www.bjcancer.com

Physical activity and risk of colon adenoma: a meta-analysis

KY Wolin^{*, I}, Y Yan¹ and GA Colditz¹

¹ Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine in St Louis and Alvin J Siteman Cancer Center, 660 S Euclid Avenue, Box 8100, St Louis, MO 63110, USA

BACKGROUND: Little evidence is available on the relation of physical activity with colon adenomas, a colon cancer precursor. METHODS: We conducted a systematic literature review and meta-analysis of published studies (in English) through April 2010, examining physical activity or exercise and risk or prevalence of colon adenoma or polyp. Random effects models were used to estimate relative risks (RRs) and corresponding confidence intervals (Cls). A total of 20 studies were identified that examined the association and provided RRs and corresponding 95% Cls.

RESULTS: A significant inverse association between physical activity and colon adenomas was found with an overall RR of 0.84 (CI: 0.77-0.92). The association was similar in men (RR=0.81, CI: 0.67-0.98) and women (RR=0.87, CI: 0.74-1.02). The association appeared slightly stronger in large/advanced polyps (RR=0.70, CI: 0.56-0.88).

CONCLUSION: This study confirms previous reports of a significant inverse association of physical activity and colon adenoma, and suggests that physical activity can have an important role in colon cancer prevention.

British Journal of Cancer (2011) 104, 882–885. doi:10.1038/sj.bjc.6606045 www.bjcancer.com

Published online 8 February 2011

© 2011 Cancer Research UK

Keywords: physical activity; colon adenoma; colon polyp

Convincing evidence exists for a causal, inverse association between physical activity and risk of colon cancer (International Agency for Research on Cancer WHO, 2002; World Cancer Research Fund/American Institute for Cancer Research, 2007b; Wolin et al, 2009). This association is plausibly supported by several biological mechanisms, including decreased inflammation, decreased insulin-like growth factor levels, reduced hyperinsulinemia and modulated immune function (Wolin et al, 2009). Fewer data are available with respect to physical activity and colon adenomas, the precursor lesion detected and removed during sigmoidoscopy or colonoscopy. Although numerous studies have examined this association, no comprehensive meta-analysis is available. A limited meta-analysis by the World Cancer Research Fund included three studies, and estimated physical activity was associated with a statistically significant 15% reduction in colon polyp risk (World Cancer Research Fund/American Institute for Cancer Research, 2007a). Estimation of the risk reduction associated with the physical activity is important for public health because lifestyle is associated with a decreased risk of colon cancer, even among those who have undergone colon cancer screening (Wei et al, 2009). Furthermore, evidence on smoking has suggested that risk may vary for colon polyps versus colon cancer (Botteri et al, 2008). We therefore conducted a meta-analysis to estimate the summary relative risk (RR) of colon polyps associated with physical activity.

MATERIALS AND METHODS

We searched the literature using PubMed, CINAHL and Scopus for all studies on physical activity or exercise and colon polyps through April 2010. We employed the terms exercise and physical activity in combination with colon polyps using the terms colon polyp, colon adenoma, colorectal polyp, colorectal adenoma and adenomatous polyps. We also utilised a previous review of the data (Samad *et al*, 2005; Lee and Oguma, 2006; World Cancer Research Fund/American Institute for Cancer Research, 2007a) and manual searches of the reference lists of identified manuscripts. We included recurrent, incident and prevalent cases of colon polyps. We did not limit studies by type of physical activity or study sample demographics.

Our search yielded 89 potential articles. We excluded reviews, non-human studies, editorials/comments/letters to the editor, studies without colon polyps as an outcome, studies where physical activity was only included as a covariate (and thus no measure of association was presented), and where no metric for effect estimate precision (P-value, s.e., confidence interval (CI)) was provided. Combined with searches from the reference sections of manuscripts and previous reviews, this yielded 20 manuscripts. From each manuscript, we abstracted the sample size (including number of cases), gender, years of follow-up or type of control sample, case definition, physical activity domain, adenoma detection method, sample definition criteria and results. We also abstracted the variables that each study used in its most adjusted analysis. Data extraction was performed by a single investigator (KYW). Where studies included more than one type of physical activity without a summary measure, we included only leisure time physical activity, which is the major modifiable component of energy.

