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Dendritic cell entry to lymphatic capillaries is
orchestrated by CD44 and the hyaluronan glycocalyx
Louise A Johnson1 , Suneale Banerji1, B Christoffer Lagerholm2 , David G Jackson1

DCs play a vital role in immunity by conveying antigens from pe-
ripheral tissues to draining lymph nodes, through afferent lymphatic
vessels. Critical to the process is initial docking to the lymphatic
endothelial receptor LYVE-1 via its ligand hyaluronan on the DC
surface. How this relatively weak binding polymer is configured for
specific adhesion to LYVE-1, however, is unknown. Here, we show that
hyaluronan is anchored and spatially organized into a 400–500 nm
dense glycocalyx by the leukocyte receptor CD44. Using gene
knockout and by modulating CD44-hyaluronan interactions with
monoclonal antibodies in vitro and in a mouse model of oxazolone-
induced skin inflammation, we demonstrate that CD44 is required for
DC adhesion and transmigration across lymphatic endothelium. In
addition, we present evidence that CD44 can dynamically control the
density of the hyaluronan glycocalyx, regulating the efficiency of DC
trafficking to lymph nodes. Our findings define a previously unrec-
ognized role for CD44 in lymphatic trafficking and highlight the im-
portance of the CD44:HA:LYVE-1 axis in its regulation.
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Introduction

Mobilization of antigen-presenting cells such as DCs from pe-
ripheral tissue via afferent lymphatics to draining LNs is essential
for immune surveillance and for generating and regulating cellular
immune responses (reviewed in reference 1). The process involves a
number of individual steps guided by specific adhesion receptors
and chemotactic cues, beginning with interstitial migration towards
initial lymphatic capillaries, and followed by transit across endo-
thelium to the vessel lumen and intralumenal crawling (2, 3, 4, 5, 6, 7,
8, 9, 10). A critical step in this process is that of vessel entry, during
whichmigrating leukocytes with a diameter of ~10 μmmust squeeze
between the interdigitating endothelial flaps that comprise the
distinctive overlapping junctions of initial lymphatic capillaries.
These flaps are buttoned at their sides by the adherens junction
molecule vascular endothelial cadherin (VE-cadherin) and tight
junctional adhesion molecules including claudins and zonula

occludens-1 (ZO-1), and lined at their tips by the lymphatic en-
dothelial hyaluronan (HA) receptor LYVE-1 and CD31 (11). From the
results of targeted gene deletion and antibody blockade studies, it
is now clear that entry at such junctions involves formation of
dynamic LYVE-1-rich transmigratory cups, which permit docking of
DCs via HA present as a dense layer on their surface (12).

HA is a ubiquitously expressed glycosaminoglycan composed of
linear repeating units of D-glucuronic acid and N-acetyl-D-glucosamine
(GlcNAc β1-4 GlcUA)n, which may extend to up to 20,000 disaccharide
units in length, with contour lengths of up to 25 μm.HA is implicated in a
wide range of physiological and pathological roles, as a structural
component and also through highly regulated interactions with a cohort
of HA-binding proteins. Generated endogenously bymembers of the HA
synthase protein family located on the inner leaflet of the plasma
membrane (reviewed in reference 13), the nascent polymers are ex-
truded from the cell surface. However, themolecular details of theDCHA
glycocalyx and its structural organization remain poorly defined. Most
importantly, the supramolecular organization of large multivalent HA
polymers within the DC glycocalyx provides the necessary avidity for
efficient binding to LYVE-1, enabling the receptor to discriminate be-
tweenHA-coatedDCs and smaller uncomplexedHAmolecules that bind
LYVE-1 more weakly (14, 15), a property described as superselectivity (16).

In this present study, we have investigated how the HA glycocalyx
is retained and organized on the surface of DCs, and how this
contributes to the recently established role of the glycocalyx in
regulating entry and trafficking in lymphatic vessels. We reveal that
the glycocalyx is tethered exclusively by the key leukocyte receptor
CD44, which configures the constituent HA polymers for efficient
docking and adhesion via LYVE-1+ transmigratory cups. Further-
more, using a mouse model of skin contact hypersensitivity, we
show that CD44 gene deletion in DCs impedes their trafficking to
draining LNs by disrupting their capacity to adhere and enter initial
lymphatic capillaries. Finally, by inducing an increase in the HA-
binding capacity of CD44 using potentiating antibody in vivo, we
show the resulting increase in HA glycocalyx density dramatically
enhances DC docking to LYVE-1 and promotes their arrest within the
vessel lumen. These results identify a previously unrecognized role
for CD44 in DCs and reveal its importance in the interplay between
HA and LYVE-1 for lymphatic trafficking. In addition, they uncover
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the dynamic nature of the DC HA glycocalyx and reveal a potential
mechanism by which DCs might regulate their own trafficking
through control of CD44:HA-binding efficiency.

Results

CD44 is the primary anchoring receptor for the DC HA glycocalyx

Numerous different non-hematopoietic cell types, including fibro-
blasts, chondrocytes, vascular smooth muscle, and endothelial cells
are surrounded by HA-rich pericellular coats (17, 18), whose an-
chorage has been attributed to the widely expressed HA receptor
CD44 (19) as well as retention by the plasma membrane-bound HA
synthases (13, 20). To determine if similar modes of anchorage are
used by DCs, we compared the integrity of the HA coat in mouse
BMDCs from wild-type and CD44−/− littermates by flow cytometry,
using the biotinylated Versican G1 high-affinity HA-binding domain
(bVG1) as a probe. We detected abundant HA on the surface of CD44+/+

BMDCs, which increased further (up to twofold) upon LPS-induced
maturation (as shown previously (12), and Fig 1A and B). In contrast,
BMDCs from CD44−/− littermates had typically fourfold lower levels of
HA at the cell surface, and these remained unchanged upon matu-
ration (Fig 1A and B). However, CD44−/− DCs displayed almost identical
surface levels of MHC class II and the key co-stimulatory receptors
CD80 and CD86 to those of their CD44+/+ litter- and cage-mates (Fig S1A
and B), indicating that gene deletion had no obvious deleterious
effects on normal DC immune responsiveness.

Next, we visualized the fine structure of the HA glycocalyx in bVG1-
stained BMDCs using high resolution Airyscan confocal microscopy.
As shown in Fig 1C, this was visible on the surface of wild-type BMDCs
as a dense pericellular coat enmeshed with and extending to a
median thickness of 450 nm (Fig 1E), whereas no such HA structure
was apparent in CD44−/− BMDCs (Fig 1D and E). Importantly, bVG1
yielded highly specific staining for HA, which could be removed by
prior treatment with hyaluronidase (HAase) (Fig S2A and B).

To affirm equal involvement of CD44 in assembly of an HA
glycocalyx in native MHC class II+ CD11c+ DCs, we performed bVG1
staining of cells both in situ in normal mouse dermis, and after ex
vivo crawl-out, to generate an activated lymphmigratory dermal DC
population. Whereas an HA coat was present on almost 60% of such
dermal DCs in CD44+/+ mice, no HA was detected on the majority
(>97%) of CD44−/− dermal DCs (Figs 1F and G and S3A). As expected,
HA was also present in abundant amounts within the interstitium.
Interestingly, however, the levels were reduced by more than
twofold in CD44−/− mice, verifying that CD44 plays a role in retaining
HAwithin the extracellular matrix, most likely through anchorage by
stromal cells (Fig S3B and C).

In addition to anchoring the HA glycocalyx in DCs, we also assessed
the possibility that CD44 regulates the synthesis and secretion of HA.
Western blot analysis showed both immature and mature BMDCs
express similarly high levels of the key enzymes HAS1 and HAS2 that
synthesize HA chains of high MW (>2,000 kD) (21). However, we detected
no HAS3 protein expression, and the levels of all three HAS enzymes
were not significantly altered in BMDCs from CD44−/− mice (Figs 2A and
S4). We also measured the levels of HA itself, using a sensitive

competitive ELISA. This showed the glycosaminoglycan was present in
similar amounts in whole cell lysates (cell surface and intracellular
fractions) of immature BMDCs from both CD44+/+ and CD44−/− and
increased almost twofold in each case after LPS-induced maturation
(Fig 2B and C). Moreover, Airyscan confocal imaging of permeabilized
cells revealed that HA in CD44+/+ BMDCs was predominantly at the cell
surface, whereas in CD44−/− BMDCs, HA accumulated in intracellular
vesicles (Fig 2D), suggestive of a role for CD44 in their trafficking to the
plasma membrane. Surprisingly, HA was also secreted in significant
amounts by both CD44+/+ and CD44−/− BMDCs, with both cell-associated
HA and soluble HA showing a similar twofold increase upon LPS-
induced maturation (Fig 2B and C). These findings reveal that CD44
is essential for processing, anchorage and retention of an endoge-
nously synthesized HA glycocalyx in DCs. However, CD44 is dispensable
for both HA synthesis and secretion.

