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ABSTRACT Objective: chest computed tomography (CT) images and their quantitative analyses have
become increasingly important for a variety of purposes, including lung parenchyma density analysis, airway
analysis, diaphragm mechanics analysis, and nodule detection for cancer screening. Lung segmentation is an
important prerequisite step for automatic image analysis. We propose a novel lung segmentation method
to minimize the juxta-pleural nodule issue, a notorious challenge in the applications. Method: we initially
used the Chan–Vese (CV) model for active lung contours and adopted a Bayesian approach based on the
CV model results, which predicts the lung image based on the segmented lung contour in the previous
frame image or neighboring upper frame image. Among the resultant juxta-pleural nodule candidates, false
positives were eliminated through concave points detection and circle/ellipse Hough transform. Finally,
the lung contour was modified by adding the final nodule candidates to the area of the CV model results.
Results: to evaluate the proposed method, we collected chest CT digital imaging and communications in
medicine images of 84 anonymous subjects, including 42 subjects with juxta-pleural nodules. There were
16 873 images in total. Among the images, 314 included juxta-pleural nodules. Our method exhibited a disc
similarity coefficient of 0.9809, modified hausdorff distance of 0.4806, sensitivity of 0.9785, specificity
of 0.9981, accuracy of 0.9964, and juxta-pleural nodule detection rate of 96%. It outperformed existing
methods, such as the CV model used alone, the normalized CV model, and the snake algorithm. Clinical
impact: the high accuracy with the juxta-pleural nodule detection in the lung segmentation can be beneficial
for any computer aided diagnosis system that uses lung segmentation as an initial step.

INDEX TERMS Active contour, lung segmentation, chest CT images, computer aided diagnosis,
juxta-pleural nodule.

I. INTRODUCTION
Pulmonary or chest computed tomography (CT) images have
been used for a variety of purposes, such as lung parenchyma
density analysis [1], [2], airway analysis [3], [4], diaphragm
mechanics analysis [5], [6] and nodule detection for cancer
screening [7]. Recently, with the aid of computing technol-
ogy, it has become feasible to conduct automatic quantita-
tive analyses. In addition, collaboration among engineers,
clinicians, and data scientists has led to the development
of accurate automated screening programs for clinical use.
Lung segmentation, a step required prior to chest CT imaging

analysis, is a crucial starting point for all lung-related quanti-
tative analysis. For instance, in pulmonary nodule detection,
when lung segmentation fails to correctly define the borders
of the lungs, the nodules outside the borders are missed. One
study [8] reported that a computer-aided detection system
missed 17% of all true nodules due to erroneous lung seg-
mentations. Thus, an algorithm for automatic and accurate
lung segmentation is required.

A large amount of research has been carried out on the topic
of lung segmentation in chest CT scans. One of the most com-
mon conventional techniques for segmenting lung images
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is a thresholding approach [9]–[12], wherein the natural
contrast between the low-density lungs and the surrounding
high-density chest wall is used for lung segmentation. This
approach segments the lung image by identifying large dif-
ferences in attenuation between the lung parenchyma and
the surrounding tissue. Another conventional approach is
region growing-based lung image segmentation, which is a
type of pixel-based segmentation involving the selection of
initial seed points. This approach examines the neighboring
pixels of initial seed points and determines whether these
pixels are within the target region [8], [13], [14]. In addition,
more advanced imaging processing techniques have been
proposed, including the deformable model [15]–[17], pattern
classification [18], [19], rolling ball [8], graph cut-based
methods [20]–[23] and Atlas-based methods [14], [24]–[26],
all of which generated robust and accurate results. However,
most methods are still limited in their ability to accurately dif-
ferentiate the surrounding tissue from juxta-pleural nodules,
which are attached to the walls of the lung. In some cases,
the nodules have the same intensity values as the surrounding
tissue [27]. Thus, juxta-pleural nodule detection is one of the
most challenging issues in lung segmentation.

Recently, much effort has been directed at detecting the
juxta-pleural detection [28]–[30]. In [28], the juxta-pleural
nodule was detected by skin boundary detection followed
by rough segmentation of lung contour and pulmonary
parenchyma refinement. In [29], the initial lung volume seg-
mentation was performed by CV model. Then, non-nodules
candidates such as small blood vessels were filtered out
using a multiscale Laplacian-of-Gaussian filtering. In [30],
intuitionistic fuzzy energy was incorporated into length reg-
ularization term of region-based level set method, which
resolved the boundary leakage. The all methods provided
accurate detection results with the slice by slice processing.
However, the performance was limited in the case of the
blurred juxta-pleural nodules, which is an inherent limitation.
In our work, based on the spatially sliced images from top to
bottom, we exploited a Bayesian approach, which predicts
and updates lung contour from previously estimated contour.

We first initially used the Chan–Vese (CV)model for active
contours. The CV model is a powerful and flexible method
that is able to segment many types of images. This model
is based on the Mumford–Shah function [31] for segmen-
tation, which has been used widely in the medical imaging
field, especially for the segmentation of the brain, heart,
and trachea [32]–[35]. While many segmentation methods
rely heavily in some way on edge detection, the CV model
ignores edges completely. Instead, the method optimally fits
a two-phase piecewise constant model to the given image by
implicitly representing segmentation boundary with a level
set function. It allows the segmentation to handle topologi-
cal changes more easily than snake methods or other edge
detection methods. It also uses the global image informa-
tion without depending on gradient, which results in better
management of image segmentation problems such as strong
noise and edge blurs. In addition, it can be applied to

images whose gradients are either significant or insignificant;
thus, it is suitable for images whose boundaries are either
smooth or discontinuous [36]. The CV model was previously
evaluated for lung segmentation and found to outperform
conventional methods [32], [33], [37].