^{*}Correspondence: Dr KY Wolin; E-mail: wolink@wustl.edu Received 6 September 2010; revised 8 November 2010; accepted 17 November 2010; published online 8 February 2011

Previous meta-analyses have suggested that results for adenomatous polyps need to be presented separately from hyperplastic or malignant polyps.(Botteri *et al*, 2008) Although we did not restrict our analysis to studies where data was limited to adenomatous polyps, we did consider those results separately. Specifically, we excluded results for hyperplastic polyps where feasible. We also identified studies considered to be the 'best approach' using criteria similar to those used in a previous metaanalysis (Botteri *et al*, 2008), namely, studies that met all of the following: (1) limited the outcome to only adenomatous polyps; (2) all individuals received a full colonoscopy; and (3) the study population excluded anyone with inherited colorectal cancer syndromes, inflammatory bowel disease, a history of colon polyps or cancer, or a previous colon resection.

Data analysis

Meta-analysis of random effects was used to allow for the heterogeneity of results across studies. (Mosteller and Colditz, 1996) Data were processed in SAS, and the analyses were performed using R-package 'meta' (SAS Institute Inc., Carv, NC, USA). A summary forest plot was generated in Stata (StataCorp LP, College Station, TX, USA). As most studies reported RRs or odds ratios (ORs) and their associated 95 percent CIs, we used these data as summary statistics for each study. First, we derived the s.e. of log (RR or OR) using the 95 percent CI, with the expression: (log (upper limit) - log (lower limit))/2*1.96. These s.es were used as weights for summary effect estimates in the meta-analysis. We visually examined publication bias using Funnel plots, and employed the rank correlation method to formally test for bias.(Begg and Mazumdar, 1994) Where studies reported results separately for men and women, we included both estimates when reporting the overall association. To evaluate the potential effects

Physical activity and colon adenoma KY Wolin et al

of limiting results to only adenomatous polyps, we conducted exploratory analysis in the subset of those studies. We also included results separately for large/advanced adenoma, if the data were presented as such in the original manuscript. We also conducted exploratory analyses limited to those studies defined as the 'best approach'. To test sub-analysis differences (large *vs* all adenomas; best approach *vs* all studies), we partitioned 'total heterogeneity' into between-group and within-group heterogeneity, and used the 'between-group' heterogeneity index as the test statistic against χ^2 distribution with 1 degree of freedom.(Cooper and Hedges, 1994).

RESULTS

We identified 20 studies of physical activity and colon adenomas (Table 1). (Kono et al, 1991, 1999; Little et al, 1993; Shinchi et al, 1994; Giovannucci et al, 1995, 1996; Sandler et al, 1995; Neugut et al, 1996; Enger et al, 1997; Lubin et al, 1997; Kahn et al, 1998; Boutron-Ruault et al, 2001; Colbert et al, 2002; Lieberman et al, 2003; Tiemersma et al, 2003; Hauret et al, 2004; Wallace et al, 2005; Larsen et al, 2006; Rosenberg et al, 2006; Hermann et al, 2009) Most collected physical activity information via questionnaire, with nine studies only collecting information on leisure activity. Studies often did not specify or query the reasons participants underwent colonoscopy or sigmoidoscopy, thus, cases included are both symptomatic and screening. Only two studies (Colbert et al, 2002; Wallace et al, 2005) included procedures for the study, both were in studies of polyp recurrence. All but two studies (Kahn et al, 1998; Rosenberg et al, 2006) reported results for adenomas separately from all polyps or limited results to adenomas. A total of 10 studies (Shinchi et al, 1994; Giovannucci et al, 1995, 1996; Lubin et al, 1997; Kono et al, 1999; Boutron-Ruault et al, 2001;