CD44 is translocated to the DC uropod for HA-mediated adhesion
to lymphatic endothelium

Next, we investigated the functional role of CD44 and its organization of
the HA glycocalyx during DC adhesion to lymphatic endothelium. We
carried out spinning disc video microscopy to observe initial en-
counters of CMFDA-labeled human monocyte–derived DCs (MDDCs)
with a human lymphatic endothelial cell (hLEC) monolayer, using the
non-blocking mAb 6A to visualize LYVE-1. As shown in Videos 1 and 2,
MDDCs appeared to first adhere to a discrete cluster of LYVE-1 in the
underlying endothelium via one pole of the cell, before extending
lamellipodia-like protrusions to probe the surrounding monolayer.
Significantly, both attachment to LYVE-1 andprotrusion formationwere
disrupted when MDDCs were pretreated with the CD44 mAb IM7 that
induces CD44 shedding (22, 23) or the CD44 HA–blocking mAb BRIC235
(24), both of which destabilize the glycocalyx (Figs 3A and S5A and B
and Videos 3 and 4). Furthermore, dual staining of adhering MDDCs for
ICAM3, a well-documented marker for the uropod, revealed that CD44
was preferentially localized to this distinct region at the trailing edge of
the cell (25) where it formed the primary adhesive interface with
underlying LECs (Fig 3B and Videos 5 and 6). We also observed that
disrupting CD44–HA interactions at the surface of MDDCs by prior
treatment with either IM7 or BRIC235 mAbs abolished the capacity of
these cells to establish formation of the characteristic LYVE-1+ en-
dothelial cups that mediate DC-lymphatic adhesion and transmigra-
tion (Fig S5C). Hence, the directed distribution of HA glycocalyx to the
uropod via CD44 is pivotal to both these critical processes.

To explore the influence of CD44-dependent endothelial adhesionon
DC motility, we tracked the migratory paths of MDDCs on hLEC mono-
layers. In the presence of control IgG,MDDCs crawled briefly but adhered
rapidly, inducing LYVE-1 clustering in the regions of cell–cell contact
before transmigrating across themonolayer, below theplaneof view (Fig
3C and D and Videos 1 and 2). In contrast, MDDCs that were treated with
either IM7 or BRIC235 failed to form long-lived interactions and thus
crawled further (12-fold and 9-fold, respectively), with longer migratory
paths (Fig 3C and D and Videos 3 and 4). Importantly, no effect was
observed with the control non-blocking CD44 mAb F.10.44.2 (Fig 3E).

Similarly, we used spinning disc microscopy to simulta-
neously track the migratory paths of CD44+/+ and CD44−/− BMDCs on
monolayers of primary dermal mouse lymphatic endothelial cells
(mLECs), using cells that had been differentially tagged with either
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Figure 1. CD44 anchors the HA glycocalyx to the surface of both immature and mature DCs.
(A) HA on intact BMDCs prepared from CD44+/+ and CD44−/− littermates, as detected using bVG1 with streptavidin-AF647 by flow cytometry. Data in box plots represent
the median (center bar) ± s.e.m. (whiskers), n = 5, 6 mice. Data are one representative experiment from three. (B) Representative dot plots of bVG1-streptavidin-AF647, to
indicate levels of cell surface HA. (C) Visualization of the HA glycocalyx by bVG1–streptavidin–AF647 (red) on an individual PFA-fixed CD44+/+ BMDC, with CD44 detected by
mAb IM7 (green) and nucleus counterstained with DAPI (blue), as observed by confocal microscopy with Airyscan detection, with digital zoom (right panel) to show
dimensions of the extended pericellular coat. (D) Confocal microscopy of fixed CD44+/+ and CD44−/− BMDCs labeled with CMFDA green tracker dye, bVG1-streptavidin-
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CMFDA green or CMTPX red cell tracker dyes (or vice versa). Wild-type
CD44+/+ BMDCs adhering to mLECs displayed a highly restricted
pattern of migration, which inmost cases led to transmigration of the
monolayer, whereas CD44−/− BMDCs were only loosely attached and
displayed longer migratory paths (Fig 4A and B and Video 7). High
magnification confocal microscopy revealed co-localization of CD44
and HA on the BMDC surface, aligning with LYVE-1 within the dis-
tinctive ring-like transmigratory cups through which they adhered to
underlying mLECs (Fig 5A and B). Although some LYVE1+ ring-like
structures were also visible around CD44−/− BMDC, these were more
diffuse and fourfold less abundant, with similar numbers to those
seen in control, HAase-treated BMDCs (Fig 5B andC). Thesedata show
that engagement with the CD44–HA glycocalyx complex is vital for the
capture of DCs by lymphatic endothelium and the initiation of
diapedesis.

CD44 is critical for DC entry to dermal lymphatics

To assess the significance of CD44-mediated glycocalyx organization for
lymphatic trafficking in vivo, we topically applied FITC and the skin
sensitizing agent oxazolone to the shaved abdomens of CD44+/+ and
CD44−/−mice, then 24 h later harvested draining inguinal and axillary LNs
for analysis by flow cytometry (Figs 6 and S6). We recorded a twofold
reduction in recovery of FITC+ CD11c+ DCs in CD44−/− mice, in comparison
to CD44+/+ litter- and cage-mates (Fig 6A–D), both in terms of absolute
numbers (Fig 6A) andas their percentageof total cells in draining LNs (Fig
S6A–C). The same impact of CD44 gene deletion was also evident in the
FITC-bearing CD11c+ MHC class II+ CD103+ migratory DC subsets (Fig 6B)
and was accompanied by a significant (P = 0.037) reduction in the total
cellularity of CD44−/− LNs (Fig 6C). Nevertheless, because CD44 is also
expressed by fibroblasts and epithelial cells in mouse skin, we could not
exclude the possibility that such effects may have resulted from gene
deletion in these other cells types. Therefore, to avoid such ambiguities,
we carried out additional lymphatic trafficking experiments in which we
labeledCD44+/+andCD44−/−BMDCswith eitherQ-dot 655 orQ-dot 585 (or
vice versa), and injected 1:1 mixtures into the skin of recipient CD44+/+

C57BL/6 mice that had been subjected to oxazolone contact hyper-
sensitivity. We then compared their recoveries in draining cervical LNs by
flow cytometry after 24 h. The results (Fig 7A) showed an almost twofold
reduction in CD44−/− BMDCs in these LNs, both in terms of cell numbers
and as a percentage of total LN cellularity (Fig S7A and B). As this re-
duction in nodal trafficking was comparable with that observed for
BMDCs in LYVE-1-deficient mice (12), we reasoned that CD44, like LYVE-1,
might contribute to the same initial step in vessel entry. To explore this
further, we prepared fixedwhole-mount skin sections frommice injected
with CMFDA-labeled CD44−/− and CD44+/+ BMDCs, and used confocal
imaging to compare their distribution in andaround lymphatic capillaries
close to the injection site. As expected, significant numbers of CMFDA+

BMDCs of both genotypes were still visible 24 h after transfer (Fig 7B).
However, unlike CD44+/+ BMDCs, where the majority (80%) of vessel-

associated cells were found within the capillary lumen, most CD44−/−

BMDCs (60%) had accumulated at the basolateral surface and few if any
were visible in the lumen (Fig 7B and C). Likewise, this correlated with a
reduction in the number of CMFDA+ CD44−/− BMDCs recovered from
draining LNs, in comparison with CD44+/+ BMDCs (Fig 7D), as well as a
reduction in overall LN cellularity (Fig 7E).