Nevertheless, the juxta-pleural nodule issue has yet to be
resolved [34]. To address this issue, we adopted a Bayesian
approach based on the CV model results, which predicts the
lung image based on the segmented lung contours in the
previous frame image or neighboring upper frame image.
Note that the frames represent sequential chest CT images
‘‘slices’’ from top to bottom. This approach is based on the
assumption that the lung contour is slightly and uniformly
expanded or contracted over frames, while the juxta-pleural
nodules have a consistent appearance regardless of the pattern
of lung contour changes. Based on our Bayesian approach, we
predicted and updated the lung contour over multiple frames.
Then, we extracted the difference image by comparing the
results from the Bayesian approach and the CV model. Here,
each separated group in the difference image corresponds
to a juxta-pleural nodule candidate. Finally, we investigated
whether the separated groups in the difference image com-
prised juxta-pleural nodules or portions of the lung wall using
concave point detection and circle/ellipse Hough transform.
We evaluated the performance of our proposed method by
comparing it with the CV model [29], the normalized and
modified CV (NM-CV) method [38], [39], and the snake
model [40].

The main contributions of this study are:
• We proposed a Bayesian approach for automatic juxta-
pleural nodule identification in the lung segmentation
stage from chest CT scans.

• We presented a concave point detection and cir-
cle/ellipse Hough transform to minimize false positives.

• We tested our proposed method from 16,873 images
(84 subjects). Among the images, 314 images included
juxta-plerual nodules.

• We further validated the method from different
databases, which included 1,766 images in total. Among
the images, 125 included juxta-pleural nodules.

• We presented the extension capability that accurate lung
contour segmentation results can be provided from any
global contour results by applying to our proposed
method framework.

II. METHODS
A. COLLECTION OF CHEST CT IMAGES
In the present study, we evaluated our proposed method
using chest CT scans from Wonkwang University Hospi-
tal (WKUH). For the clinical data, we collected chest CT
digital imaging and communications in medicine (DICOM)
images of 84 anonymous subjects, including 42 subjects
with juxta-pleural nodules. Each scan included 150 to
215 image frames, and there were 16,873 images in total.
Among the images, 314 included juxta-pleural nodules.
The images were acquired at WKUH using a multiple
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detector computed tomography (MDCT) scanner (Somatom
Sensation 16, Siemens, Erlangen, Germany; X-ray tube volt-
age: 100–120 kV; tube current: 80–328 mA; pixel length:
0.56–0.79 mm). The thickness of each slice was 5.0 mm. The
WKUH Institutional Review Board approved the collection
and analysis of the imaging data. To evaluate the performance
of the model, ‘‘gold standard’’ lung contours were obtained
from six trained radiologists. Initially, four trained radiolo-
gists drew the contours, and another two trained radiologists
confirmed them.

B. GLOBAL LUNG CONTOUR EXTRACTION WITH
THE CHAN-VESE MODEL
To segment the lung contour, we first applied the CV model
to chest CT images . Let � be a bounded open subset of R2

with the boundary ∂�. In the evolving lung contour C , as the
boundary of an open subset w of�, inside(C) and outside(C)
denote the regions w and �\ww, respectively. The energy
term FG is based on the CV model defined with the length of
the contour C , area of the region inside C , and the averages
of u0 inside C and outside C . Accordingly, the energy term
FG is defined by

FG (c1, c2,C) = µ · Length (C)+ ν · Area (inside (C))

+ λ1 ∫inside(C) |u0 (x, y)− c1|
2 dxdy

+ λ2 ∫outside(C) |u0 (x, y)− c2|
2 dxdy (1)

where µ ≥ 0, ν ≥ 0, λ1, λ2 > 0 are fixed param-
eters. Length(C) is the length of the lung contour C , and
Area(inside(C)) is the region inside C . u0 (x, y) is the pixel
intensity in �. c1 and c2 are the intensity averages of inside
C and outside C, respectively. The curve C is then found to
minimize the global energy term FG as

infc1,c2,CF
G (c1, c2,C) (2)

To find the solution for C , the level set method is used,
which replaces the unknown contour C by the level set func-
tion 8(x, y), where 8(x, y) > 0 if the point (x,y) is inside C,
8(x, y) = 0 if the point (x,y) is on C , and 8(x, y) < 0 if the
point (x,y) is outside C. Then, FG can be rewritten in terms
of 8(x, y) as follows:

FG = FG (c1, c2,∅) = µ ∫� δ(∅ (x, y)) |∇∅ (x, y)| dxdy

+ ν ∫� H (∅ (x, y))dxdy+ λ1 ∫inside(C) |u0 (x, y)

− c1|2H (∅ (x, y))dxdy+ λ2 ∫outside(C) |u0 (x, y)

− c2|2 (1− H (∅ (x, y))) dxdy (3)

where the first term corresponds toµ·Length (C) and the sec-
ond term corresponds to ν · Area (inside (C)). The third and
fourth terms correspond to λ1 ∫inside(C) |u0 (x, y)− c1|

2 dxdy
and λ2 ∫outside(C) |u0 (x, y)− c2|

2 dxdy, respectively. The
Heaviside function H (z) is one if z ≥ 0 and zero if
z < 0. Its derivative is the one-dimensional Dirac measure
δ0(z). The minimization problem is solved by taking the
Euler–Lagrange equations and updating the level set function

by the gradient descent method as

∂∅

∂t
= δ (∅)

