 2). In addition to the adversarial objective, the discriminatorminimizes
the difference between its real and fake features, f(D(x)) and f(D(G(x))),
which are typically vectorsz Є Rn×1. The purpose is for the generator and
discriminator to learn the underlying distribution of normal data. We dis-
covered that the large receptivefield observedwhen using such an architec-
ture, results in instability. We propose an alternative discriminator
architecture based on PatchGAN that reduces the size of the receptive fields
to small, overlapping patches.30 As a result, each localized patch receives a
decision from the discriminator as opposed to a uniform decision for the
input image. Instead of a latent vector, zЄ R1×m×m where each element zij
refers to a 70 px by 70 px field on the original image. Anomaly detection
performance improves because of the increase in perceptual precision, as
the discriminator measures the per-patch normality of images.

Training

Model training involves a combination of adversarial, reconstruction,
and latent losses. The adversarial loss is a GAN loss that optimizes the
model for precise reconstruction of normal histology images.27

Ladv ¼ E
x∼px

log D xð Þ½ � þ E
x∼px

log 1 � D G xð Þð Þ�ð½ (1)

The reconstruction loss refines the generator performance in the spatial
dimensions. Using a perceptual loss based on the structural similarity met-
ric improves performance since it accounts for the contextual information
of local image regions rather than per-pixel differences.7,31
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x∼px
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The latent loss refines anomaly detection in the high-level latent dimen-
sions. It optimizes the generator and discriminator to simultaneously learn
the underlying distribution of normal data.

Llat ¼ E
x∼px

f D xð Þð Þ � f D G xð Þð Þð Þj j2 (4)

The total loss is the weighted sum of the three losses, with λadv = 1,
λrec = 50, and λlat = 1.

Ltotal ¼ λadvLadv þ λrecLrec þ λlatLlat (5)
3

We implemented the model in PyTorch and trained with a batch size of
128 on a NVIDIA V100 GPU. Both the generator and discriminator are
trained on Adam optimizers with a learning rate of 10−4, β1 = 0.5, and
β2 = 0.999. All models are trained for a minimum of 20 epochs and a max-
imum of 200 epochs with early stopping.

Data pre-processing

A single WSI can measure over 100,000 pixels in one dimension and
contain gigabytes of information. Current memory limitations demand
the pre-processing of WSIs into tiles of a more manageable dimension
(see Fig. 3). Consequently, the anomaly detection problem occurs on a
per-tile basis. A shortcoming is the ratio of anomalous to normal tissue
within the tile is inconsistent, since anomalies can vary greatly in size, com-
binedwith the loss of contextual information between tiles.17 Abnormal re-
gions can span over several tiles, and pathologists often inspect these
regions at multiplemagnifications to comprehensively understand thefind-
ings. Naively tiling a WSI neglects the spatial dependence between tiles.
Therefore, we use multi-scaling techniques to incorporate high- and low-
level information, resulting in a more comprehensive model that detects
anomalies using global and local contexts. Implementation requires the
concatenation of images of different scales that are symmetric about the
same central pixel along the channel axis, resulting in a hyper-
dimensional image containing multiple levels of information.

Anomaly scoring

The anomaly score is derived as the weighted sum of the reconstruction
and latent losses. The parameterwrec controls the relative importance of the
losses. We use wrec = 0.9 to emphasize the reconstruction loss.

a xð Þ ¼ wrecLrec þ 1 � wrecð ÞLlat (6)

Since the model learns the distribution of normal data, it is expected
that the anomaly scores for normal data are low at inference time. Con-
versely, a higher loss is indicative of poor image reconstruction, which im-
plies that the input data is likely abnormal data. Given the separation of
normal and abnormal anomaly scores into lower and higher categories re-
spectively, the area under the receiver operator characteristic curve
(AUROC) is an effective performance metric.32,33 The AUROC metric pro-
vides a single scalar representing the ability of the model to properly segre-
gate the abnormal and normal samples. Practical usage of the anomaly
scores also requires normalization to the range [0,1] which is performed as:

â xð Þ ¼ a xð Þ � min að Þ
max að Þ � min að Þ (7)

Fig.3 summarizes the pipeline of anomaly detection for TOXPATH. In
practice, all tiles of individual WSIs feed into the model to obtain batches



Fig. 3.Overview of anomaly detection for TOXPATH. The anomaly score is a function of the loss between the pre-processedWSI tiles (x) and generator outputG(x), as well as
the loss between discriminator outputs D(x) and D(G(x)). Batches of anomaly scores are normalized and processed into reconstructed heatmaps to visualize anomalous
histology findings.
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of anomaly scores. It is then possible to normalize the batch of scores of a
WSI for visualization. It is typical to have a control slide in TOXPATH stud-
ies, in which case normalization more appropriately occurs with respect to
the controlWSI.