To further consolidate these findings, we performed in vitro ad-
hesion and transmigration assays (12, 26) using immature and LPS-
matured BMDCs, and monolayers of primary dermal mLECs. As shown
in Fig 8A–D, the numbers of both resting and LPS-matured CD44−/−

BMDC adhering to the LEC monolayers after 3 h were, respectively,
between two and fourfold lower than equivalent control CD44+/+ cells.
Importantly, incubation with HAase reduced the adhesion of CD44+/+

BMDCs to the same level as that of CD44−/− BMDCs (Fig 8B), confirming
that CD44:HA interactions are responsible for supporting such DC-LEC
adherence, rather than other ligands of CD44 such as chondroitin
sulfate (27, 28), E-selectin (29) macrophage mannose receptor (MR)
(30), or osteopontin (31). In addition, the adhesion of wild-type BMDCs
was reduced by more than 40% in the presence of excess free HA (Fig
8C). Furthermore, in Transwell assays with mLEC monolayers, both the
rate and extent of basolateral-to-luminal transmigration of CD44−/−

BMDC were reduced (up to 85%) by comparison with CD44+/+ DCs (Fig
8E). However, mAb-induced blockade of LYVE-1:HA interactions did not
impair CD44−/− BMDC transmigration, unlike that of CD44+/+ BMDC,
confirming that in the absence of CD44, diapedesis does not involve
LYVE-1:HA interactions (Fig 8F).

Last, we considered the possibility that genetic deletion of CD44
in BMDCs might contribute to defective nodal trafficking by im-
peding interactions with HA in the dermal matrix, which could
support interstitial migration before vessel entry. To address the
issue, we modeled the process over 5 h in vitro, using an assay that
measured transit of fluorescent (CMFDA-labeled), LPS-matured
BMDCs through monolayers of mouse dermal fibroblasts plated
on the upper surface of Transwell inserts. However, rather than
blocking DC migration, the results (Fig 8G), indicated CD44 gene
deletionmarginally enhanced the process in comparison to CD44+/+

cells, although the difference did not reach statistical significance.
These results demonstrate that CD44 retains and organizes the

DC HA glycocalyx, to permit efficient docking with lymphatic en-
dothelium and transit to the vessel lumen.

Increasing HA glycocalyx density through mAb-induced CD44
clustering enhances DC-lymphatic adhesion and leads to arrest in
the vessel lumen

The importance of the CD44:HA glycocalyx complex for docking and
entry of DCs to dermal lymphatic vessels raised the possibility that
functional regulation of the receptor might exert control over
lymphatic trafficking in vivo. Indeed, in other leukocyte populations,
it is well documented that the HA-binding capacity of CD44 is

AF647 (red), and counterstained with DAPI (blue). (E) Thickness of the HA glycocalyx on fixed CD44+/+ and CD44−/− BMDCs, asmeasured from Airyscan images using Image
J (n = 5, 5 cells, data combined from three experiments). (F) Detection of HA (blue) on migratory MHC class II+ (green) CD11c+ (red) dermal DCs, with nuclei counterstained
with DAPI (gray), following egress from tissue during ex vivo culture. (G) Percentage of MHC class II+ dermal DCs scored as surface HA+ by microscopy (n = 6, 6 mice, data
combined from two experiments), following fixation of freshly resected ear skin in PFA and incubation for 2 h at 37 °C ± hyaluronidase (HAase), before immunostaining
*P < 0.05, **P < 0.01, ****P < 0.0001, Mann–Whitney U-test.
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Figure 2. CD442/2 BMDCs exhibit no defect in HA synthesis.
(A) Cell lysates of immature andmature BMDCs from either five or six individual CD44+/+ and five CD44−/− littermates were resolved by SDS–PAGE and probed by Western
blotting to detect HAS enzymes HAS1-3 and GAPDH (as a loading control). Representative blots are shown, from one of two separate experiments. Lysate from wild-type
mouse skin was included as a positive control for HAS3. (B, C) Quantitation of HA in lysates (B) and supernatants (C) of immature and LPS-matured BMDCs, as determined
by ELISA. Data represent the median (center bar) ± s.e.m. (whiskers), n = 5 for CD44+/+ and 6 for CD44−/− mice, one representative experiment from three separate
experiments. (D) Detection of HA in permeabilized BMDCs prepared from CD44+/+ and CD44−/− littermates, using bVG1 and streptavidin–AF647 (gray), immunostaining for
CD44 (green), and counterstaining with phalloidin (red) and DAPI (blue). Scale bars = 5 μm.
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Figure 3. Disrupting CD44-HA binding impairs DC interactions with human lymphatic endothelial cells (hLECs).
(A) Surface levels of CD44 and HA on LPS-matured human monocyte-derived DC (MDDC) after incubation with control IgG, or anti-CD44 mAbs IM7 and BRIC235, as
measured by flow cytometry. ****P < 0.0001, unpaired t test. Data are themean ± s.e.m. (n = 3), one representative experiment of three. (B) Single time point from a video of
MDDCs labeled with FITC-conjugated anti-CD44 (mAb F10.44.2, green) and APC-conjugated anti–ICAM3 (red) crawling on unstained hLEC monolayers. Scale bar = 10 μm.
(C, D, E)Migration of mAb-treated MDDCs onmonolayers of hLECs, imaged by spinning disc confocal microscopy over 4 h, with dragon tail tracks color-coded to indicate
time progression (C) and quantitated using Imaris software (D, E). Scale bar = 20 μm, ****P < 0.0001, Mann–Whitney U-test. Data are the median (center bar) ± s.e.m.
(whiskers), data combined from three experiments.
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subject to regulation by pro-inflammatory cytokines, through a
combination of inside-out signaling, post-translational modifica-
tion and surface clustering (32, 33, 34). To explore the possibility in
more detail, we assessed the consequences of increasing the HA-
binding capacity of CD44 in mouse BMDCs using the anti-CD44 mAb
IRAWB14, which has been shown to exert such effects in T lym-
phoma cells by promoting optimal CD44 clustering via an epitope in
the N-terminal Link domain (35, 36, 37). As shown in Fig 9A, incu-
bation of wild-type CD44+/+ BMDCs with IRAWB14 led to an almost
twofold increase in their capacity to bind exogenously added HA.
More compellingly, IRAWB14 also increased the extent to which
BMDCs bound endogenously synthesized HA, as evidenced by an
almost sixfold increase in surface HA levels in the absence of any
externally added HA (Fig 9B). This latter finding indicates that the
density of the HA glycocalyx can be altered by changes in CD44
functional status without any change in the levels of HA synthesis.
Indeed, we found thatmost HA synthesized by LPS-matured CD44+/+

DCs is secreted (median 2.4 pg/cell), and less than 50% (median 1.7
pg/cell) is retained by CD44 tethering (Fig 2B and C). In contrast, we
detected no capacity for binding exogenous HA in CD44−/− BMDCs,
nor any potentiation of endogenous or exogenous HA binding in
response to IRAWB14, confirming that the effects of this mAb are
CD44 dependent (Fig 9A and B).

Next, to determine the functional consequences of increased HA
glycocalyx density, we subjected both control and IRAWB14-treated
BMDCs to in vitro adhesion and transendothelial migration assays,
whereby CMFDA green tracker dye-labeled LPS-matured BMDCs
from wild-type mice were applied to monolayers of primary mLEC
plated in gelatin-coated multiwell dishes and on the undersurface
of opaque Transwell inserts, respectively. Significantly, treatment
(3 h) with IRAWB14 increased adhesion of BMDCs almost fourfold
in comparison with controls, as assessed by quantitative fluo-
rescence measurement (Fig 9C) and confocal microscopy (Fig 9D),
through LYVE-1+ transmigratory cup formation (Fig 9E and F).
Notably, however, IRAWB14-treated BMDCs displayed a slower rate
of basolateral-to-luminal migration across mLEC monolayers, with
a significant (up to twofold) reduction in numbers of transmigrating
cells (Fig 9G). These results establish that increasing HA glycocalyx
density through induced CD44 clustering has a marked effect on DC
behavior, altering DC-endothelial adhesion and transmigration in a
reciprocal manner.