[
µ∇ ·

(
∇∅

|∇∅|

)
− ν − λ1 (u0 − c1)2

+ λ2 (u0 − c2)2
]
= 0 in (0,∞)�,

∅ (0, x, y) = ∅0 (x, y) in �,
δε (∅)

|∇∅|

∂∅

∂En
= 0 on ∂� (4)

where En denotes the exterior normal to the boundary ∂�, and
∂∅
∂En denotes the normal derivative of ∅ at the boundary. Here,
c1 and c2 are updated at each iteration by

c1 (∅) =
∫� u0 (x, y)H (∅ (x, y))dxdy
∫� H (∅ (x, y))dxdy

c2 (∅) =
∫� u0 (x, y) (1− H (∅ (x, y))) dxdy
∫� (1− H (∅ (x, y))) dxdy

(5)

For the numerical approximation of the model, the Heavi-
side function is slightly regularized as

Hε (z) =
1
2

(
1+

2
π
arctan

( z
ε

))
(6)

where ε→ 0. Then, δ and H can be replaced by δε and Hε in
(4) and (5). For the initialization, we used the checkerboard
function in (7) as the level set function, whichwas used in [41]
and [42]. Subsequently, c1 and c2 were updated for the initial
curve C .

ϕ (X) = sin (
π

5
x) sin (

π

5
y) (7)

After applying with the CV model on the chest CT
image, the nodules or vessels inside the lung parenchyma
are also segmented. To separate them from the lung contour,
we selected the two longest contours, which correspond to
left and right lungs. Fig. 1 shows the CV model-based lung
segmentation results from four chest CT images. For the CV
model-based lung segmentation, we chose the generally used
parameters of ν = 0 and λ1 = λ2 = 1 in [31]. The parameter
of µ = 0.01 was chosen by providing the highest accuracy.
As µ increases, the results tend to be roughly segmented. All
of the parameters were applied to the entire images in this
paper.

The CVmodel method provided mostly accurate lung wall
segmentation results, as shown in Figs. 1(a) to (c). In partic-
ular, in Fig. 1(c), the juxta-pleural nodule is included within
the segmented lung contour. On the other hand, in Fig. 1(d),
the juxta-pleural nodule is outside the segmented lung con-
tour. This is because the pixel intensities of the juxta-pleural
nodule and the adjacent surrounding tissue nearly overlap.
The juxta-pleural nodule outside the lung contour ultimately
results in missed nodules and incorrect quantitative analy-
ses. In the following subsections, we adopted a Bayesian
approach to minimize this juxta-pleural nodule issue.
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FIGURE 1. Lung segmentation results using Chan–Vese (CV) model.
(a) and (b) Most lung contours can be accurately segmented. (c) A correct
segmentation results in the presence of a juxta-pleural nodule. (d) An
incorrect segmentation results in the presence of a juxta-pleural nodule;
The incorrect part is pointed by an arrow.

C. A BAYESIAN APPROACH TO JUXTA-PLEURAL NODULE
CANDIDATE DETECTION
Given the N successive chest CT image frames, we denote
the lung contour state vector of the n-th image by Cn

F
(i.e.C1

F ,C
2
F , . . .C

N
F ). Note again that the frame represents the

spatially sliced image from top to bottom. The state vector
Cn
F is assumed to evolve according to the following system

model as

Cn
F = fn(C

n−1
F ,wn) (8)

where the system transition function fn corresponds to the
change of lung contour at the n-th image from the (n-1)-th
image. The noise wn is a zero-mean, white-noise sequence
independent of past and current states. In the Bayesian
approach, the measurement vector is related to the state
vector Cn

F via the observation equation. Here, the measure-
ment vector is Cn

G, which is the result from the CV-based
method in (4) and (5). Then, the observation equation can be
formulated by

Cn
G = hn(Cn

F , v
n) (9)

where hn is the measurement function, and the noise vn is
another zero-mean white-noise sequence independent of past
and current states and system noise. The initial probability
density function (PDF) is p

(
C1
F |C

0
G

)
= p(C1

F ). The available
information at the n-th frame is the set of measurement vec-
tors, such as Dn = {C i

F : i = 1, 2, . . . n.

The requirement is to construct the PDF of the state vec-
tor Cn

F , given all the available information of p(Cn
F |D

n),
which can be obtained recursively in two stages of prediction
and update. Given the required PDF p(Cn−1

F |D
n) available,

the prior PDF of the state vector Cn
F can be obtained as

p
(
Cn
F |D

n−1)
=

∫
p
(
Cn
F |C

n−1
F

)
p
(
Cn−1
F |D

n−1)dCn−1
F (10)

where the first term p
(
Cn
F |C

n−1
F

)
is the state evolution based

on a Markov model defined by the system transition function
fn and wn. Then, p(Cn

F |C
n−1
F ) can be formulated by

p
(
Cn
F |C

n−1
F

)
=

∫
p
(
Cn
F |C

n−1
F ,wn

)
p
(
wn|Cn−1

F

)
dwn (11)

Since p
(
wn|Cn−1

F

)
= p(wn),

p
(
Cn
F |C

n−1
F

)
=

∫
δ
(
Cn
F − fn

(
Cn−1
F ,wn

))
p(wn)dwn (12)

where δ(·) is the Dirac delta function. At the n-th frame,
a measurement vector Cn

G is available and can be used to
update the prior PDF for the posterior PDF via the Bayes
rule as

p
(
Cn
F |D

n)
=
p
(
Cn
G|C

n
F

)
p
(
Cn
F |D

n−1
)

p
(
Cn
G|D

n−1
) (13)

where the normalizing denominator is

p
(
Cn
G|D

n−1
)
=

∫
p
(
Cn
G|C

n
F
)
p
(
Cn
F |D

n) dCn
F (14)

The conditional PDF p
(
Cn
G|C

n
F

)
is defined by the measure-

ment function hn and vn as

p
(
Cn
G|C

n
F
)
=

∫
δ
(
Cn
G − hn

(
Cn
F , v

n))p(vn)dvn (15)

In the update stage in (13), the measurement vector Cn
G

is used to modify the predicted prior PDF in (10) to obtain
the required posterior PDF of the state vector Cn

F . Then,
the updated posterior PDF is used for the prior PDF at the
(n+1)-th frame. The recurrence relations of (10) and (13)
constitute the formal solution to the Bayesian recursive esti-
mation problem. More specific prediction and update stages
are described in the next subsections.