Table I	Studies include i	n meta-analysis	of physical	activity and	colon polyps
---------	-------------------	-----------------	-------------	--------------	--------------

Author and Year	Gender	Number of study subjects		Relative Risk	Lower Confidence Interval	Upper Confidence Interval	Type of Physical Activity	Case definition	Non-case/ comparison definition
Kono et al, 1991	Both	1148	80	0.44	0.22	0.87	Leisure	Adenoma	None
Little et al, 1993	Both	300	147	0.46	0.17	1.29	Leisure	Adenoma	FOBT negative
Shinchi et al, 1994	Both	1712	228	1.2	0.8	2	Leisure	Adenoma	None
Giovannucci et al, 1995	Men	12879	455	0.79	0.57	1.09	Leisure	Distal Adenoma	No polyp
Sandler, 1995	Men	234	86	0.92	0.36	2.31	Leisure	Adenoma	Hyperplastic/none
Sandler, 1995	Women	350	114	0.64	0.35	1.19	Leisure	Adenoma	Hyperplastic/none
Giovannucci et al, 1996	Women	13057	330	0.58	0.4	0.86	Leisure	Distal Adenoma	None
Neugut, 1996	Men	400	225	0.6	0.4	I	Total	Adenoma	None
Neugut, 1996	Women	411	283	1.3	0.7	2.3	Total	Adenoma	None
Enger et al, 1997	Both	920	460	1	0.7	1.5	Total	Adenoma	No polyp
Lubin et al, 1997	Both	392	196	0.6	0.3	0.9	Total	Large/advanced Adenoma	Hyperplastic/None
Kahn et al, 1998	Men	72 868	7504	0.83	0.76	0.91	Total	All polyps	None
Kahn e <i>t al</i> , 1998	Women	81356	5111	0.9	0.78	1.03	Total	All polyps	None
Kono et al, 1999	Both	415	189	0.6	0.3	1.3	Leisure	Adenoma	Normal
Boutron-Ruault et al, 2001	Both	581	154	1.3	0.7	2.5	Total	Small adenoma	None
Boutron-Ruault et al, 2001	Both	635	208	0.8	0.4	1.5	Total	Large/advanced adenoma	None
Colbert et al, 2002	Both	1839	733	1.2	0.9	1.6	Total	Adenoma or cancer	None
Lieberman et al, 2003	Both	2082	312	0.94	0.86	1.02	Total	Large/advanced adenoma	None
Tiemersma et al, 2003	Women	471	196	1.05	0.72	1.54	Not specified	Adenoma	None
Tiemersma et al, 2003	Men	398	237	0.69	0.43	1.1	Not specified	Adenoma	None
Hauret et al, 2004	Both	405	177	0.63	0.34	1.17	Total	Adenoma	Hyperplastic/None
Wallace et al, 2005	Men	787	539	0.35	0.17	0.72	Total	Large/advanced adenoma	None
Wallace et al, 2005	Women	787	205	1.21	0.36	4.03	Total	Large/advanced adenoma	None
Larsen et al, 2006	Both	3696	426	0.96	0.74	1.25	Total	Low risk adenoma	None
Larsen et al, 2006	Both	3376	106	0.56	0.34	0.92	Total	Large/advanced adenoma or cancer	None
Rosenberg et al, 2006	Women	45 400	1390	0.72	0.57	0.91	Leisure	All polyps	None
Hermann et al. 2009	Both	4510	527	1.02	0.74	1.42	Total	Adenoma	None

Abbreviation: FOBT = Fecal occult blood test.