Finally, we explored the consequences of inducing an increase in
HA glycocalyx density on DC trafficking in vivo. Accordingly, we
treated CMFDA-labeled LPS-activated wild-type BMDCs with either
control rat IgG or IRAWB14 for 30 min and injected them separately
into the dermis of oxazolone-treated mice. Importantly, such

Figure 4. CD44 deficiency impairs BMDC interactions
with mouse lymphatic endothelial cells.
Tracking migration of LPS-matured BMDCs from CD44+/+

and CD44−/− mice, labeled with CMFDA green or CMTPX
red tracker dyes, applied to monolayers of mouse
lymphatic endothelial cells and imaged by spinning disc
confocal microscopy over 4 h. (A) Lengths of migratory
paths were tracked using Imaris software. ****P <
0.0001, Mann–Whitney U-test. Data are the median
(center bar) ± s.e.m. (whiskers) eight cells/field of view,
three fields of view, data combined from three
experiments. (B) Representative images of dragon tail
paths to indicate time are shown for CD44+/+ BMDCs
(CMFDA, green) and CD44−/− BMDCs (CMPXT, red) with
bright-field, and cells indicated by gray spheres. Scale
bar = 50 μm.
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Figure 5. CD44 is required for efficient formation of lymphatic endothelial transmigratory cups.
(A) Confocal microscopy orthogonal view images of cultured primary mouse lymphatic endothelial cell (mLEC) monolayers immunostained with anti–LYVE-1 (red)
viewed 3 h after the addition of LPS-matured, fluorescently labeled (green) CD44+/+ BMDC immunostained with anti-CD44 (blue), and bVG1 (yellow) and counterstained
with DAPI (gray), scale bar = 10 μm. (B) Three-dimensional rendering of confocal images of cultured primarymLECmonolayer immunostained with anti–LYVE-1 (red) viewed
3 h after the addition of fluorescently labeled (green) CD44+/+ or CD44−/− BMDC immunostained with anti-CD44 (blue). An individual LYVE-1-lined transmigratory cup is
indicated by arrow. Scale bar = 10 μm. (C) Quantitation of microscopy images to show the number of LYVE-1+ transmigratory cups associating with adherent DCs, after 2-h
preincubation with HAase and 3-h co-culture of mLEC monolayers with either mature CD44+/+ or CD44−/− BMDC. ****P < 0.0001, Mann–Whitney U-test. Data are the median
(center bar) ± s.e.m. (whiskers) (n = 10 fields of view), data combined from three experiments.
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Figure 6. Impaired trafficking of endogenous dermal DCs to draining LNs in CD44-deficient mice.
(A, B) Recovery of endogenous DCs from draining inguinal and axillary LNs, 24 h after topical application of oxazolone and FITC, as measured by flow cytometry. (A, B)
Live CD45+ CD11c+ FITC+ cells (A) were further gated according to expression of MHC class II and CD103 (B). (C) Total cellularity of LNs was measured by counting cells with a
hemocytometer. *P < 0.05, Mann–Whitney U-test. Data represent the mean (center bar) ± s.e.m. (whiskers) (n = 5 mice), one representative experiment of three. (D)
Representative contour and dot plots, showing percentage of cells in each gate.
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incubation with IRAWB14 did not affect cell viability or induce CD44
shedding, as the levels of bound antibody remained undiminished
after 24 h (Fig S8A). Next, we assessed the ability of IRAWB14-treated
BMDCs to enter lymphatic capillaries and migrate to draining
cervical LNs by confocal microscopy and flow cytometry, 24 h after
injection. The results (Fig 10A and B) revealed a fourfold decrease in
IRAWB14-treated BMDCs recovered from skin-draining LNs com-
pared with IgG-treated controls, both in terms of absolute numbers
and as percentages of the total LN cell population, consistent with
the slower rate of transmigration observed in the in vitro assays
(Figs 9G and S8B). This was accompanied by a fourfold decrease in
total LN cellularity in mice receiving IRAWB14-treated BMDC, in
comparison to those receiving IgG control cells (Fig 10C). Moreover,
detailed examination of the dermis by confocal microscopy (Fig
10D–F) showed a threefold greater accumulation of IRAWB14-
treated BMDCs inside the lumen of lymphatic capillaries (median
9 BMDCs/100 μm) compared with IgG-treated controls (median 3
BMDCs/100 μm), and an enlarged vessel diameter (median 23 μm
diameter, compared to 17 μm in controls). This is likely due to
occlusion of lymph flow by trapped BMDCs, although clearly, we
cannot rule out the possibility that the IRAWB14 mAb may also
evoke bystander inflammatory effects that affect lymph flow.

These results show that increasing the density of the HA gly-
cocalyx through clustering and functional activation of CD44 can
indeed influence the efficiency of DC trafficking via lymph, where
the heightened avidity of the CD44:HA complex for LYVE-1 can
impede the process by slowing diapedesis and inducing arrest of
the migrating cells within the vessel lumen. Furthermore, they
establish that CD44 together with HA and LYVE-1 contribute to a
critical tripartite adhesion axis that can regulate the rate of DC entry
and trafficking via lymph.

Discussion

Here, we have identified a novel and previously unrecognized role for
the leukocyte HA receptor CD44 in regulating exit of DCs from the skin
via afferent lymphatics, during their migration to downstream
draining LNs. In particular, we have established that CD44 is required
for both anchorage and functional organization of a dense HA gly-
cocalyx on the surface of DCs, which enables them to dock and enter
lymphatic capillaries. Moreover, we have provided new evidence that
CD44 plays an active role in DC trafficking, whereby its ability to
modulate glycocalyx density through receptor clustering allows DCs
to regulate their adhesion and transmigration of lymphatic endo-
thelium and hence their rate of transit to draining LNs for immune
activation. Although previous studies have addressed the role of
CD44 in epidermal Langerhans cell trafficking, such investigations
used CD44 knockout mice in which tissue-wide deletion of the re-
ceptor limited interpretation of the experimental findings (38, 39). In
contrast, our present study focused more specifically on compari-
sons between CD44−/− and CD44+/+ DCs and their migration via lymph
in recipient wild-type littermates. Such approaches allowed us to
conclude that CD44 fulfills a cell-autonomous function in DC traf-
ficking by orchestrating critical interactions between the HA glyco-
calyx and LYVE-1 in lymphatic vessels.

Widely expressed in different tissues and with multiple roles in
cell growth, survival, differentiation and motility, CD44 has a well-
documented function in leukocyte extravasation from inflamed
blood vessels. Notably, its presence on T-cells and neutrophils
mediates their capture from flow and adhesive rolling on HA in the
luminal glycocalyx that is itself retained by CD44 expressed in
vascular endothelium (19, 24, 40, 41, 42, 43), reviewed in reference 44.
However, we have described a different role for CD44 in the exit of
DCs via dermal lymphatic vessels in that the HA it engages is not
sequestered on lymphatic endothelium but rather synthesized by
the DC itself, and its function is to mediate intravasation and not
extravasation. Indeed, lymphatic vessels do not possess an HA
glycocalyx, neither in vitro nor in vivo (45, 46), nor express CD44.
Also, lymphatic endothelium does not use endogenously generated
HA for DC adhesion (12). The retention of an HA glycocalyx by CD44 in
DCs rather than endothelium and its recognition by a functionally
distinct HA receptor LYVE-1 marks a clear difference between
lymphatics and blood, and likely evolved to permit independent
regulation of leukocyte trafficking in the two distinct vasculatures.

As we showed by Western blotting, synthesis of the HA glycocalyx
by BMDCs involves the two glycosyltransferases HAS1 and HAS2,
both of which are highly processive (10 sugars/second) and can
generate polymer chain lengths of several hundred to several
thousand disaccharides, respectively (13, 21, 47, 48). We found that
the levels of HA synthesis increased some twofold upon LPS-
induced activation of BMDCs, in keeping with the enhanced lym-
phatic migratory capacity exhibited by mature DC populations in
vivo (49). Curiously, however, this increase was not triggered by a
rise in HAS enzyme levels and hence may result from an increase in
HAS catalytic activity through post-translational modifications such
as phosphorylation (50, 51), O-GlcNAcylation or a rise in UDP-sugar
substrate levels through increased glucose uptake and cellular
metabolism (20, 52, 53).