1) PREDICTION STAGE
Given the contour Cn−1

F , we formed the prior p
(
Cn
F |D

n−1
)

in (10) by dilating and contractingCn−1
F as shown in Fig. 2(a).

The blue areas are dilated curve samples, and the red areas are
contracted curve samples. The dilated curves were sampled
moving each pixel of Cn−1

F toward the normal vector, and
the contracted curves were sampled moving each of Cn−1

F
toward the opposite normal vector. Each pixel movement for
dilation and contraction was from 1 to 5 pixels. In [43], solid
nodules smaller than 6 mm do not require routine follow-up
in patients since there is a paucity of direct evidence regarding
caner probability in small nodules. Thus, we limited the
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FIGURE 2. (a) Curve samples by C∗n(i )
F for dilation (blue) and

contraction (red) from Cn−1
F (b) global contour Cn

G (c) contour sample C∗nF
providing the highest correlation value between Cn

G and each curve from

C∗n(i )
F , (d) the overlapped contours of Cn

G and C∗nF , (e) enlarged and
highlighted juxta-pleural nodule area, and (f) the resultant juxta-pleural
nodule candidates.

scope to identify the Juxta-pleural nodules smaller than 3mm.
Note that the 5 pixel length corresponds to approximately
3mm in the images. Thus, the number of pixels needs to
be adjusted according to each different image resolution.
The total 10 curve samples represent the prior p

(
Cn
F |D

n−1
)

with the system transition function fn considering dilation
and contraction at the n-th frame from the (n-1)-th frame.
Here, we ignore the noise wn. We denote the predicted curve
samples by C∗n(i)F .

2) UPDATE STAGE
Given the measurement vector Cn

G obtained from the
CV-based method in (4) and (5), we evaluated the likeli-
hood of each contour sample C∗n(i)F to find the best-fitted
prediction curve with Cn

G since the lung evolution degree
in dilatation or contraction is not exactly known. Hence,
we found the best-fitted prediction curve by evaluating the
cross-correlation. We first calculated the cross-correlation

between Cn
G and each C∗n(i)F , and found that the updated

contour sample C∗nF provided the highest correlation values
for the left and right lungs. Fig. 2(b) shows the CV model-
based contour Cn

G, and Fig. 2(c) shows the resultant updated
contour sample C∗nF . Note that the area inside Cn

G does not
include the nodule, while the area inside C∗nF does include the
nodule. Fig. 2(d) shows the overlapping contours of Cn

G and
C∗nF . For better visualization, we enlarged and highlighted the
juxta-pleural nodule area as shown in Fig. 2(e). In the next
step, we obtained the difference image between the results
from the Bayesian approach and the CV model by finding
the segments that were simultaneously outside the contourCn

G
and inside the contour C∗nF . The separated segments are the
juxta-pleural nodule candidates. Fig. 2(f) shows the resultant
nodule candidates. Then, the lung contour can be modified by
adding the nodule candidates to the area of Cn

G, which may
form the lung contour Cn

F .

D. ELIMINATION OF FALSE POSITIVES
For classifying the nodule candidates as true nodules or false
positives, we first investigated whether each candidate con-
tour included any concave point from the center point of Cn

G.
Let us denote the set of contour points of each nodule
candidate by

Pn(i)c =

{
Pn(i,j)c : j = 1, 2, . . . J and i = 1, 2, . . . I

}
, (16)

where I is the total number of nodule candidates and J
is the total number of contour points for the i-th nodule
candidate. We calculated the included angle 6 OPn(i,j)c Q, and
declared the point Pn(i,j)c to be a concave point if the angle
was less than 90◦, as illustrated in Fig. 3(a). To calculate the
angle 6 OPn(i,j)c Q, we first determined the directions of clock-
wise and counterclockwise rotation with Pn(i,j)c and found
the fifth points next to Pnc in each direction. Subsequently,
we drew the two lines by connecting each of two points to
Pn(i,j)c . We denote the resultant angles by θin and θout , where
0◦ ≤ θ in < 180◦ and 180◦ ≤ θout < 360◦. We additionally

drew the line Pn(i,j)c Q dividing θout equally, where point Q is
any point in the drawing direction. Fig. 3(b) shows the angle
6 OPn(i,j)c Q computation examples for the concave point dec-
laration based on the results of Fig. 2(f). In the example, the
point Pn(i,j)c from the nodule candidate (top left) is declared
to be a concave point, while the point Pn(i,j)c from the false
positive (bottom left) is declared to be a non-concave point.
Fig. 3(c) shows the detected concave points with red dots
on Cn

G. More specifically, Fig. 3(d) shows the detected con-
cave points on the juxta-pleural nodule candidate contours.
Finally, only the nodule candidates including concave points
remained, as shown in Fig. 3(e).