Physical activity and colon adenoma

KY Wolin et al

884

		%		
Label	ES (95% CI)	Weight (I–V)	Gender	Case definition
	. ,	()		
Kono <i>et al</i> , 1991	0.44 (0.22, 0.88)	0.48	Both	Adenoma
Little et al, 1993	0.46 (0.17, 1.24)	0.23	Both	Adenoma
Shinchi <i>et al</i> , 1994	1.20 (0.80, 1.80)	1.40	Both	Adenoma
Giovannucci <i>et al</i> , 1995	0.79 (0.57, 1.09)	2.16	Men	Distal adenoma
Sandler, 1995	0.92 (0.36, 2.35)	0.26	Men	Adenoma
Sandler, 1995	0.64 (0.35, 1.17)	0.63	Women	Adenoma
Giovannucci <i>et al</i> , 1996	0.58 (0.40, 0.84)	1.67	Women	Distal adenoma
Neugut, 1996	0.60 (0.40, 0.90)	1.40	Men	Adenoma
Neugut, 1996	1.30 (0.70, 2.41)	0.60	Women	Adenoma
Enger <i>et al</i> , 1997	1.00 (0.70, 1.43)	1.81	Both	Adenoma
Lubin <i>et al</i> , 1997	0.60 (0.30, 1.20)	0.48	Both	Large/advanced adenoma
Kahn <i>et al</i> , 1998 🔶	0.83 (0.76, 0.91)	29.63	Men	All polyps
Kahn <i>et al</i> , 1998	0.90 (0.78, 1.04)	11.23	Women	All polyps
Kono <i>et al</i> , 1999	0.60 (0.30, 1.20)	0.48	Both	Adenoma
Boutron-Ruault <i>et al</i> , 2001	1.30 (0.70, 2.41)	0.60	Both	Small adenoma
Boutron-Ruault et al, 2001	0.80 (0.40, 1.60)	0.48	Both	Large/advanced adenoma
Colbert et al, 2002	1.20 (0.90, 1.60)	2.78	Both	Adenoma or cancer
Lieberman <i>et al</i> , 2003	0.94 (0.86, 1.03)	29.07	Both	Large/advanced adenoma
Tiemersma et al, 2003	1.05 (0.72, 1.53)	1.62	Women	Adenoma
Tiemersma et al, 2003	0.69 (0.43, 1.11)	1.03	Men	Adenoma
Hauret <i>et al,</i> 2004	0.63 (0.34, 1.17)	0.60	Both	Adenoma
Wallace et al, 2005	0.35 (0.17, 0.72)	0.44	Men	Large/advanced adenoma
Wallace et al, 2005	1.21 (0.36, 4.07)	0.16	Women	Large/advanced adenoma
Larsen <i>et al</i> , 2006	0.96 (0.74, 1.25)	3.40	Both	Low risk adenoma
Larsen <i>et al</i> , 2006	0.56 (0.34, 0.92)	0.92	Both	Large/advanced adenoma/cancer
Rosenberg et al, 2006	0.72 (0.57, 0.91)	4.21	Women	All polyps
Hermann et al, 2009	1.02 (0.74, 1.41)	2.23	Both	Adenoma
I–V overall (<i>I</i> ² = 46.2%, <i>P</i> = 0.005) ♦	0.87 (0.83, 0.91)	100.00		
D+L overall	0.84 (0.77, 0.92)			
			_	
0.2 1 5				

Figure I Meta-analysis of physical activity and colon adenoma. Study physical activity level comparisons are as follows: Kono et *al*, 1991: \ge 120 vs 0 min per week; Little *et al*, 1993: \ge 30 min vs none; Shinchi *et al*, 1994: daily vs none; Giovannucci *et al*, 1995: highest vs lowest quintile; Sandler, 1995: highest vs lowest quartile; Giovannucci *et al*, 1997: >5.5 h per day vs <4 h per day; Enger *et al*, 1997: highest vs lowest quartile; Kann *et al*, 1998: high vs low; Kono *et al*, 1999: \ge 36 MET h per wk vs <4 MET h per wk; Boutron-Ruault *et al*, 2001: high vs low; Colbert *et al*, 2002: high vs low quartile; Lieberman *et al*, 2003: per 5 unit change in physical activity index; Tiemersma *et al*, 2003: not specified; Hauret *et al*, 2006: \ge 40 MET h per wk vs none; Hermann *et al*, 2009: active vs inactive. ES = effect size; MET = metabolic equivalent.