As revealed by the confocal imaging studies in this present article,
the dense CD44-anchored HA glycocalyx likely extends over 500 nm
from the DC surface, consistent with the dimensions of CD44-bound
HA films in a supported lipid bilayer system (54). This is well beyond
the sphere of interaction of smaller surface adhesionmolecules such
as the key β2 integrin LFA-1 which has an extracellular domain of 20
nm (55, 56), or even selectins (50–100 nm) (57, 58). Hence, we predict
that the HA glycocalyx is poised to make the first adhesive contacts
between DCs and lymphatic endothelium, and initiates docking via
LYVE-1-enriched transmigratory cups (12), reviewed in reference 9.
This likelihood is further substantiated by our observations in the
current study, that CD44−/− DCs were unable to initiate stable ad-
hesion to lymphatic endothelial monolayers and instead migrated
randomly over the endothelial surface. Also, we showed that contacts
between LYVE-1 and CD44:HA formed predominantly at the trailing
edge of the DC, within the uropod. Extension of this dynamic, foot-like
protrusion which is characteristic of motile cells (59) was previously
shown to facilitate adherence and transmigration of leukocytes in
vascular endothelium (60, 61). Moreover, in T cells and neutrophils,
CD44 itself regulates polarization, assembly and stabilization of the
uropod during adhesion to extracellular matrix (60, 62). The receptor
is translocated to the posterior pole of these cells by its association
with phosphorylated Ezrin, Radixin, and Moesin proteins, triggering
membrane protrusion through cortical actin assembly/disassembly via
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Figure 7. Impaired entry and trafficking of CD442/2 BMDCs in dermal lymphatic vessels.
(A) Comparison of lymphatic trafficking of LPS-matured CD44+/+ and CD44−/− BMDCs, differentially labeled with Q-dot 585 and 655, respectively, or vice versa, 24 h after intradermal co-
injection into oxazolone-painted skin of CD44+/+mice. Recovery of BMDCs in draining cervical LNs wasmeasured by flow cytometry, *P < 0.05, **P < 0.01, Paired t tests. (B) Entry of CMFDA-
labeledCD44+/+andCD44−/−BMDCs intodermalafferent lymphatics immunostainedwithanti–LYVE-1, following topical administrationofoxazolone. Panels show3-D renderingof z-stacksat
lowmagnification (left; 100×, scale bars = 100 μm), and highermagnification (middle; 630×, scale bars = 20 μm) with orthogonal sections (right). (C)Numbers of BMDCs inside lymphatic
vessel lumens, expressed as a percentage of the number of lymphatic vessel-associated BMDCs. Data combined from three experiments, ****P < 0.0001, Mann–Whitney U-test. (D, E)
Recovery of intradermally injected CMFDA-labeledBMDCs (D) andoverall cellularity (E) in draining cervical LNs 24 h after topical application of oxazolone andadoptive transfer of BMDCs, as
measured by flow cytometry. *P < 0.05, **P < 0.01, Mann–Whitney U-test. Data are the median (center bar) ± s.e.m. (whiskers) (n = 5 mice). One representative experiment of three.
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Figure 8. DC adhesion and transendothelial migration are dependent on CD44 and HA.
(A, B, C) Adhesion of LPS-matured CMFDA-labeled CD44+/+ and CD44−/− BMDCs to mouse lymphatic endothelial cell (mLEC) monolayers after 3 h incubation, as assessed by
fluorescence plate reader, comparing (A) immature andmature BMDC, (B), mature BMDC after 2-h incubation with or without hyaluronidase (HAase) and (C) mature wild-type
BMDC in the presence of exogenously applied high molecular weight HA. (D) Immunostaining and confocal microscopy of mLEC monolayers following 3 h co-culture with CD44+/+

or CD44−/− LPS-matured CMFDA-labeled BMDC (green), with anti–LYVE-1 (red) and nuclei counterstained with DAPI (blue). Scale bar = 100 μm. (E, F, G) Transmigration of LPS-
matured CMFDA-labeled CD44+/+ and CD44−/− BMDCs through either mLEC monolayers cultured on the undersurface of Transwell filters in the presence of control rat IgG or
anti–LYVE-1 neutralizingmAb2125where indicated (E, F) or acrossfibroblastmonolayers culturedon theupper surface offilters (G)measuredover a 5-hperiodbyfluorescenceplate
reader. *P < 0.05, Mann–Whitney U-test. Data are the mean (center bar) ± s.e.m. (whiskers) (n = 4), representative experiments of three separate experiments.
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Figure 9. mAb-induced enhancement of CD44-HA binding increases BMDC adhesion to mouse lymphatic endothelial cell (mLEC) and impairs transmigration.
(A, B) Capacity of LPS-matured CD44+/+ and CD44−/− BMDCs to bind endogenously synthesized HA (A) or exogenously added HA (B), assessed by incubation with bVG1
and streptavidin–AF647 or bHA and streptavidin–AF647, respectively, with quantitation by flow cytometry and showing representative contour plots. (C, D) Adhesion of
LPS-matured CMFDA-labeled wild-type BMDCs (green) to mLEC monolayers after 3-h incubation in the presence of either rat IgG or the CD44 potentiating antibody
IRAWB14, as assessed by fluorescence plate reader (C) and confocal microscopy (D), with mLEC immunostained for LYVE-1 (red) and counterstained with DAPI (blue).
Scale bar = 50 μm. (E, F) Effect of IRAWB14 or control rat IgG on transmigratory cup formation in mLEC monolayers co-cultured for 3 h with LPS-matured CMFDA-labeled
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Rho and its associated kinase ROCK (63, 64). In our present study, the
dense distribution of CD44 and its associated HA glycocalyx in the DC
uropod likely facilitates efficient capture by LYVE-1, consistent with the
known avidity-dependent binding properties of the receptor and its
lowaffinity for freeHApolymers (9, 15, 65). In addition, as demonstrated
for matrix-adherent tumor cells that can also assemble a dense HA
glycocalyx via CD44 (66), the extendeddimensions of the bulky CD44:HA
complexes on the surface of DCs may exert biophysical influences on
the smaller underlying DC integrins by constraining their lateral dif-
fusion, driving their clustering and promoting their activation through
tensile stress. Given the key roles of β1 and β2 integrins in DC:LEC
adhesion and transmigration under conditions of inflammation (26),
and the observation that their counter-receptors ICAM-1 and VCAM-1
are present within LYVE-1-rich lymphatic endothelial transmigratory
cups (12, 67), it is likely that CD44may also help choreograph DC transit
by coordinating initial HA glycocalyx-mediated contacts with endo-
thelium and subsequent firm integrin-mediated adhesion.

In comparison with afferent lymphatic migration of DCs, much less
is understood about the mechanisms governing that of T cells
(reviewed in reference 68), despite the fact they comprise 85–90% of
cells in afferent lymph (69, 70). As T-cells exhibit lower levels of surface
HA thanDCs (71), it is unclear whether they have a sufficiently denseHA
glycocalyx with which to interact with LYVE-1. Instead, lymphatic en-
dothelial expressed-macrophage mannose receptor may be the
dominant interaction partner for lymphocyte CD44 (30, 72).

In addition to retaining the HA glycocalyx and targeting its distri-
bution within the pro-adhesive DC uropod, CD44 likely imposes a
spatial organization on the bound HA polymers that shapes their
interaction with LYVE-1. The notion that HA configuration is critical for
receptor binding is supported by numerous experimental findings.
Notably the distinctive pericellular HA cables formed by wrapping of
the polymer chains around their binding partner versican and covalent
attachment to IαI (inter α trypsin inhibitor) heavy chain present in cells
exposed to inflammatory stimuli, convert HA from a weak to a strongly
adhesive state for CD44 on monocytes (73, 74, 75, 76). Likewise, in the
case of LECs, complexing HA with TSG-6 dramatically enhances its
binding to LYVE-1 (65). Although the precise configuration of HA in the
DC glycocalyx is currently unknown, the relatively short CD44 footprint
(6–8 sugars (77, 78)) and the likelihood that only a small proportion of
these are occupied by the receptor (based on the abundance of free
bVG1 binding sites) predict a tethered HA meshwork comprising
multiple loops and free ends of varying lengths. That such a topog-
raphy has special significance for selective binding of the glycocalyx to
LYVE-1 is supported by recent biophysical analyses which revealed an
unexpected complementarity between the two receptors insofar as
LYVE-1 binds much more slowly than CD44 to HA loops and displays a
marked preference for HA chain ends (Bano, Banerji, Jackson and
Richter unpublished). Whether and how these features enable the
unusual slidingmode by which LYVE-1 engages HA as distinct from the
conventional sticking interactions of CD44 (79, 80) is the subject of
ongoing research in our laboratory.

Finally, by experimentallymanipulating the HA-binding capacity of
CD44 in DCs, we showed that the receptor can control glycocalyx surface
density and consequently adhesion to LYVE-1, conferring on it the po-
tential to regulate DC entry and trafficking through initial lymphatics.
Specifically, treatment with the mAb IRAWB14 that cross-links CD44 and
potentiates its HA-binding (35, 37, 81) led to increased incorporation of
endogenousHA into the glycocalyx, elevating its surfacedensity by almost
sixfold and strengthening its adhesiveness for LYVE-1 to such an extent
that it significantly delayed DC transmigration. Hence, DCs appear to carry
a reservoir of spare HA, for appropriate on-demand expansion of the
glycocalyx. Furthermore, when injected into the skin of oxazolone-
sensitized mice, we showed that the increased adhesiveness of the HA
glycocalyx in IRAWB14-treated DCs led to their accumulation inside the
lumen of dermal lymphatic capillaries, effectively halting their migration
and subsequent emergence in draining LNs. Following transmigration,
DCs normally crawl along the luminal surface of initial lymphatics, before
enteringdownstreamcontractile vessels for transport todraining LNs (5, 7,
10, 82, 83, 84, 85). However, as LYVE-1 lines the luminal as well as
basolateral surfaces of initial lymphatic capillaries (86), our findings raise
the intriguing possibility that such crawling may be regulated by inter-
actions between LYVE-1 and the CD44-anchoredDCHAglycocalyx. Indeed,
regulated retention of DCs within the lumen of initial lymphatics appears
important in light of recent reports that DCs pause during suchmigration
to form long-lived MHC-dependent interactions with antigen-specific
T-cells (87). We speculate that similar functional modulation of CD44
may occur to control leukocyte trafficking in vivo, in response to cytokines
including TNFα, IL-2, IL-1, and IFN-γ and chemokines such as CCL4 (MIP-
1β), CCL8 (IL-8), and CCL5 (RANTES), already well-documented to activate
HA binding by CD44 in monocytes and T-cells (33, 34, 88, 89, 90, 91).