In the last step, we found the circle/ellipse shape segments
among the remaining nodule candidates. For circle/ellipse
shape detection, we used a circular Hough transform [44].
We computed the circle/ellipse similarity metric S for each
segment, and considered only the segments with S ≥

STH , where STH = 0.49, which was optimized using the

VOLUME 6, 2018 1800513



H. Chung et al.: Automatic Lung Segmentation With Juxta-Pleural Nodule Identification

FIGURE 3. (a) Calculation of the included angle ���______OPn(i,j)
c Q, and

declaration of the point Pn(i,j)
c to be a concave point if the angle was less

than 90◦. (b) Angle ���______OPn(i,j)
c Q computation examples for the concave

point declaration based on the results of Fig. 2(f). (c) Detected concave
points with red dots on Cn

G . (d) Detected concave points on the
juxta-pleural nodule candidate contours, and (e) the remaining nodule
candidates that included any concave point.

receiver operating characteristic (ROC) curve as detailed in
the Results section. Fig. 4(a) shows the similarity metric S
for each remaining segment, and Fig. 4(b) shows the two
remaining segments for which where S was greater than
0.49. Subsequently, the area of the remaining segments (yel-
low contours) were added to the area inside Cn

G as shown
in Fig. 4(c). Then, the lung contour was finally modified by
adding the nodule candidates to the area inside Cn

G, which
forms the final lung contour, as shown in Fig. 4(d).

E. PERFORMANCE EVALUATION
The performance of our proposed method was evaluated
using fivemetrics: the disc similarity coefficient (DSC), mod-
ified Hausdorff distance (MHD), sensitivity, specificity, and
accuracy. To compute the five metrics, we first calculated the
true positive (TP), false positive (FP), true negative (TN), and
false negative (FN) values. TP (FP) is the number of positive
pixels labeled correctly (incorrectly). TN (FN) is the number
of negative pixels labeled correctly (incorrectly). We used
an example to quantize the parameters in Fig. 5. In Fig. 5
(a), the gold standard contour (purple) and the estimated
contour (blue) are shown, and the corresponding TP, FP, TN,
and FN are shown in Fig. 5(b). Each estimated contour was
evaluated with each gold standard contour for all images.

Based on the four parameters, the DSC can be calculated
as

DSC =
2TP

2TP+ FP+ FN
(17)

The DSC is the most commonly used metric for determin-
ing the segmentation of false positives and false negatives.
It is a statistical approach used to compare the similarity
of two data sets, which we used to determine the similarity

FIGURE 4. (a) Similarity metric S for each remaining segment. (b) Two
remaining segments where S was greater than 0.49. (c) Areas of the
remaining segments (yellow contours) were added to the area inside Cn

G .
(d) Final lung contours were defined by adding the nodule candidates to
the area inside Cn

G .

FIGURE 5. (a) Example of the gold standard contour (purple) and
estimated contour (blue), and (b) the corresponding true positive (TP),
true negative (TN), false positive (FP), and false negative (FN).

between the estimated contour and the gold standard. The
DSC value ranges between 0 and 1, where 0 means that there
is no similarity and 1 means that there is perfect similarity.
The MHD measures how far two subsets of a metric space
are from each other. It computes the forward and reverse
distances and outputs the minimum of both [37]. The other
metrics of sensitivity, specificity, and accuracy were calcu-
lated as

Sensitivity =
TP

TP+ FN

Specificity =
TN

TN + FP

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(18)

1800513 VOLUME 6, 2018



H. Chung et al.: Automatic Lung Segmentation With Juxta-Pleural Nodule Identification

FIGURE 6. Receiver operating curve (ROC) curve with 1 minus specificity
versus sensitivity in 0.01 increments from 0 to 1.

To evaluate our proposed method, we implemented the CV
model [29], the normalized CV (NM-CV) model [38], [39],
and the snake algorithm [40], and compared the results with
those of our proposed method, based on chest CT images
including juxta-pleural nodules (N = 314) from 42 subjects,
and all chest CT images (N = 16, 873) from 84 subjects. For
the snake algorithm [45], [46], the parameters of length (α),
curvature (β) and smoothing spline (λ) were used with 0.001,
0 and 100, respectively in [46].

To assess significant differences, we performed one-way
analysis of variance (ANOVA) tests with Bonferroni correc-
tions for multiple comparisons (p < 0.05) using SPSS ver.18
(SPSS Inc., Chicago, IL, USA).

The Matlab codes of our proposed method is available
online both at https://sites.google.com/site/bamilab/source-
codes/lung-segmentation and https://github.com/Heewon
Chung92/LungSegmentation.

III. RESULT
A. ROC EVALUATION ON STH
We computed the circle/ellipse similarity metric S for the
remaining nodule candidates (N = 1, 079) after the concave
point identification based on the all images. To find the
optimum threshold value STH , we adjusted the metric S from
0 to 1 in 0.01 increments, and evaluated the ROC curve.
Fig. 6 shows the ROC curve with 1 minus specificity versus
sensitivity for S. For the ROC evaluation, we found the values
for TP, TN, FP, and FN, and then calculated the sensitivity,
specificity, and accuracy. The best accuracy was found to be
0.9442with STH = 0.49, which is also the closest to the upper
left corner (Fig. 6).

B. PERFORMANCE EVALUATION AND COMPARISON
Fig. 7 shows several examples of lung segmentation results
using our proposedmethod (rightmost panels) compared with
the CV model (leftmost panels), NM-CV model (second left
panels) and snake algorithm (second right panels). The juxta-
pleural nodules resulted in incorrect lung segmentation for
the CV model, NM-CV model, and snake algorithm. On the
other hand, our proposed method correctly segmented the
lung, including juxta-pleural nodules within the lung contour

area. For example, in Fig. 7(a), the juxta-pleural nodule has
similar intensity values compared with the surrounding tis-
sue. The CV model, NM-CV model, and snake algorithm
generated contours that excluded the nodules. Similar results
can be observed in other conventional approaches, such as
thresholding and region growing.