Datasets

An in-houseWSI TOXPATH dataset of normal and abnormal histology
from rat liver that were gathered from studies between 2012 and 2019
was utilized in this manuscript. Study pathologists provided global diagno-
ses and pixel-level annotationswere generated for this project from50WSIs
under the guidance of pathologists. ThirteenWSIswere allocated as normal
data, contributing 33,940256 px by 256 px tiles for training. The remaining
37 WSIs were split amongst 4 abnormal classes and used for validation. Of
interest were 3 lesion types: necrosis, peritonitis, and infiltrate. Since many
liver WSIs included a sample of spleen (a non-liver tissue), we defined
spleen as a fourth anomaly class. Sample normal regions were annotated
on WSIs with abnormalities to ensure that the validation datasets were bal-
anced.

As seen in Table1, most abnormal samples were of necrosis and spleen,
with fewer instances of infiltrate and peritonitis since the infiltrates were
small, and peritonitis occurred infrequently. The scarcity of abnormal
data further supports the value of one-class classification.

In contrast to existing histopathology datasets in the literature, the in-
tention of our dataset was to represent a realistically challenging anomaly
detection task. There is variance between the abnormal classes, requiring
Table 1
Break down of in-house TOXPATH dataset.

Whole slide image Normal tiles Abnormal tiles

Normal 13 33940 -
Necrosis 6 4277 4281
Peritonitis 11 470 470

Inflammation 15 53 53
Spleen 5 4745 4748
Total 50 43287 9552
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generalization for high performance. Additionally, some of the abnormal
classes such as necrosis are similar to the normal data in color and shape,
requiring a high degree of precision. Thus, we postulate that this dataset
is more difficult for anomaly detection than other histopathology datasets
for detection tasks.34,35

Publicly available anomaly detection datasets were also used to deter-
mine the generalizability of our method. The MVTec dataset7 contains 15
object or texture classeswith normal and abnormal samples for each respec-
tive class. The total dataset included 3629 training and 1725 validation im-
ages. This dataset was intended for industrial inspection, in which the
anomaly detection task is generally focused on a single local abnormality
in contrast to the diffuse and global anomalies in TOXPATH.

Results

Ablations

We quantitatively and qualitatively evaluated our model against the
baseline SkipGANomalymodel.21 To validate our contributions, we ablated
single modifications and also combined the changes. The individual modi-
fications include a higher dimensional input, dropout on the skip-
connections, perceptual SSIM loss as the reconstruction loss, and a
PatchGAN discriminator. We evaluated each model’s ability to separate
the anomaly scores for normal and abnormal tiles using four different ab-
normal classes. We then visualized the loss and reconstructed heatmaps
to qualitatively assess performance. Table2 summarizes the AUROC results
and shows that Dropout on the skip-connections results in the highest indi-
vidual contribution, while aggregating the multiple changes yields the best
overall performance. In Fig. 4, we present representative examples for the
normal case, all abnormal classes, and an additional tissue tearing anomaly.
The reconstruction loss images demonstrate that our model is more in-
tensely failing to reconstruct abnormal data, which results in better anom-
aly detection performance. The inter-class variance of the abnormal classes
reveals that our method is able to generalize to unseen classes. The abnor-
mal tear shown in the last row of Fig. 4 is not considered in the quantitative
evaluations; however, the model still detects the tears, which further



Table 2
Ablation studies on all abnormal histological findings.

Necrosis Infiltration Peritonitis Spleen Average

SG, 3c 0.726 ± 0.017 0.936 ± 0.029 0.984 ± 0.013 0.952 ± 0.014 0.899 ± 0.012
SG, 6c 0.802 ± 0.019 0.924 ± 0.019 0.982 ± 0.010 0.980 ± 0.006 0.922 ± 0.007

SG+DP, 3c 0.809 ± 0.032 0.947 ± 0.021 0.985 ± 0.006 0.951 ± 0.010 0.923 ± 0.005
SG+SS, 3c 0.852 ± 0.030 0.836 ± 0.091 0.994 ± 0.003 0.886 ± 0.083 0.892 ± 0.008
SG+PG, 3c 0.777 ± 0.052 0.959 ± 0.011 0.983 ± 0.008 0.936 ± 0.011 0.914 ± 0.015
SG+All, 6c 0.927 ± 0.009 0.936 ± 0.023 0.968 ± 0.033 0.981 ± 0.014 0.953 ± 0.010

Performance is evaluated using AUROC. The baseline is shown in the first row. From the second to fifth rows inclusive, we add only one of the following: 6-channel multi-
scale input, Dropout on skip-connections, SSIM loss, and PatchGAN discriminator. The sixth row combines all modifications.