In conclusion, we have shown that CD44 plays a key role in DC
migration by anchoring the HA surface glycocalyx, mediating
docking onto lymphatic endothelium for vessel entry via the
lymphatic HA receptor LYVE-1 in transmigratory cups. Moreover, we
have demonstrated that modulation of HA glycocalyx density
through CD44 clustering and activation can regulate the efficiency
of DC docking and entry to lymphatics, and may possibly influence
the rate of DC trafficking to draining LNs in vivo. These findings
reveal the intricate nature of the CD44:HA:LYVE-1 axis and highlight
its potential as a therapeutic target within the lymphatics for
blocking pathological immune activation.

Materials and Methods

Human and animal studies

All studies using human tissue were approved by the Oxford Re-
gional Health Committee (OXREC). Animal studies were performed
under appropriate UK Home Office licenses according to estab-
lished institutional guidelines.

BMDCs (green) and immunostained for LYVE-1 (red), with bound IRAWB14 (detected with anti-rat IgG, blue), shown in (E), scale bar = 20 μm, and the percentage of
adherent BMDCs associated with LYVE-1+ transmigratory cups in each condition shown in (F). (G) Effect of IRAWB14 mAb or control rat IgG on basolateral-to-luminal
transmigration of LPS-matured CMFDA-labeled wild-type BMDCs across mLEC monolayers grown on the undersurface of Transwell filters, measured over a 5-h period by
fluorescence plate reader. *P < 0.05, Mann–Whitney U-test. Data are the mean (center bar) ± s.e.m. (whiskers) (n = 4), one representative experiment of three.
Source data are available for this figure.
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Figure 10. Impaired lymphatic trafficking of DCs after mAb-induced enhancement of CD44-HA binding.
(A, B, C) Effect of IRAWB14 or control rat IgG on recovery of LPS-matured CMFDA-labeled wild-type BMDCs from draining cervical LNs 24 h after intradermal injection into
oxazolone-painted skin, as measured by flow cytometry and expressed as (A) numbers of CMFDA+ BMDCs, (B) percentage of CMFDA+ cells and (C) total LN cellularity. (D)
Numbers of BMDCs detected inside the lumen of dermal lymphatic vessels, expressed as a percentage of the total number of lymphatic vessel-associated BMDCs. (E)
Lymphatic vessel diameter 24 h after adoptive transfer of IgG- and IRAWB14-treated BMDCs, five measurements/vessel, five vessels/mouse. (F) Entry of CMFDA-labeled
IgG- and IRAWB14-treated wild-type BMDCs (green) into dermal afferent lymphatic capillaries immunostained with anti–LYVE-1 (red), following oxazolone skin painting.
Panels show 3-D rendering of z-stacks at low magnification (left; 100×, scale bars = 100 μm), and higher magnification (center; 630×, scale bars = 20 μm) with orthogonal
sections (right). **P < 0.01, ***P < 0.001, Mann–Whitney U-test. Data are the mean (center bar) ± s.e.m. (whiskers) (n = 5 mice), one representative experiment of three.
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CD44−/− mice on C57BL/6 background were purchased from The
Jackson Laboratory and maintained as a heterozygous colony.
Experiments were carried out using CD44−/− and CD44+/+ litter- and
cage-mates aged 8–12 wk. C57BL/6 wild-type mice were purchased
from Envigo RMS Inc.

Genotyping

Ear notches from mice generated by CD44−/+ × CD44−/+ breeding
were digested in 200 μl DirectPCR (Tail) lysis reagent (Viagen 102-T)
supplemented with Proteinase K, 0.4 mg/ml (P2308; Sigma-Aldrich)
for 16 h at 55°C, then heated to 85°C for 45 min before use in PCRs
using a Bio-Rad Thermocycler T100. MyTaq Red Mix (Bioline) and
primers (0.5 μM) were used for Touchdown PCR, denaturing at 94°C
for 2 min initially, followed by 10 cycles of 94°C for 1 min, annealing
at 65°C for 1 min (−0.5°C per cycle) and extending at 72°C for 1 min.
Then, for a further 28 cycles, denaturing at 94°C for 1 min, annealing
at 60°C for 1 min and extending at 72°C for 1 min, before a final 2min
incubation at 72°C. The following primers from The Jackson Lab-
oratory Genotyping Protocol were used: oIMR1432 GGC GAC TAG ATC
CCT CCG TT, oIMR1433 ACC CAG AGG CAT ACC AGC TG, oIMR6916 CTT
GGG TGG AGA GGC TAT TC, and oIMR6917 AGG TGA GAT GAC AGG AGA
TC, yielding PCR products of 280 bp for the null and 175 bp for theWT
alleles, respectively. Products were electrophoresed on 1.5%
agarose-Tris-Borate-EDTA gels.

Antibodies

Rat anti-mouse LYVE-1 mAb C1/8 and mouse anti-human LYVE-1
mAb 6A were generated previously, using mouse LYVE-1 Fc and
human LYVE-1 Fc, respectively, as immunogens, as were rabbit
anti–LYVE-1 polyclonal antibodies (92, 93). Anti-CD44 mAb IRAWB14
hybridoma was kindly provided by Dr. Jayne Lesley and IM7 hy-
bridoma was purchased from ATCC. Hybridomas were cultured in-
house. Rat and mouse IgG fractions were purified from hybridoma
supernatants using Protein G-Sepharose. Other antibodies were
mouse anti-human CD44 mAb BRIC235 (International Blood Group
Reference Library), mouse anti-human CD44 mAb F10.44.2-FITC
(Abcam), anti-mouse CD11c-PE (12-0114-82 clone N418; eBio-
science), anti-mouse MHCclII (I-A/I-E)-AF488 (Inc 5536323 clone
2G9; BioLegend), and anti-human ICAM3-APC (clone CBR-IC3/1;
BioLegend Inc). All antibodies were used at 10 μg/ml for immu-
nostaining and 50 μg/ml for function blocking. For flow cytometry,
antibodies used were anti–CD11b-BUV395 (565976 clone M1/70; BD
Biosciences), anti–MHCII (I-A/I-E)-eFluor 450 (48-5321-82 clone M5/
114.15.2; eBioscience), anti–CD326 (EpCAM)-BV605-Brilliant Violet
605 (Inc 118227 clone G8.8; BioLegend), anti–CD45-Brilliant Violet 785
(103149 clone 30-F11BioLegend Inc.), anti–CD207 (Langerin)-PE (2-
2075-82; eBioscience), anti–CD103-APC (17-1031-82 clone 2E7; Life
Technologies Thermo Fisher Scientific), anti–F4/80-PE/Cyanine5
(123112 clone BM8; BioLegend Inc.), and anti–CD11c-PE/Cyanine7
(117318 clone N418; BioLegend Inc.), all used at 1 μg/ml. Biotinylated
hyaluronan binding protein (bHABP), recombinant human versican
G1 domain (bVG-1), from AMSBio (AMS.HKD-BC41), was used at 3
μg/ml, detecting with either streptavidin-conjugated Alexa Fluor
647 or streptavidin-conjugated Alexa Fluor Pacific Blue.

All secondary conjugates (Alexa Fluor 488, 546, 594, and 647) were
purchased fromMolecular Probes, Invitrogen. Irrelevant IgG isotype
controls were purchased from R & D Systems.

Antibodies used for functional assays (both in vivo and in vitro)
were tested for endotoxin contamination using a Pierce LAL Chro-
mogenic Endotoxin Quantitation kit (88282; Thermo Fisher Scientific),
according to the manufacturer’s protocol, to ensure that endotoxin
levels were less than 10 pg/ml.