In our proposed method, the CV model-based result Cn
G

and the predicted contour sampleC∗n(i)F fromCn−1
F were eval-

uated for likelihood based on cross-correlation. Subsequently,
the contour sample C∗nF update, followed by concave point
detection and Hough transform, could detect the juxta-pleural
nodule and modify the results by adding the nodule to the
area inside Cn

G, which finally segmented the lung contour
Cn
F as shown in the rightmost panel of Fig. 7(a). Figs. 7(b)

through (h) also show that our proposed method detected
juxta-pleural nodules and correctly segmented lung contours.
Therefore, using the combination of the CV model and the
Bayesian approach, we achieved accurate lung segmentation
and successfully detected juxta-pleural nodules.

To further evaluate our proposed method, we compared
the results from the CV model, NM-CV model, the snake
algorithm and our proposed method on the CT images
that included juxta-pleural nodules (N = 314). We com-
puted the DSC, MHD, sensitivity, specificity, and accuracy.
Fig. 8 shows the distribution of these metrics. The squares
at the top and bottom represent the 90th and 10th percentiles,
respectively. The whiskers at the top and bottom represent the
75th and 25th percentiles, respectively, and the circle indicates
the median value. Regarding the DSC, our proposed method
provided the highest DSC mean value (0.9712), while the
CV model, NM-CV model, and the snake algorithm pro-
vided mean values of 0.8410, 0.8428, and 0.8198, respec-
tively. Our proposed method provided the lowest MHDmean
value (0.4504), while the CV model, NM-CV model, and
the snake algorithm provided mean values of 2.1727, 2.1486,
and 2.2573, respectively. Our proposed method also provided
the highest sensitivity value, 0.9711, while the CV model,
NM-CV model, and the snake algorithm provided values of
0.0.7366, 0.7389, and 0.7040, respectively. Regarding accu-
racy, our proposed method also provided the highest value,
0.9667, while the CV model, NM-CV model and the snake
algorithm provided values of 0.8050, 0.8072, and 0.7843,
respectively. All of the above results were statistically signif-
icant. On the other hand, in our proposed method, the mean
specificity value was 0.9637, which was slightly lower than
that provided by the other methods. However, the differ-
ence was not statistically significant. Furthermore, using our
proposed method we could detect 96% of the juxta-pleural
nodules and correctly modify the lung contour; conversely,
the CV method, NM-CV model, and snake algorithm could
detect only 11%, 14%, and 9% of the juxta-pleural nodules,
respectively. Table 1 summarizes the results of our compar-
isons.

Finally, we performed our proposed method on all chest
CT images (N = 16, 873). Table 2 summarizes the
performance of all models in terms of the DSC, MHD,
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FIGURE 7. Performance comparison for juxta-pleural nodules: (top left) the CV model,
(top right) normalized modified Chan–Vese (NM-CV) model, (bottom left) the snake
algorithm, and (bottom right) our proposed method. The performance comparison
shown from (a) through (h) includes several juxta-pleural nodule cases.

sensitivity, specificity, and accuracy. Our proposed method
provided the highest mean DSC value (0.9709), while the
CV model, NM-CV model, and snake algorithm provided

mean values of 0.9692, 0.9693, and 0.9684, respectively.
Our method provided the lowest mean MHD value (0.5006),
compared with 0.5191, 0.5162, and 0.5227 for the CVmodel,
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FIGURE 8. Comparison of the four methods: the distribution of the disc
similarity coefficient (DSC), modified Hausdorff distance (MHD),
sensitivity, specificity, and accuracy. The squares at the top and bottom
represent the 90th and 10th percentiles, respectively. The whiskers at the
top and bottom represent the 75th and 25th percentiles, respectively, and
the circle indicates the median value.

NM-CV model, and snake algorithm, respectively. Our pro-
posed method also provided the highest sensitivity and accu-
racy values: 0.9585 and 0.9954, respectively. Regarding

TABLE 1. Comparison of the performance of the four methods on CT
images that included juxta-pleural nodule (N = 314). The DSC, MHD,
sensitivity, specificity, accuracy, and juxta-pleural nodule detection rate
were evaluated and compared. Mean, standard deviation and detection
rate are summarized.

TABLE 2. Results of comparison of the four methods on all chest CT
images (N = 16, 873). The DSC, MHD, sensitivity, specificity and accuracy
were evaluated. The mean and standard deviation are summarized.

specificity, the mean specificity value (0.9981) was slightly
lower than the other methods by the cost of increased sensi-
tivity. Table 2 summarizes the results of the comparison.

C. DISCUSSION ON EFFECT OF PREDICTION
ORDER AND LIMITATIONS
Given the contour Cn−1

F , we formed the prior p
(
Cn
F |D

n−1
)

as previously described (10) by dilating and contracting
Cn−1
F . In (10), the term p(Cn

F |C
n−1
F ) is the state evolution

based on a Markov model defined by the system transition
function fn and wn. Throughout this paper, we considered
the first-order prediction order for the curve samples C∗n(i)F .
Here, we may consider higher-order predictions. In second-
order or higher predictions, the predicted curve samplesC∗n(i)F
can be obtained from Cn−K

F , where K is the prediction order.
It is useful to use the curves Cn−K

F when Cn−1
F is not accu-

rate or when its area inside the contour does not include a
juxta-pleural nodule. If the area inside the curve Cn−1

F does
not correctly include a juxta-pleural nodule, the predicted
curve samples C∗n(i)F cannot further include the nodule in the
final result Cn

F . Furthermore, the successive incorrect Cn
F can

continuously and incorrectly evolve in the following frames
(i.e. at the n+1, n+2, . . . frame). Hence, to avoid this issue,
we may consider higher-order predictions by formulating the
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prior PDF of the state vector Cn
F as

p
(
Cn
F |D

n−1
)