Colbert *et al*, 2002; Lieberman *et al*, 2003; Wallace *et al*, 2005; Larsen *et al*, 2006) reported results separately for large or advanced adenomas.

We found significant heterogeneity in the results (P < 0.01) and thus, focus our report on the random effects analysis (Figure 1). Overall, there was a significant inverse association between physical activity and colon polyps (fixed effect RR = 0.87, 95% CI: 0.83-0.91; random effects RR = 0.84, 95% CI: 0.77-0.92) when comparing the most to least active individuals in each study. The summary RR was significant and similar in men (RR = 0.81, 95% CI: 0.67-0.98) and women (RR = 0.87, 95% CI: 0.74-1.02).

There was a tendency for the effect of physical activity to be restricted to large or advanced adenomas and not low grade ones. Similarly, physical activity was associated with large (>1 cm) (RR = 0.63, 95% CI: 0.36 - 1.10), but not with small adenomas in a sample of US male health professionals (Giovannucci *et al*, 1995). In a cohort of US female nurses, a significant overall risk reduction (RR = 0.58, 95% CI: 0.40 - 0.86) was reported, which was also stronger for larger than smaller adenomas (Giovannucci *et al*, 1996). Our meta-analysis found the effect was stronger, though not significantly so (P = 0.16), for large or advanced (RR = 0.70, 95% CI: 0.56 - 0.88) adenomas than for the overall effect. In analyses

limited to the 18 studies where results for adenomatous polyps were separated from all polyps (i.e., hyperplastic, malignant polyps), the meta-analysis estimate for the association between physical activity and risk of polyps was largely unchanged (RR = 0.83, 95% CI: 0.73-0.93). In analysis limited to the six studies(Kono *et al*, 1991; Sandler *et al*, 1995; Colbert *et al*, 2002; Lieberman *et al*, 2003; Tiemersma *et al*, 2003; Hauret *et al*, 2004) defined as the 'best approach,' the effect estimate was similar to that for all studies (RR = 0.87, 95% CI: 0.73-1.05), though not statistically significant.

DISCUSSION

Previous, though limited, reviews have indicated physical activity is associated with a significant reduction in colon polyp risk. (World Cancer Research Fund/American Institute for Cancer Research, 2007a) Our comprehensive meta-analysis supports this conclusion, showing a significant 16% risk reduction when comparing the most to the least active. Risk reductions were similar for men and women, and held when limited to studies designated as the best approach. We found the association was notably stronger when analyses were limited to advanced or large polyps, with a risk reduction of 35%. These results support the previously documented role of physical activity in colon cancer prevention (International Agency for Research on Cancer WHO, 2002; World Cancer Research Fund/ American Institute for Cancer Research, 2007a and 2007b; Wolin *et al*, 2009). Earlier reports that failed to find an association between physical activity and colon polyps had suggested that physical activity may be more important in the adenoma to carcinoma sequence than in adenoma development (Colbert *et al*, 2002). Our meta-analysis, combined with the above-mentioned data demonstrating physical activity's role in colon cancer prevention, suggests that physical activity has a role across the carcinogenic process. Several mechanisms have been proposed for such effects, including enhanced immune function, decreased inflammation, reduced insulin levels and insulin resistance, and