Cells

Primary mLECs and hLECs were prepared from freshly resected skin
samples by immunoselection with LYVE-1 mAb and MACS beads
(Miltenyi Biotec) and cultured on gelatin-coated tissue cultureware
(0.1% in PBS) in EGM2MV media (Lonza), as described previously (26).
Primary dermal fibroblasts were obtained by subculturing LYVE-1-
negative cells for 12 d, to obtain rapidly growing cells that readily
detach from substrate in the presence of EDTA (5 mM) in PBS.

BMDCs were extracted from tibia and fibula bones of euthanized
mice, passed through a 70 μm cell strainer and cultured for 7 d in DC
medium (RPMI 1640 with 10% FCS, kanamycin sulfate, MEM non-
essential amino acids, sodium pyruvate, glutamine, and 2-mer-
captoethanol (55 μM); all from Life Technologies), and supple-
mented with recombinant mouse GM-CSF and IL-4 (20 ng/ml,
premium grade; Miltenyi Biotec). Monocytes were purified from
PBMCs of healthy donors by positive immunoselection using anti-
CD14–conjugated MACS beads (Miltenyi Biotec). MDDCs were gen-
erated by culturing monocytes for 5 d in DC medium, supplemented
with recombinant human GM-CSF (50 ng/ml) and 10 ng/ml IL-4
(premium grade; Miltenyi Biotec). Non-adherent DCs were matured
with 1 μg/ml LPS from Salmonella abortus (Sigma-Aldrich) where
indicated.

Measurement of in vivo DC trafficking

To study endogenous DC trafficking, 3% (wt/vol) oxazolone (4-
ethoxymethylene-2 phenyl-2-oxazoline-5-one; E0753; Sigma-Aldrich)
and 4mg/ml FITC (Fluorescein isothiocyanate isomer 1, F7250; Sigma-
Aldrich) in 95% aqueous ethanol were topically applied to the shaved
abdomens (150 μl/mouse) of CD44+/+ and CD44−/− mice aged 8 wk.
Mice were euthanized after 24 h.

Tomeasure trafficking of adoptively transferredBMDC, LPS-matured
non-adherent BMDCs (CD44−/− or CD44+/+ cells) were labeled with
either Qtracker 655 (Q25021MP) or Qtracker 585 (Q25011MP) cell la-
beling kits, or CMFDA Cell Tracker Green (Invitrogen), according to the
manufacturer’s protocol. BMDCs were washed in PBS, mixed 1:1, then
co-injected intradermally into the ears of wild-type mice, 2 × 106 cells
total BMDCs per injection, at the same time as topical application of
oxazolone, 3% (wt/vol) in 95% ethanol (vol/vol).

To assess trafficking of IRAWB14-treated cells, LPS-matured
non-adherent wild-type BMDCs were labeled with CMFDA Cell
Tracker Green (Invitrogen), following the manufacturer’s protocol,
then incubated with either rat IgG or IRAWB14 (100 μg/ml, in PBS)
for 20 min on ice before injection into mouse ear dermis (2 × 106

cells in 50 μl per ear) at the same time as topical application of 3%
oxazolone.
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Harvesting dermal DCs for cytospin

Ears were removed from CD44−/− and CD44+/+mice after euthanasia,
then peeled into dorsal and ventral halves and cultured for 24 h
(exposed dermis-side down) in 24-well dishes in RPMI 1640 sup-
plemented with 10% FCS, penicillin–streptomycin and glutamine
(Life Technologies), andmouse TNFα (50 ng/ml; R&D Systems). Cells
which had crawled out from dermis were collected from the me-
dium and applied to microscope slides by Cytospin (Shandon;
Thermo Fisher Scientific).

Flow cytometric analysis of LNs

LNs were cut into halves and digested at 37°C for 40 min in Colla-
genase D (11088882001; Roche), 1 mg/ml (wt/vol) in RPMI 1640, then
mechanically disrupted through a 100 μm cell strainer. Cells were
suspended in incubation buffer (PBS + 10% FCS, 0.01% azide), counted
manually by hemocytometer and maintained on ice, and then in-
cubated with Fixable Viability Dye eFluor780 (65-0865; eBioscience)
for 15 min, after fixation and storage in 2% formaldehyde (vol/vol) at
4°C until analysis by flow cytometer (LSRII; BD Biosciences) and Flow-
Jo software. Compensation was carried out using samples of single
color-stained cells and fluorescence-minus-one controls.

Flow cytometric analysis of cultured BMDCs

Non-adherent BMDCs were suspended in incubation buffer (PBS +
10% FCS, 0.01% wt/vol sodium azide) and maintained on ice for all
incubation steps. Cells were first incubated with Fixable Viability Dye
eFluor780 (65-0865; eBioscience) for 15 min, then with TruStain FcX Fc
blocker (anti-mouse CD16/CD32 clone 93; BioLegend) for 15 min,
before incubation with fluorescently conjugated antibodies for 20
min. Staining for HA was carried out after all other incubations, by
fixing the cells in 2% formaldehyde (vol/vol) in PBS for 5 min, then
incubating with recombinant biotin-labeled versican G1 domain
(bVG1), 3 μg/ml for 40 min followed by streptavidin–Alexa Fluor 647
(S21374; Life Technologies) for 40 min. Cells were counted manually
and analyzed using a flow cytometer (LSRII; BD Biosciences) and
Flow-Jo software. Compensation was carried out using anti-rat/anti-
hamster Ig CompBeads (BD 51-90-9000949) with negative control
beads (BD 51-90-9001291), and fluorescence-minus-one controls. As
a control for non-specific binding of bVG1, samples were treated with
hyaluronidase (HAase, see below) before immunostaining.

Immunofluorescence antibody staining of cells and tissues

Monolayers of mLECs or hLECs cultured in 8-chamber slides (BD
Falcon) were fixed in paraformaldehyde (1% wt/vol in PBS, pH 7.4)
for 5 min, and then washed in PBS before applying primary anti-
bodies in blocking buffer (PBS + 1% BSA + 10% FCS). Cells were
incubated at room temperature for 45min, followed by washing and
further incubation for 30 min with Alexa Fluor secondary anti-
bodies, before mounting in Vectashield+DAPI (H-1200; Vector
Laboratories) and viewing on a Zeiss LSM 780 confocal microscope.
Images were captured by sequential scanning, with no overlap in
detection of emissions from each fluorophore, using either a 10X/

0.3 DIC M27 Plan-Apochromat, or 40X/1.1 W Korr UV-Vis-IR LDC-
Apochromat, or 63X/1.4 oil Plan-Apochromat objectives.

To visualize the HA glycocalyx of CD44+/+ and CD44−/− BMDCs,
non-adherent LPS-matured cells in suspension were labeled with
CMFDA green tracker dye where indicated, fixed in 2% PFA (vol/vol
in PBS), 10 min room temperature, then washed in PBS and in-
cubated in blocking buffer (5% FCS and 1% BSA in PBS) for 20 min.
Immunostaining was carried out in blocking buffer, with cells in
suspension. For counterstaining with phalloidin, cells were per-
meabilized with Triton X-100 (0.1% in PBS), 10min, before incubation
with Rhodamine–Phalloidin, 1:200 (R415; Invitrogen Thermo Fisher
Scientific) 30 min room temperature. Imaging was carried out using
a Zeiss LSM 880 inverted microscope with Airyscan detector and
63X/1.4 oil Plan-Apochromat objective, using default image re-
construction parameters in Zeiss Zen software. The thickness of HA
pericellular coats of CD44+/+ and CD44−/− BMDCs was measured
using Image J, at 30 positions around individual cells.

For whole-mount staining, mouse dermis was fixed in 1%
paraformaldehyde for 1 h, washed in PBS-Triton X-100 (0.3% vol/
vol), blocked with BSA (1% wt/vol) and FCS (10% vol/vol), and in-
cubated with primary antibodies at 4°C overnight and fluorescently
conjugated secondary antibodies for 2 h at room temperature.
Tissue samples were then mounted in Vectashield (H-1000; Vector
Laboratories) and viewed using a Zeiss LSM 780 upright confocal
microscope, using sequential scanning and either a 10X/0.3 DIC M27
Plan-Apochromat, 40X/1.1 W Korr UV-Vis-IR LDC-Apochromat, or
63X/1.4 oil Plan-Apochromat objective.

Removal of surface HA from BMDCs and tissue

BMDCs or tissue were incubated in either PBS alone or with
Streptomyces hyalurolyticus HAase (15 U/ml; Sigma-Aldrich), for 2 h
at 37°C in PBS, then washed in PBS.