=

K∑
k=1

∫
p
(
Cn
F |C

n−k
F

)
p
(
Cn−k
F |Dn−k

)
dCn−k

F (19)

This use of higher-order predictions is based on the
assumption that the lung contour does not change rapidly
in consecutive frames. Fig. 9 shows the distribution of cor-
relation values between consecutive frames of lung images
from the clinical database (N = 16, 873). It shows that the
median correlation value between consecutive lung images
at the nth frame and the (n − 1)-th frame is 0.9842 for the
right lung and 0.9849 for the left lung. Regarding the lung
images between the nth frame and the (n − 2)-th frame,
the correlation median value is slightly lower: 0.9745 for
the right lung and 0.9756 for the left lung. However, such
second-order or higher predictionsmay decrease the accuracy
of the predicted lung morphology, which may degrade the
overall performance in terms of the DSC, MHD, sensitivity,
specificity, and accuracy.

FIGURE 9. Distribution of correlation values between consecutive frame
lung images from the clinical database (N = 16, 873): (a) left lung image
correlation and (b) right lung image correlation.

To investigate the effect of the order of predictions,
we compared the results of first- and second-order predictions
(K = 1 and 2).WhenK = 2, the prior PDF of the state vector
Cn
F can be formulated as

p
(
Cn
F |D

n−1)
=

2∑
k=1

∫
p
(
Cn
F |C

n−k
F

)
p
(
Cn−k
F |Dn−k

)
dCn−k

F

(20)

Then, we formed the prior p
(
Cn
F |D

n−1
)
by dilating and

contracting both Cn−1
F and Cn−2

F . The total 20 curve samples

represent the prior p
(
Cn
F |D

n−1
)
with the system transition

function fn considering dilation and contraction at the nth
frame from both the (n− 1)-th and the (n− 2)-th frames. We
compared the results from K = 1 and 2 on the CT images
that included juxta-pleural nodules (N = 314), as well as
the DSC, MHD, sensitivity, specificity, accuracy, and juxta-
pleural nodule detection rate. When K = 2, the juxta-
pleural nodule detection rate increased from 90% to 98%.
However, even with the aid of the contour modification from
the detected nodule, the DSC, MHD, sensitivity, specificity,
and accuracy were all worse than when K = 1. These results
were all statistically significant. The results can be explained
by the fact that higher-order prediction decreases the overall
accuracy of the predicted lung morphology, which eventually
degrades the overall performance in terms of the DSC, MHD,
sensitivity, specificity, and accuracy. Table 3 summarizes the
results of the comparison.

TABLE 3. Results of the comparison of K = 1 and 2 on CT images that
included juxta-pleural nodules (N = 314). The DSC, MHD, sensitivity,
specificity, accuracy, and juxta-pleural nodule detection rate were
evaluated and compared. Mean, standard deviation and detection rate
are summarized.

We also compared the results when K = 1 or 2 on
all chest CT images (N = 16, 873). Table 4 summarizes
the comparative performance in terms of the DSC, MHD,
sensitivity, specificity, and accuracy. As expected, all metrics
showed that the results when K = 1 were superior to those
when K = 2. These results were also all statistically signif-
icant. Thus, in the future, we need to consider an adaptive
approach with variable prediction order that maintains both
high segmentation accuracy and high juxta-pleural nodule
detection rate.

Given the number of juxta-pleural nodule candidates,
the elimination of false positives is a critical step. In our
method, irregularly shaped nodule candidates were fil-
tered out through the circle/ellipse detection step. However,
the detection of irregularly shaped nodules is crucial in
not only automatic lung segmentation but also in automatic
nodule detection inside the segmented contour: cancerous
nodules are more likely to have irregular shapes, rougher sur-
faces, and color variations or speckled patterns. Fig. 10 shows
the juxta-pleural irregular shape nodules in our clinical
database. Unfortunately, those were all filtered out during
the circle/ellipse detection step. The missing irregular shape
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TABLE 4. Results of the comparison of K = 1 and 2 on all chest CT images
(N = 16, 873). The DSC, MHD, sensitivity, specificity, and accuracy were
evaluated and compared. Mean and standard deviation are summarized.

FIGURE 10. Irregularly shaped juxta-pleural nodules in our clinical
database. (a), (b) and (c): The nodules filtered out completely from the
circle/ellipse detection step.

nodule is one of the limitations of our proposedmethod. Thus,
further rigorous research is required for the detection of juxta-
pleural nodules without incurring the cost of false positives.

Another limitation is that our proposed method cannot
identify the nodule if the nodule is first appeared inside
the lung parenchyma and becomes adjacent to lung wall
in the next slices. This is because the juxta-pleural nodule
presents largely beyond our predicted curve range. To resolve
the issue, the predicted curve samples p

(
Cn
F |D

n−1
)
and the

resultant updated contour sample C∗nF should be considered
since C∗nF and p

(
Cn
F |D

n−1
)
are with relatively low cross-

correlation. Thus, further research on the relationship and its
solution should be investigated.

To analyze pulmonary disease, the CAD is currently used
for the second reader to assist radiologists. In the lung seg-
mentation results from our proposed method, the sensitivity
was 95.85% with juxta-plerual nodule detection rate of 96%.
In other words, our proposed method results in approxi-
mately 5 % false negatives for lung segmentation and 4%
missing rate for juxta-pleural nodules. Thus, to be completely
used without aid of radiologists, more issues have to be
addressed and resolved.