REFERENCES

- Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. *Biometrics* **50**: 1088-1101
- Botteri E, Iodice S, Raimondi S, Maisonneuve P, Lowenfels AB (2008) Cigarette smoking and adenomatous polyps: a meta-analysis. *Gastroenterology* **134**: 388-395
- Boutron-Ruault MC, Senesse P, Meance S, Belghiti C, Faivre J (2001) Energy intake, body mass index, physical activity, and the colorectal adenomacarcinoma sequence. *Nutr Cancer* **39:** 50–57
- Colbert LH, Lanza E, Ballard-Barbash R, Slattery ML, Tangrea JA, Caan B, Paskett ED, Iber F, Kikendall W, Lance P, Shike M, Schoen RE, Daston C, Schatzkin A (2002) Adenomatous polyp recurrence and physical activity in the Polyp Prevention Trial (United States). *Cancer Causes Control* **13**: 445-453
- Cooper H, Hedges LV (1994) The Handbook of Research Synthesis: Part VI: Statistically Analyzing Effect Size. Newbury Park, CA: Russell Sage Foundation
- Enger SM, Longnecker MP, Lee ER, Frankl HD, Haile RW (1997) Recent and past physical activity and prevalence of colorectal adenomas. *Br J Cancer* **75**: 740-745
- Giovannucci E, Ascherio A, Rimm EB, Colditz GA, Stampfer MJ, Willett WC (1995) Physical activity, obesity, and risk for colon cancer and adenoma in men. *Ann Intern Med* **122**: 327-334
- Giovannucci E, Colditz GA, Stampfer MJ, Willett WC (1996) Physical activity, obesity, and risk of colorectal adenoma in women (United States). *Cancer Causes Control* 7: 253-263
- Hauret KG, Bostick RM, Matthews CE, Hussey JR, Fina MF, Geisinger KR, Roufail WM (2004) Physical activity and reduced risk of incident sporadic colorectal adenomas: observational support for mechanisms involving energy balance and inflammation modulation. *Am J Epidemiol* **159**: 983–992
- Hermann S, Rohrmann S, Linseisen J (2009) Lifestyle factors, obesity and the risk of colorectal adenomas in EPIC-Heidelberg. *Cancer Causes Control* 20: 1397-1408
- International Agency for Research on Cancer WHO (2002) IARC Handbooks of Cancer Prevention: Weight Control and Physical Activity, Volume 6. International Agency for Research on Cancer: Lyon, France
- Kahn HS, Tatham LM, Thun MJ, Heath Jr CW (1998) Risk factors for self-reported colon polyps. J Gen Intern Med 13: 303-310
- Kono S, Handa K, Hayabuchi H, Kiyohara C, Inoue H, Marugame T, Shinomiya S, Hamada H, Onuma K, Koga H (1999) Obesity, weight gain and risk of colon adenomas in Japanese men. Jpn J Cancer Res 90: 805-811
- Kono S, Shinchi K, Ikeda N, Yanai F, Imanishi K (1991) Physical activity, dietary habits and adenomatous polyps of the sigmoid colon: a study of self-defense officials in Japan. J Clin Epidemiol 44: 1255-1261
- Larsen IK, Grotmol T, Almendingen K, Hoff G (2006) Lifestyle as a predictor for colonic neoplasia in asymptomatic individuals. *BMC Gastroenterol* 6: 5
- Lee IM, Oguma Y (2006) Physical activity. In *Cancer Epidemiology* and Prevention, Third Edition, Schottenfeld D, Fraumeni JF, Jr (eds). pp 449-467. Oxford University Press: New York
- Lieberman DA, Prindiville S, Weiss DG, Willett W (2003) Risk factors for advanced colonic neoplasia and hyperplastic polyps in asymptomatic individuals. JAMA 290: 2959-2967

higher vitamin D levels (Wolin *et al*, 2009). Hyperinsulinemia has also been directly related to colon polyp risk (Wei *et al*, 2006).

This comprehensive meta-analysis provides support for an inverse association between physical activity and colon polyps, and also for the role of physical activity in colon cancer carcinogenesis. Physical activity may reduce the risk of colon polyps by 15% and may provide a substantially larger reduction in risk of large and advanced polyps.

ACKNOWLEDGEMENTS

GAC is supported by an American Cancer Society Clinical Research Professorship. KYW, GAC and YY are supported by CA091842.