Quantitation of LYVE-1+ endothelial cup formation

Primary mLECs or hLECs were seeded in eight-chamber slides and
cultured until confluent. CMFDA fluorescently labeled LPS-matured
BMDCs or MDDCs were preincubated with either anti-CD44 mAbs or
control IgG 30 min as appropriate, before addition of DCs (0.1 × 106

per chamber). Cells were incubated at 37°C for 3 h then non-
adherent DCs were removed by gentle washing with PBS, before
immunostaining as detailed above. Adherent DCs from 10 fields of
view per chamber were counted and scored as either associated
with or independent of LYVE-1+ transmigratory cups.

Adhesion and transmigration assays

To quantify adhesion, confluent monolayers of primary mLECs in
gelatin-coated 24-well dishes were layered with 5 × 105 fluo-
rescently labeled LPS-matured BMDCs per well and incubated at
37°C for 3 h. The total numbers of BMDCs present were then
measured in a fluorescence plate reader (Synergy HT; Bio-Tek),
followed by gentle rinsing (three times with PBS) to remove non-
adherent BMDCs, before re-measuring fluorescence and calculating
the percentage of adherent cells. To assess the effect of CD44
clustering/activation, CMFDA-labeled BMDCs were preincubated
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(30 min, 37°C) with CD44 mAb IRAWB14 or control Ig before applying
to mLEC monolayers, maintaining the presence of Ab throughout.

For measurement of transmigration, primary mLECs were seeded
onto the underside of gelatin-coated Fluoroblok cell culture inserts
(3 μm pore size; BD Falcon), or primary fibroblasts were seeded on
the upper surface of such inserts, culturing in companion plates
until fully confluent. Wild-type LPS-matured BMDCs were then
fluorescently labeled with CMFDA green tracker dye and pre-
incubated (37°C, 30 min) with IRAWB14 or control Ig before appli-
cation to the upper chambers of inserts (5 × 105 BMDCs per well).
LPS-matured BMDCs prepared from CD44+/+ and CD44−/− littermates
were also fluorescently labeled but applied directly to the upper
chambers of inserts (5 × 105 BMDCs per well). To assess the con-
tribution of LYVE-1 to diapedesis of CD44+/+ and CD44−/− BMDCs, the
function blocking anti–LYVE-1 antibody mAb 2125 or control rat IgG
was applied to mLEC 30 min before addition of BMDCs, and
maintained throughout the course of the experiment. In each case,
BMDCs transiting to the lower chambers were quantified over a 5-h
period at 37°C using a fluorescence plate reader (Synergy HT; Bio-
Tek) as described previously (26).

Imaging of DC motility on LEC monolayers

mLECs or hLECs were plated on 0.1% gelatin-coated glass-bottomed
wells (Ibidi) and cultured until confluent. Where indicated, hLECs
were incubated for 30 min at 37°C with mouse anti–LYVE-1 mAb
(clone 6A, 10 μg/ml), conjugated to DyLight 650 according to the
manufacturer’s instructions (Thermo Fisher Scientific), 30 min, then
washed in EGM2MV medium. LPS-matured MDDCs were either pre-
labeled with CMFDA Cell Tracker Green (Invitrogen), following the
manufacturer’s protocol, or with fluorescently conjugated anti-
CD44 mAb clone F10.44.2 and anti-ICAM3, washing in EGM2MV
medium before application to hLEC monolayers. Where indicated,
CMFDA-labeled MDDCs were preincubated with either control IgG or
anti-CD44 mAbs IM7, BRIC235, or F10.44.2, 10 μg/ml, 30 min before
applying directly to hLEC monolayers. CD44+/+ and CD44−/− BMDCs
were pre-labeled with either CMFDA Cell Tracker Green or CMTPX
Cell Tracker Red, washed in EGM2MV medium and then applied to
mLEC monolayers.

Time-lapse images were acquired using a Zeiss Cell Observer
inverted spinning disc confocal microscope, equipped with a
Hamamatsu Flash v2 CMOS camera and a 20× 0.8 NA Plan-
Apochromat objective, at 37°C in the presence of 5% CO2. Cells
were allowed to equilibrate at the microscope for a minimum of 15
min before imaging. Spinning disc images were deconvolved using
Huygens Professional (version 19.10, Scientific Volume Imaging)
using the Classical Maximum Likelihood method and default pa-
rameters as determined from the image meta data.

Quantitation of DC hyaluronan levels

A hyaluronan competitive ELISA kit (Cat. no. K-1200-1) was pur-
chased from Eschelon Biosciences and themanufacturer’s protocol
was followed. BMDCs were prepared from CD44+/+ and CD44−/−mice
as described above, culturing for 24 h either alone or with LPS (1 μg/
ml). Cells were counted, lysed in lysis buffer (50 mM Tris, pH 7.5, 100
mM NaCl, 1% NP-40, and 1 mM EDTA) and debris removed by

centrifugation (11,000g, 5 min) before application to the assay.
Supernatants were applied directly to the assay without further
treatment. HA concentration was expressed as pg/cell.

HA synthase quantitation by Western blotting

Immature and LPS-matured BMDCs were lysed (98°C, 5 min) in 1×
NuPAGE LDS sample buffer (Thermo Fisher Scientific) containing 2-
mercaptoethanol (5%, vol/vol) for reducing SDS–PAGE. To obtain a
positive control for immunoblotting, skin was excised from the back
of euthanized C57BL/6 mice, after treatment with hair removal
cream (Veet), then minced in PBS containing Complete EDTA-free
protease inhibitor (Merck) on ice, before low-speed centrifugation.
Supernatant was discarded, and sedimented tissue homogenized
in 1× NuPAGE LDS sample buffer, lysed (98°C, 5 min) then centri-
fuged (11,000g, 5 min), from which supernatant was retained. All
samples were subjected to sonication (Bioruptor pico, Diagenode)
to shear genomic DNA, then electrophoresed on Novex 4–12% Tris-
Glycine Mini Protein gels followed by transfer to Immobilon-Fl PVDF
membranes (Millipore). Blots were blocked by LI-COR blocking
buffer at room temperature, then probed with mouse anti-GAPDH
(clone 6C5; Life Technologies Ltd) and either rabbit anti-HAS1 (Cat.
no. A10453, supplied by 2B Scientific; ABclonal), anti-HAS2 (Cat. no.
A9897; Abclonal), or rabbit anti-HAS3 (Cat. no. PA5-100552; Thermo
Fisher Scientific) in blocking buffer (4°C, overnight). After washing
with PBS 0.1% (vol/vol) Tween 20 for 4 × 5 min, the membrane was
incubated with the appropriate IRdye 800 and IRdye 700 conjugates
for quantitative imaging using a LI-COR Odyssey scanner and Image
Studio software.

Data and statistical analyses

Data were analyzed using Excel (Microsoft) and the Mann–Whitney
U test was used to compare data sets throughout this study, unless
otherwise stated, using Graph Pad Prism. P < 0.05 was considered
significant. Microscopy images were quantitated using Image J and
Imaris (Bitplane).

Online supplemental material

Fig S1 demonstrates that CD44 deficiency does not affect expression
of DC activation markers MHC class II, CD80, or CD86. Fig S2 shows
the specificity of the bVG1 probe for HA in BMDCs. Fig S3 reveals
reduced levels of HA in the dermis of CD44−/− mice. Fig S4 dem-
onstrates that genetic deletion of CD44 does not affect expression
of HAS enzymes in BMDCs. Fig S5 illustrates that disrupting CD44-HA
interactions using CD44 function-blocking mAbs prevents forma-
tion of transmigratory cups in lymphatic endothelium. Fig S6 shows
impaired trafficking of endogenous dermal DC subsets to draining
LNs in CD44-deficient mice. Fig S7 demonstrates reduced lymphatic
trafficking of adoptively transferred CD44−/− BMDCs, as a percentage
of total number of cells in draining LNs. Fig S8 confirms no IRAWB14-
induced loss of BMDC viability and shows that mAb-induced po-
tentiation of CD44:HA interactions impairs lymphatic trafficking.

All Videos are spinning disc confocal microscopy time-lapse
movies. Videos 1–Videos 6 show the increase in MDDC motility
on monolayers of hLECs in the presence of the function-blocking
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anti-CD44 mAbs indicated. Video 7 shows an individual CD44+/+

BMDC adhering to a monolayer of mLECs, whereas an adjacent
CD44−/− BMDC is only loosely attached and continues to crawl.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202000908.
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