D. VALIDATION FROM OTHER DATABASES
We validated our proposed method from other databases: the
Lung ImageDatabase Consortium (LIDC) and chest low dose
CT image database (CLD) from Wonkwang University Hos-
pital (WKUH). For the LIDC database, we selected 5 subject
image data of 294, 324, 407, 543 and 973, which included
juxta-pleural nodules. They included 800 images in total.
Among the images, 45 included juxta-pleural nodules. For the
CLD, we collected chest CT DICOM images of 5 anonymous

subjects, all of who had juxta-pleural nodules. They included
966 images in total. Among the images, 80 included juxta-
pleural nodules. Table 5 summarized the used data.
TABLE 5. Image data summary from LIDC database (5 subjects and
800 image) and chest low dose CT images (5 subjects, 966 images).

To evaluate the performance of the methods, ‘‘gold stan-
dard’’ lung contours (N = 1, 766) were obtained from two
trained radiologists. Initially, one trained radiologist drew the
contours, and another trained radiologist confirmed them.
We used the same parameters previously simulated in the
16,873 images. We compared the results on the CT images
including juxta-pleural nodules from LIDC (N = 45) and
CLD (N = 80). Table 6 and 7 summarize the results from
LIDC and CLD databases, respectively. The resultant metrics
fromLIDCwere similar to the results in Table 1. our proposed
algorithm outperformed the other three existing methods for
both LIDC and CLD. In addition, the juxta-pleural detection
rates were 100% and 96%, for LIDC and CLD, respectively.

TABLE 6. Comparison of the performance of the four methods on CT
images that included juxta-pleural nodule (N = 45) from LIDC database.
The DSC, MHD, sensitivity, specificity, accuracy, and juxta-pleural nodule
detection rate were evaluated and compared.

Finally, we performed our proposed method on all chest
CT images from LIDC (N = 800) and CLD (N = 966).
Table 8 and 9 summarize the results from LIDC and CLD
databases, respectively. The resultant metrics from both
LIDC and CLD were also similar to the results in Table 2.
In both, our proposed algorithm also outperformed the other
three existing method.

E. DISCUSSION ON EXTENSION CAPABILITY
The automatic lung segmentation is particularly challenging
because of juxta-pleural nodules. Although many methods
have been proposed for the accurate lung segmentation,
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TABLE 7. Comparison of the performance of the four methods on CT
images that included juxta-pleural nodule (N = 80) from CLD database.
The DSC, MHD, sensitivity, specificity, accuracy, and juxta-pleural nodule
detection rate were evaluated and compared. The mean and standard
deviation are summarized.

TABLE 8. Results of comparison of the four methods on all chest CT
images (N = 800) from LIDC database. The DSC, MHD, sensitivity,
specificity and accuracy were evaluated. The mean and standard
deviation are summarized.

TABLE 9. Results of comparison of the four methods on all chest CT
images (N = 966) from CLD database. The DSC, MHD, sensitivity,
specificity and accuracy were evaluated. The mean and standard
deviation are summarized.

most lung image segmentation algorithms functioned well
only with absent or minimal lung pathologic conditions such
as juxta-pleural nodule. Currently, no single segmentation
method achieves a globally optimal performance for all
cases [47]. For instance, region-based segmentation methods
serve as an efficient tool for extracting homogeneous regions
such as lungs. However, the methods depend on the magni-
tude of noise and the precision of the neighborhood criteria;
and thus, they suffer from false negatives within the lung
region and require demand further post-processing. Recently,
the use of prior shape information has gained popularity in

medical image segmentation. The methods are either atlas-
based or model-based approach to find the lung boundary.
Atlas-based approach uses prior shape information of the
target organ. The approach consists of a template CT image
and the corresponding labels of the thoracic regions. For the
segmentation, the template image is registered to the target
image. Since the approach is used to align the template to
the target image, the accuracy with submillimeter is not pro-
vided. The model-based approach similarly uses prior shape
information. To better accommodate the shape variabilities,
the approach fit either appearance or statistical shapes of
lungs to the image. Since it considers both global and local
variation of the shape and texture, it is considered effective in
handling the abnormal lung segmentation problem. However,
similar to atlas-based approach, a representative prior model
covering diverse demographics is usually difficult to create.
In addition, the performance is limited when the model is not
initiated close enough to the actual boundary of the lungs.

In this study, we used the CV model for the global con-
tour, and found the final contour with the juxta-pleural nod-
ule identification based on a Bayesian approach, concave
points detection and circle/ellipse Hough transform. Since
the CV model method is independent of the rest parts, it can
be replaced by other methods such as prior shape meth-
ods or region-based methods. Comparing to slice by slice
image analysis, the additional Bayesian approach can provide
more accurate detection results based on the assumption that
the cross-sectional area of the nodule gradually increases
and decreases in consecutive axial slices of chest CT scans.
Thus, more accurate lung contour segmentation results can
be provided by applying to our proposed method framework.

IV. CONCLUSIONS
We have proposed a novel lung contour extraction algorithm
capable of detecting juxta-pleural nodules. The algorithm is
based on the CV model followed by a Bayesian approach
to detect juxta-pleural nodule candidates and eliminate false
positives through concave points detection and circle/ellipse
Hough transform. In the images that included juxta-pleural
nodules (N = 314), our method exhibited a DSC of 0.9712,
MHD of 0.4504, sensitivity of 0.9711, specificity of 0.9637,
accuracy of 0.9667, and juxta-pleural nodule detection rate
of 96%, which outperformed the CV model, normalized CV
model (NM-CV model), and snake algorithm. Furthermore,
in all chest CT images (N = 16, 873), our method exhibited
a DSC of 0.97091, MHD of 0.5006, sensitivity of 0.9585,
specificity of 0.9981, and accuracy of 0.9954, which were
also superior to the other models. We believe that our pro-
posed method enhances the accuracy of lung segmentation
and can assist radiologists in the interpretation of CT images,
particularly for lung-related quantitative analysis.
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