- Little J, Logan RF, Hawtin PG, Hardcastle JD, Turner ID (1993) Colorectal adenomas and energy intake, body size and physical activity: a casecontrol study of subjects participating in the Nottingham faecal occult blood screening programme. *Br J Cancer* **67:** 172–176
- Lubin F, Rozen P, Arieli B, Farbstein M, Knaani Y, Bat L, Farbstein H (1997) Nutritional and lifestyle habits and water-fiber interaction in colorectal adenoma etiology. *Cancer Epidemiol Biomarkers Prev* 6: 79-85
- Mosteller F, Colditz GA (1996) Understanding research synthesis (meta-analysis). Annu Rev Public Health 17: 1-23
- Neugut AI, Terry MB, Hocking G, Mosca L, Garbowski GC, Forde KA, Treat MR, Waye J (1996) Leisure and occupational physical activity and risk of colorectal adenomatous polyps. *Int J Canc* **68**: 744–748
- Rosenberg L, Boggs D, Wise LA, Palmer JR, Roltsch MH, Makambi KH, Adams-Campbell LL (2006) A follow-up study of physical activity and incidence of colorectal polyps in African-American women. *Cancer Epidemiol Biomarkers Prev* 15: 1438-1442
- Samad AK, Taylor RS, Marshall T, Chapman MA (2005) A meta-analysis of the association of physical activity with reduced risk of colorectal cancer. *Colorectal Dis* 7: 204–213
- Sandler RS, Pritchard ML, Bangdiwala SI (1995) Physical activity and the risk of colorectal adenomas. *Epidemiology* **6**: 602-606
- Shinchi K, Kono S, Honjo S, Todoroki I, Sakurai Y, Imanishi K, Nishikawa H, Ogawa S, Katsurada M, Hirohata T (1994) Obesity and adenomatous polyps of the sigmoid colon. Jpn J Cancer Res 85: 479-484
- Tiemersma EW, Wark PA, Ocke MC, Bunschoten A, Otten MH, Kok FJ, Kampman E (2003) Alcohol consumption, alcohol dehydrogenase 3 polymorphism, and colorectal adenomas. *Cancer Epidemiol Biomarkers Prev* 12: 419-425
- Wallace K, Baron JA, Karagas MR, Cole BF, Byers T, Beach MA, Pearson LH, Burke CA, Silverman WB, Sandler RS (2005) The association of physical activity and body mass index with the risk of large bowel polyps. *Cancer Epidemiol Biomarkers Prev* 14: 2082-2086
- Wei EK, Colditz GA, Giovannucci EL, Fuchs CS, Rosner BA (2009) Cumulative risk of colon cancer up to age 70 years by risk factor status using data from the Nurses' Health Study. *Am J Epidemiol* **170**: 863-872
- Wei EK, Ma J, Pollak MN, Rifai N, Fuchs CS, Hankinson SE, Giovannucci E (2006) C-peptide, insulin-like growth factor binding protein-1, glycosylated hemoglobin, and the risk of distal colorectal adenoma in women. *Cancer Epidemiol Biomarkers Prev* **15**: 750–755
- Wolin KY, Yan Y, Colditz GA, Lee IM (2009) Physical activity and colon cancer prevention: a meta-analysis. *Br J Cancer* **100:** 611–616
- World Cancer Research Fund/American Institute for Cancer Research (2007a) The associations between food, nutrition and physical activity and the risk of colorectal polyps and underlying mechanisms. In Food, Nutrition, Physical Activity and the Prevention of Cancer: a Global Perspective- Systematic Literature Review – Support Resource, World Cancer Research Fund/American Institute for Cancer Research (ed). AICR: Washington, DC
- World Cancer Research Fund/American Institute for Cancer Research (2007b) Food, Nutrition, Physical Activity and the Prevention of Cancer: a Global Perspective. AICR: Washington DC