Fig. 4. Comparing the baseline against the proposed model on representative reconstructions. The high reconstruction loss when using our method on abnormal histology
indicates better detection of anomalies. Further examples of MVTec reconstructions are shown in the supplementary materials. (Note the scale bar in the real, normal
figure measures 50 μm. All figures are at the same scale).

P. Zehnder et al. Journal of Pathology Informatics 13 (2022) 100102
demonstrates the ability of our model to generalize. The loss is also low for
the normal image, which is important for quantitative performance.

From Table2, we see that dropout on the skip-connections significantly
contributes towards performance on TOXPATH data. To verify the
5

performance,we demonstrate that using the modification outperforms
Skip-GANomaly on 12 of the 15 MVTec classes. Table3 shows that
modifyingthe skip-connections has a significant impact on performance.
Supplementary materials (Supplementary Figs 1, 2 and Supplementary



Table 3
Dropout on the skip-connections outperforms Skip-GANomaly on industrial detec-
tion datasets.

Baseline Dropout on skip-connections

Bottle 0.780 ± 0.025 0.897 ± 0.011
Cable 0.596 ± 0.016 0.740 ± 0.067
Capsule 0.695 ± 0.009 0.741 ± 0.002
Carpet 0.895 ± 0.006 0.913 ± 0.005
Grid 0.960 ± 0.015 0.971 ± 0.008

Hazelnut 0.934 ± 0.012 0.999 ± 0.002
Leather 0.972 ± 0.024 0.994 ± 0.003
Metal nut 0.558 ± 0.032 0.690 ± 0.062

Pill 0.908 ± 0.010 0.850 ± 0.011
Screw 1.00 ± 0.000 1.00 ± 0.000
Tile 0.962 ± 0.003 0.934 ± 0.024

Toothbrush 0.846 ± 0.017 0.879 ± 0.059
Transistor 0.550 ± 0.020 0.786 ± 0.057
Wood 0.990 ± 0.002 0.997 ± 0.001
Zipper 0.752 ± 0.026 0.898 ± 0.021

Fig. 5. Representative heatmaps and regions of interest. Our model demonstrates
significantly higher contrast between normal and abnormal regions compared to
SkipGANomaly. Arrows highlighted the abnormal regions. (Note the scale bar in
the WSI measures 5 mm. In the tiles, scale bar measures 2 mm).
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Table1) show additional preliminary results on functional skip-
connections. Dropout provides regularization that mitigates the over-
dependence of reconstructions on the skip-connections and optimizes the
model for anomaly detection rather than naive reconstructions. The other
modifications studied in the ablations did not result in significant changes
in performance on theMVTec data, as the perceptual methods aremore tai-
lored for histological anomalies.

Toxicologic histopathology anomaly detection

Given the normalized anomaly scores, we can map the scores to colors
and reconstruct heatmaps to allow pathologists to visualize anomaly detec-
tion performance over the entire tissue section. Post-processing using the
variance of the Laplacian to deblur the images improves the quality of the
reconstructions.36

Fig.5 shows that both Skip-GANomaly and our method perform as
expected on the normal WSIs, with no significant signal except for high-
lighting the irrelevant spleen tissue. The necrotic samples show that our
model yields higher anomaly scoreswithin the abnormal regions. Similarly,
our model outperforms the baseline when highlighting regions of peritoni-
tis, which generally manifest at the edges of liver sections. The baseline
model struggles to highlight the spleen, despite the marked and obvious
visual differences between spleen and liver tissues. Both models struggle
to identify multifocal infiltrates thus resulting in small differences in
anomaly scores. Finally, our model is more sensitive to unwanted white
space such as tears.

Conclusion

One-class classification achieves high performance on TOXPATH data
and demonstrates high applicability towards real-world data. The perfor-
mance enhancement we achieved is due to perceptual improvements, in-
cluding SSIM loss, a PatchGAN discriminator, and multi-scale inputs.
Functional skip-connections result in improvement on both TOXPATH
and industrial inspection datasets. We experimented primarily on a rat
liver TOXPATH dataset and show that our method greatly outperforms
anomaly detection based on GAN reconstructions. Future plans are to ex-
pand our one-class classification algorithm to different organ tissues, and
further study the impact of operable skip-connections on the general perfor-
mance ofUNet.
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